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Abstract

Dimension reductions (DR) help people make sense of image collections by organizing images in the 2D space based on

similarities. However, they provide little support for explaining why images were placed together or apart in the 2D space.

Additionally, they do not provide support for modifying and updating the 2D representation to explore new relationships and

organizations of images. To address these problems, we present an interactive DR method for images that uses visual features

extracted by a deep neural network to project the images into 2D space and provides visual explanations of image features

that contributed to the 2D location. In addition, it allows people to directly manipulate the 2D projection space to define

alternative relationships and explore subsequent projections of the images. With an iterative cycle of semantic interaction

and explainable-AI feedback, people can explore complex visual relationships in image data. Our approach to human–AI

interaction integrates visual knowledge from both human-mental models and pre-trained deep neural models to explore

image data. We demonstrate our method through examples with collaborators in agricultural science and other applications.

Additionally, we present a quantitative evaluation that assesses how well our method captures and incorporates feedback.

Keywords Interactive dimension reduction · Semantic interaction · Explainable AI · Image data

1 Introduction

People commonly use dimension reduction (DR) methods

to explore data for sensemaking tasks [1]. DR methods

excel at mapping high-dimensional data to a low-dimensional

space (typically 2D) while preserving meaningful struc-
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ture and relationships. Several methods add interaction to

enable exploration, modification, and understanding of the

2D space. For example, some systems incorporate semantic

interactions which couple cognitive and computational pro-

cesses by inferring meaning behind interactions and updating

the model accordingly [2].

However, most interactive DR methods have limited sup-

port for image data, often representing images as arrays

of pixels and treating them the same as tabular data. This

not only limits the DR’s ability to determine similarities

between images but also often inhibits interaction meth-

ods for understanding the 2D space. For example, Self et

al.’s Andromeda uses Weighted Multidimensional Scaling

(WMDS) to create an interactive DR that supports semantic

interaction for exploring and understanding 2D projection

spaces via model steering [3]. After an interaction, the model

learns new weights on the input dimensions that infer mean-

ing from the interaction and explain the information learned

by the projection. However, when a dataset does not have

interpretable dimensions, these explanations become mean-

ingless. What’s more, because a single pixel has an arbitrary

meaning across all images, weighting the same pixel in each

image does not have a uniform effect on all of the images.
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Fig. 1 Interactions to explore maturity level in edamame pod images. a shows user manipulations based on maturity level. b Shows the updated

projection while c shows the ground truth maturity level. d–f Shows the explanations of important image features for each maturity level

Thus it does not make sense to directly project images from

pixel arrays.

We know from past research that deep neural networks

excel at extracting meaningful features from images and

embedding them into a new representation [4]. Classifiers

commonly use these embeddings, achieving high accuracy

which indicates that the embeddings must be well suited

for finding similarities between images. The question then

remains, how can we use these feature embeddings to cre-

ate more meaningful projections of image data and capture

human feedback?

In this paper, we present an interactive DR method,

built from Self et al.’s Andromeda, that supports seman-

tic interaction for exploring projections of image data. Our

method leverages the feature embeddings extracted from a

convolutional neural network to project image data to a low-

dimensional space using WMDS while supporting semantic

interaction to enable people to explore and update the projec-

tion space. Our method enables people to directly manipulate

the 2D locations of images to define new pairwise relation-

ships in the 2D space. Based on the changes induced by these

manipulations, the method learns new projection weights

that best respect the user-defined relationships. Using these

weights to re-project the images, people can observe the

impact of those relationships on the projection space. Each

dimension now represents some feature of the images, rather

than an arbitrary pixel, but these dimensions are still not

directly interpretable. Increasing the weight of a feature

increases its importance in the projection but still does not

provide any insight into the information learned. Thus, while

updating the weights now has an inherent meaning, people

have no real understanding of this meaning. That brings us

to our second question: How can we translate the learned

weights back to the image space?

In addition to providing an interactive DR, our approach

provides explanations of features of importance in the 2D

space through the use of a weighted backpropagation algo-

rithm. We adapt a traditional visual backpropagation method

for generating saliency maps [5] to apply the feature weights

from the projection. Doing so creates saliency maps that

highlight the image features learned from the semantic inter-

action. Thus, we are able to push the information learned

from the interaction back through the network to the image

space, where people can interpret it.

Our method helps people explore multiple projections of

their image data through semantic interactions and explain

the effects of these interactions on the placement of images

through saliency maps. Figure 1 presents an example using

our method, with a full description in Sec. 5.1. We note that

our motivations for investigating 2D projection spaces stem
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from our desire to support human cognition and sensemaking

when working with image collections through dimensional-

ity reduction. In particular, we note that organizing images in

a 2D space based on similarities corresponds well with how

people naturally think and reason about visual information.

In contrast to regression models, our focus is not on pre-

dicting exact numerical values or fitting data to a particular

model, but rather on capturing and visualizing the inherent

relationships and structures within image data. Additionally,

the objective of 2D DR is not to perform clustering, as is

the case with interactive clustering methods, but rather to

reveal the continuous and frequently complex relationships

that exist between images. By representing images in a 2D

plot where distance reflects similarity, we provide an intu-

itive and approachable framework for individuals to explore

and interpret diverse visual data.

This paper extends the contributions of [6] to expand the

evaluation with new usage scenarios and a quantitative eval-

uation. The extended contributions of this paper include:

• An interactive-AI method for dimension reduction that

semi-automatically projects images based on visual

knowledge from both pre-trained neural models and

human feedback.

• An explainable-AI method for saliency mapping through

weighted backpropagation that explains important image

features.

• Four usage scenarios that illustrate real-world examples

of image exploration tasks supported by our method.

• A quantitative evaluation demonstrating our methods’

ability to organize image data according to interactive

feedback.

2 Related work

Our work draws elements from interactive dimensional-

ity reduction techniques, semantic interaction methods, and

explainability in deep learning. In this section, we start by

discussing related works from the interactive dimensionality

reduction literature. Next, we focus on semantic interac-

tion and its applications in sensemaking. Finally, we discuss

explainability techniques for deep-learning methods in the

context of image data.

2.1 Interactive dimensionality reduction

Dimensionality reduction techniques are commonly

employed to analyze and visualize high-dimensional data by

projecting it onto a 2D or 3D space [7]. Alone, DR algorithms

typically produce a static projection space with no means for

exploration or manipulation. Thus, many scholars sought to

develop interactive DR techniques capable of capturing user

feedback and subsequently modifying the projection.

Some interactive DR methods create a bi-directional

workflow where people can alter data in the high-dimensional

space to see the effect on the 2D location and vice versa [8,

9]. Other works explore the idea of backward (or inverse)

projections that allow people to select locations in the 2D

space and generate corresponding high-dimensional repre-

sentations [10, 11]. Eler et al.’s work specifically targets

image data, providing interactions for exploratory tasks, such

as zooming into specific projection regions, displacing points

to resolve overlapping, and displaying the nearest neighbors

of selected images [12].

Many works exist on interactively steering projections.

Several take the approach of requiring people to define con-

trol and organize control points, which are then used to

project a larger collection of data while maintaining local

structures around control points [13–15]. Others learn new

distance functions for MDS to update the projection to best

respect user manipulations [3, 16]. Fujiwara et al. provide

a visual analytics framework for comparative analysis, pro-

viding interactions to manipulate and update projections to

illustrate the similarities and differences between clusters of

points [17].

Our work expands on past work by specifically targeting

imaged data to provide both projection-steering interactions

and visual explanations of the 2D space. We extend Self et

al.’s Andromeda [3]. Andromeda allows people to directly

manipulate the 2D location of data points and updates the

projection model to incorporate human feedback into the

projection. We propose an extension to Andromeda that sup-

ports image data via deep-learning feature representations

and provides visual explanations of the important image fea-

tures, before and after human feedback.

2.2 Semantic interaction

Semantic interactions exploit the natural interactions in visu-

alizations to learn the intent of the user and then, based

on these interactions, update the underlying model and its

parameters [18]. In the context of sensemaking, semantic

interactions capture the analytical reasoning of the users [19],

and support analysts throughout the sensemaking process

[20].

Most semantic interaction systems work using a dimen-

sionality reduction model, similar to the interactive dimen-

sionality reduction methods described in the previous sec-

tion. Semantic interaction is a bi-directional pipeline [21]

and requires capturing the changes in the visualization and

turning them into changes to the model. In the dimension-

ality reduction case, this is usually done through the use of

an inverse transformation (e.g., inverse WMDS) [22]. There

are several models that can be used to solve the bi-directional
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transforms required to implement semantic interactions, such

as Observation-Level Interaction [23], Bayesian Visual Ana-

lytics [24], and Visual to Parametric Interaction [25].

Previous work has also shown how to integrate deep-

learning models with semantic interaction techniques. For

example, Krokos et al. [26] designed an interactive tool to

help humans label data points for semi-supervised learning

using a deep-learning model. Bian and North [27] developed

a semantic interaction model for text analytics integrating

traditional dimensionality reduction techniques with a neu-

ral network as its core component. Bian et al. [28] continued

the development of these semantic interaction models and

designed an explainable AI framework based on counterfac-

tuals that help users understand the generated projection.

2.3 Explainability in deep learning

Scholars have proposed several explainability methods for

convolutional neural network (CNN) models, the backbone

of most image-based deep-learning applications. Bojarski et

al. [5] proposed a visualization method that shows which

pixels of an input image contribute the most toward the pre-

dictions of a CNN model. In particular, their technique allows

debugging CNN-based systems by highlighting the regions

of the input image that have the highest influence on the out-

put of the model. Zeiler and Fergus [29] developed a novel

visualization technique that provides insight into the interme-

diate feature layers of a CNN in a classification task. Zhou

et al. [30] use a global average pooling layer to shed light

on how this layer enables CNN models to localize objects in

images. In particular, their approach generates a Class Acti-

vation Map (CAM) using global pooling. However, while

these explanation techniques are powerful, they are designed

for specific CNN-based models. To address this weakness,

researchers have proposed visual explanation techniques for

a large class of CNN-based models. For example, Selvaraju

et al. [31] generated CAMs based on gradient information

of target concepts (Grad-CAM). Grad-CAM provides fine-

grained explanations of the CNN predictions but suffers from

performance issues with multiple occurrences and single-

object images.

Despite the recent advances in explainable deep learn-

ing for image data, there is a dearth of studies exploiting

explainable deep-learning techniques for interactive DR in

the context of image analysis. Thus, our work seeks to fill this

gap and combine interactive DR for images with explainable

deep-learning techniques. In particular, we base our work on

the method of Bojarski et al. [5], as visual backpropagation

provides an efficient way to generate explanations of relevant

image features for the users by pushing the weights obtained

in the interactive DR loop through the backpropagation pro-

cess.

3 Tasks

Before discussing the details of our method, we first must dis-

cuss the sensemaking tasks of someone using our tool. Pirolli

and Card described the sensemaking process as having two

primary loops: the foraging loop and the sensemaking loop

[32]. The foraging loop focuses on searching and filtering

information and extracting evidence. The sensemaking loop

then uses this information to iteratively construct representa-

tional schemas as well as generate and test hypotheses about

the data.

In the context of image data, simply looking at every

image does not provide sufficient information to make sense

of the data. The foraging loop requires filtering and extract-

ing sets of images relevant to the task at hand. Then, those

images must be organized into a schema that provides a

structured representation for consuming the image data and

testing hypotheses. The process of generating and refining the

schema typically requires several iterations of foraging for

information under the current schema, updating the schema

based on the new information, and evaluating how the schema

fits the task at hand to determine if it requires further refine-

ment.

Our method supports this schematization step through iter-

ative exploration of the images and refinement of the 2D

representation to reflect prior knowledge of the analysis task.

Through discussions with collaborators in the plant sciences,

we identified the following tasks to support this iterative pro-

cess: (1) define custom similarities based on prior knowledge

and (2) link human- and machine-defined similarities

These tasks create a synergy between the machine and the

human where they work together as a team, teaching each

other what they have independently learned from the data.

In the end, we create an analysis pipeline where the human

perceives the data, conveys their knowledge to the machine,

and the machine then re-organizes the data based on this

information, while providing explanations of its reasoning.

The remainder of this section discusses these tasks in greater

detail.

3.1 Define custom similarities based on prior
knowledge

When analyzing data, people typically have some prior

knowledge about the data, such as what categories of or

similarities between images they expect to exist within the

data. For example, in a set of edamame pod images, the ana-

lyst may expect images of healthy pods and diseased pods.

Static dimension reduction plots, may or may not adequately

reflect this prior knowledge. In the previous example, the

person analyzing may want to inspect healthy vs diseased

pods, but the model may not naturally recognize these differ-

ences. Furthermore, static projections do not enable people to
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explore different projections defined under different guide-

lines. To enable hypothesis testing, people must be able to

steer the projection to define similarities in the data in a way

that reflects their prior knowledge. With our method, people

directly manipulate the 2D location of images to define new

relationships within the data that the model then learns and

uses to re-project the images accordingly.

3.2 Link human-defined andmachine-defined
similarities

The previous task focuses on teaching the projection model

to incorporate human knowledge. However, while it helps

the model learn human knowledge, it does not help peo-

ple understand the model’s knowledge. People need ways

to inspect the image features most important to the 2D pro-

jection. This helps them not only understand the 2D space

but also validate the model’s perception of their interaction

and potentially identify other image similarities/differences

beyond the knowledge they intended to teach the model. Our

method provides saliency maps that illustrate the features of

the image that the projection most heavily used to place the

image. Viewing the explanations of multiple images provides

insight into why the model placed them near or far from each

other and provides a means for understanding the 2D space.

4 Workflow andmethodology

In this section, we describe the expected user workflow and

interactions, as well as the underlying methodology.1 Fig-

ure 2 gives an overview of the workflow while Fig. 1 presents

an example of using this workflow.

4.1 Initial state

Upon loading the data, our method extracts the neural embed-

dings of the images to project them into the 2D space. It then

uses Weighted Multidimensional Scaling (WMDS) to project

the features into 2D. For the initial projection, our method

assumes no prior information and thus treats all features in

the neural embedding with equal importance. The resulting

plot provides the initial view into the similarities of the data

and serves as the starting point for the exploratory analysis.

We chose WMDS because it uses pairwise similarities as the

input for projection and thus changes in the 2D similarities

conceptually map directly back to the input space.

Feature extraction Feature extraction is an important

technique in computer vision widely used for tasks such

as object detection and image classification [33]. Existing

1 The implementation of our method can be found at https://github.

com/infovis-vt/Andromeda_IMG.

feature-extraction methods for image data include traditional

approaches such as Harris Corner Detection [34] and Scale-

Invariant Feature Transform (SIFT) [35]. Recently, deep-

learning models have become popular for feature extraction

in images [36]. In particular, Convolutional Neural Networks

(CNN) have shown great power in image-related tasks [37].

Thus, using CNNs has become the standard in feature extrac-

tion [38].

Furthermore, the rise of transfer learning enables

researchers to utilize the power of pre-trained models instead

of training a deep neural network from scratch [39]. Our

method uses the pre-trained ResNet18 [40] as a fixed feature

extractor to generate feature vectors from images.

Given an image dataset D, we forward propagate the

images through the network with the fully connected layer

removed. The final representations are denoted as:

X = Res Netpre−trained(D) (1)

The feature space X is a 512-dimensional space used to

represent the images. Each xi is the output of applying aver-

age pooling to the final feature map of the network. We use

X as the input to the interactive dimension reduction loop.

Weighted Multidimensional Scaling Using the extracted

image features (X ) as input, we perform MDS on a weighted

data space (WMDS) to project the images to 2D, using the

following function:

y = arg min
y1,...yn

√

∑

i< j≤N

(dL(yi , y j ) − dH (w, xi , x j ))2 (2)

where N is the number of points in the dataset, dL(yi , y j )

is the low-dimensional distance between yi and y j , and

dH (w, xi , x j ) is the weighted high-dimensional distance

between the feature representations xi and x j , given the

dimension weights w. We calculate dH by first weighting

the data space using w (i.e., X ∗ w) and then calculating the

pairwise distances in the weighted data space. For the ini-

tial projection, we initialize w with equal weights for every

dimension, relying solely on the raw image features to orga-

nize the images.

4.2 Interaction and inverse dimension reduction

From the initial state, people can directly manipulate the pro-

jection plot, dragging points into new positions in the 2D

space (as shown in Fig. 1a). Dragging points to new positions

defines new pairwise relationships to teach the projection

model. For example, in Fig. 1a, an analyst projects a collec-

tion of edamame pods that contain three phenotypes of pods:

ready to harvest, late to harvest, and diseased. However, the

initial projection of our pods, the projection does not differ-

entiate these phenotypes. By selecting and dragging a few
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Fig. 2 An overview of our workflow. First, we extract image features

using a deep-learning feature extractor which we then pass to an inter-

active DR method (WMDS) that facilitates semantic interactions. The

dark blue dotted arrows signify the human interaction loop. After inter-

actions, we pass the newly defined relationships to the inverse DR where

it learns new projection parameters (updated feature weights) that best

respect them. These feature weights are used to re-project the images

using the DR (generating an updated DR plot) and start the interaction

loop over again. The interaction loop can be repeated many times

representative images of each type to opposing positions, the

analyst indicates to the machine that those images are dissim-

ilar and should be organized accordingly. Once the analyst

completes their interaction, our method uses these relation-

ships to optimize the projection weights to create a projection

layout that best respects the defined relationships.

Inverse dimension reduction To facilitate interactive

dimension reduction, we use inverse WMDS (WMDS−1) to

update the projection after semantic interactions, as origi-

nally described in Andromeda [3].

After the analyst re-positions a subset of the points, y∗,

we perform WMDS−1 to calculate new weights optimal

for maintaining the specified relationships, thus capturing

human feedback. WMDS−1 uses the following equation to

update the weights:

w = arg min
w1,...wd

√

√

√

√

√

√

(
∑

i< j≤N

(dL(y∗
i , y∗

j ) − dH (w, xi , x j ))2

∑

i< j≤N

dH (w, xi , x j )2
(3)

This equation produces a vector of dimension weights that

best respects the 2D pairwise similarities specified through

the interactions. We normalize the weight vector to sum to

1, so as to normalize the HD distances to a roughly constant-

sized space. We then re-project the images using equation 2

with the updated weights to create a layout that incorporates

the analyst’s feedback.

4.3 Visual explanations

To fully enable interactive projections, we must also enable

people to inspect the information learned from their interac-

tion. Our method provides visual explanations in the form of

saliency maps to provide visual feedback and explanations of

the information learned by the projection. The saliency maps

highlight the important features in a given image, shown in

Fig. 1d–f, such that the brighter pixels correspond to features

of greater importance.

In the initial view, before semantic interactions, these

explanations indicate the features of importance identified by

the feature extractor that the projection model then uses to

place the images. After an interaction, the optimized feature

weights are pushed backwards through the feature extractor,

using weighted backpropagation (described below), to gener-

ate new saliency maps that emphasize the features learned by

the projection model. By inspecting the differences between

the original saliency map and the post-interaction map, peo-

ple can understand what features the projection learned from

their interaction. This feedback enables people to better com-

plete their tasks and refine their sensemaking schemas.

Weighted visual backpropagation Figure 3 illustrates

our weighted visual backpropagation method. We base our

proposed method on the visual backpropagation method pro-

posed by Bojarski et al. [5]. This method computes the actual

contribution of neurons to the feature representation, making

the backpropagation fast and efficient. We make this method

projection-aware by applying the projection weights to the

backpropagation.

To implement our method, we utilize the feature maps

after each ReLU layer. For the feature map of the last convo-

lutional layer, we conduct channel-wise multiplication with

the weights w obtained from the interactive DR loop to back-

propagate the user’s intent. We then average the other feature

maps to get a single feature map per layer. The deepest sin-

gle feature map, highlighted in green in Fig. 3, is deconvolved

with the same filter size and stride as the convolutional layer

immediately preceding it. This scales the feature map to

match the size of the map in the previous layer. Then we

pointwise multiply the deconvolved feature map by the aver-

aged single feature map of the previous layer. This process

is repeated until we reach the input image.
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Fig. 3 Weighted visual

backpropagation process

We keep our notation consistent with Bojarski et al. [5].

Note, we will only describe our modification to their method.

For full details, please refer to Bojarski et al. Consider a

convolutional neural network N with n convolutional layers.

Let γ (i) denote the value of pixel i of the input image and

v represent a neuron. e represents an edge from some other

neuron v′ to v and ae denotes the activation of v (ae = a(v)).

P denotes a family of paths. The contribution of the input

pixel i, calculated by the original Visual Backpropagation

method, is defined as:

θN
V B P (i) = c ∗ γ (i)

∑

P∈P

∏

e∈P

ae (4)

For our method, we enable users to adjust the weights for

the final network embeddings, which is the feature map of

the last convolutional layer. To back-propagate the weighted

feature map, we conduct channel-wise multiplication for the

last feature map with weights gained from the interactive DR

loop. We denote et as the edge that connects nodes from layer

(t −1) to layer t. Let k denote the kernels for each layer. The

contribution of the input pixel i calculated by our Weighted

Visual Backpropagation method is defined as

θN
WVBP(i) = c ∗ γ (i)

∑

P∈P

∏

e∈P

aet (5)

where

aet =

{

a(v) if t �= n,

a(v) ∗ wk if t = n.

and wk is the weight from the inverse projection corre-

sponding to channel k of the feature map in the final layer.

5 Usage scenarios

In this section, we present two real-world usage scenarios to

illustrate the utility of our method on image sorting tasks.

5.1 Edamame pods

We developed this usage scenario with collaborators in the

plant sciences department [41]. Our collaborators identified

the need for incorporating human perception into model

development for identifying plant features. One use case

of this idea stems from sorting images of edamame pods.

Initially, they wanted to organize images of edamame pods

based on maturity level. However, when exploring the images

they also discovered that the pods contained varying numbers

of seeds, which often correlates to the consumers’ perception

of quality. They envisioned that a method like ours would help

them re-organize the images based on this newly identified

feature and allow them to reuse the original model. In the

remainder of this section, we discuss two scenarios for orga-

nizing images of edamame pods. For our example, we use a

subset of their edamame pod dataset containing 60 images,

with 20 images per maturity stage.

5.1.1 Maturity stage

The maturity stage of each pod is defined as either dis-

eased, late-to-harvest, or ready-to-harvest. Here, we test

how well our method can organize the images according to

these phenotypes from human feedback and whether the fea-

tures captured by the model to separate the images relate

to the underlying phenotypes, illustrated in Fig. 1. First, we

project the edamame pods to 2D. Then, we observe the

visual phenotypes for maturity and interactively drag a sub-

set of pods (highlighted in green) in order to group them
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Fig. 4 Interactions to explore images based on the number of seeds.

a shows the interaction based on seed count. b Shows the updated

projection while c shows the ground truth seed count. d–f Shows the

explanations of important image features for each seed count while g

shows the explanations of two mis-projected images

into three clusters according to the desired phenotype cate-

gories, shown in Fig. 1a. We hypothesized that, through this

interaction, the underlying model will learn new weights for

the feature space that satisfy the newly defined projection

and properly capture the user’s mental model of pod matu-

rity.

Figure 1b shows the updated projection (generated after

approximately 25 s), which produced three main clusters of

pods according to their maturity stage. Figure 1c shows the

ground truth of the images. This indicates that the desired

phenotypes were effectively captured by the weighted fea-

tures and represented in the updated model.

The explainable feature visualizations of specific pods

depict the most important visual features learned by the

interactive model. In Fig. 1d we see that one of the impor-

tant visual features learned by the model to determine

the disease phenotype is a salient discolored spot. Sim-

ilarly, in Fig. 1e, f, the model focuses on image areas

correlated to important features of each pod. This pro-

vides insight into that parts of the pod are important for

visually discerning the maturity stage. Furthermore, these

results provide a link between human perception and machine

learning.

5.1.2 Number of seeds

For the same pod dataset, we also want to explore a different

visual phenotype: the number of seeds per pod. However,

the images were not originally collected to determine the

number of seeds. Thus, the number of seeds is a novel visual

feature that can be observed directly by the end users but is

not initially used to cluster images in the default projection.

As before, the images of edamame pods are displayed in

the 2D plot. We then interactively drag pods (highlighted

in green) to group them into three clusters according to the

number of seeds (one, two, or three), as shown in Fig. 4a.

We hypothesize that by dragging a subset of the images, the

underlying model will learn the weights for the feature spaces

that satisfy the user-defined projection based on the number

of seeds.

Figure 4b shows the updated projection. We find that the

projection model captures the “number of seeds” phenotype.

Figure 4c shows the ground truth of the updated projec-

tion, instead of well-separated groups, the updated projection

shows a linear relationship. We notice that there are two

“three-seed" pods projected closer to the “two-seed" pods.

To learn more about why these two pods are mis-projected,

we explore the visual feature explanations for each group.
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Fig. 5 Usage scenario on the animals dataset: a, b, c show the pro-

cess for exploratory analysis on a small subset of images. In b the user

drags the “human and horse” images apart from the “horse" images

to emphasize the “human” object. In the updated projection c the ani-

mals are projected near the bottom and images containing “humans” are

clustered at the top (circled in red). d shows the saliency maps before

and after the interactions for two images with humans and horses. The

“after” saliency maps show greater levels of attention on the “human”

object. In contrast, e shows the saliency maps for two images with only

horses where the horse objects remain emphasized after the interaction

Figure 4d, e, f shows the saliency map for the three groups

accordingly. We find that the most important CNN features

mainly capture the overall shape of the pod, as well as the

position and the “raised” area of the seeds to differentiate

pods with different numbers of seeds. Yet for those two mis-

projected pods, they are either dominated by the disease spot

or do not have the obvious shape of three seeded pods, as

shown by Fig. 4g.

5.1.3 Open-mouth animals

5.2 Animals

In this scenario, we use a dataset of images of animals from

Kaggle [42]. This dataset consists of 5400 animal images in

90 different classes. For the task, we sampled a subset of this

data, using only five classes of animals—horse, goose, shark,

snake, and eagle—with five or six images per class. Figure 5

illustrates this usage scenario.

5.2.1 Human objects

After loading the data, our method creates the initial projec-

tion of the images, shown in Fig. 5a. The initial projection

organizes the images such that animals of the same class

are placed close together. However, after inspecting the pro-

jection we notice that some of the images contain both

humans and animals. After this realization, we decide we

want to inspect images of animals and humans separately

from images only containing animals. We want to teach the

underlying model to capture the concept of “human” rather

than just grouping the images based on the animals. To do

123



100 Page 10 of 16 H. Han et al.

Fig. 6 Usage scenario on the animals dataset: a, b, c show the process

for exploratory analysis on a small subset of images. In b the user drags

the “animal has mouth open” images apart from the “animal has mouth

closed" images in the same animal category to emphasize the “mouth”

object. In the updated projection c the animals that have their mouths

open are clustered at the top (circled in red). d Shows the saliency

maps before and after the interactions for an open-mouthed shark and

snake. The “after” saliency maps show a greater emphasis on the snakes’

mouths and a reduced emphasis on the sharks’ bodies (focusing on the

open mouth), thus capturing the “open mouth” feature. e Shows the

saliency maps for a close-mouthed shark and snake, with the attention

largely unchanged by the interaction

so, we drag the “human and horse” images apart from the

“single horse” images as shown in Fig. 5b. After this, the

underlying model learns the current user-defined layout and

updates the entire projection based on the learned weights.

Figure 5c shows the updated projection. In this projection,

the images containing humans are projected together, while

all the other animal images are re-projected accordingly, with

animals of the same still projected in close proximity. Thus,

all the pure animal images are separated from the images

containing humans.

After teaching the projection to organize the images based

on whether they contain a human, we want to inspect what

features the projection used to place images and if the projec-

tion actually picked up on the human features in the image.

Visual explanation method and inspect the saliency maps

are used before and after the update, shown in Fig. 5d, e.

To illustrate this, we selected two of the images contain-

ing humans and horses, shown in Fig. 5d. Before the user

manipulates images, the underlying model projected images

mainly based on animal content in the images as shown in

the ”Before” maps of Fig. 5d. Thus, the horse images are

closer to each other in the projection space, as the machine

mostly focuses on the horse object in the images. After the

user manipulates the projection, the machine-learning model

puts more attention on the humans as shown in the “after”

maps of Fig. 5d. To compare, we inspect the explanations

for two horse images that do not contain humans, shown in

Fig. 5e. We see that, while the emphasis changes somewhat,

it still focuses on the entire horse object. Using the visual

explanations, we clearly see that the projection adequately

inferred the meaning behind the interactions.

For the same animal dataset, we also found another visual

feature to explore: whether the animal’s mouth is open or not.

Some of the animals in the images have their mouths open and
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we want the projection to re-organize the images to separate

the open-mouthed animals from the others. To convey this

information, we drag a select set of open-mouthed animals

apart from close-mouthed animals. For example, as shown in

Fig. 6b, we pick two images from the snake, shark, and eagle

groups. For each group, one of the images has the mouth open

and the other has the mouth closed. The original projection,

shown in Fig. 6a, organizes images so that the animals of

the same type are projected together. We expect that after

learning and re-projection, the open-mouthed animals and

close-mouthed animals will be apart from each other and

the model will increase the attention on the animal’s mouths

rather than the entire animal. Figure 6c shows the updated

projection and we can see that all open-mouthed animals are

grouped together, two new open-mouth sharks that we did not

select to drag during the learning phase are also projected

close to the other open-mouth animals, indicating that the

projection learned our intent.

To verify that the model actually learned the intended

information, we generate the saliency maps before and after

the update to inspect the learned features, shown in 6d, e.

We select two images of open-mouthed animals to inspect,

one that we used in our interaction and one that the projection

identified from our interaction, shown in 6d. Before the inter-

action, the underlying model projected images based on the

entire animal in the images (the “before” maps in 6d). After

the interaction, the model puts less attention on the shark’s

body and more attention on the snake’s mouth as shown in

the “after” maps in 6d, indicating the projection learned our

intent and identified the intended features during the learning

process. To compare, we also inspect the explanations for a

close-mouthed shark and snake, as shown in Fig. 6e. We see

that the interaction largely does not change the emphasized

features of the close-mouthed animals.

6 Quantitative analysis

In addition to the use cases shown before, we perform a quan-

titative analysis to assess our method’s ability to organize the

images based on human feedback and evaluate the number

of interactions necessary to produce a desirable organization.

Ultimately, our system aims to steer projections based on

analysts’ prior knowledge. To evaluate our method’s effec-

tiveness at incorporating human feedback, we focus on the

natural task of guiding the projection to separate images by

distinct classes. We evaluate our method on two versions of

this task: (1) organizing images by a distinct visual feature

from a random projection and (2) shifting the projection from

a layout using based on one feature to a layout using a differ-

ent feature. Additionally, we evaluate how many interactions

per image class are necessary to reach a well-organized lay-

out. To measure the quality of the layout, we calculate an

adjusted Silhouette score [43] of the clusters in the resulting

projection. The remainder of this section describes the details

of the evaluation.

6.1 Method

Our experimental design stems from the simulation experi-

ments in [27]. To evaluate our method, we create a simulation

engine that simulates semantic interactions. The interactions

organize a subset of the images such that images of the same

class are placed close together and images of different classes

are far apart. From this organization, we learn new projec-

tion weights, use those weights to organize the whole set of

images, and then evaluate the clustering in the layout. We

run this simulation many times, with varying numbers of

simulated interactions per class to evaluate the number of

interactions necessary to reach a well-clustered layout.

6.1.1 Data

In this experiment, we use two datasets: images of animals

[42] and images of edamame pods. We use the animal images

for the first task, organizing images based on a distinct visual

feature from a random layout. This dataset contains 300

images with five types of animal (horse, goose, eagle, shark,

snake), giving 60 images per category. Using this dataset, the

simulated analyst aims to guide the projection to identify and

separate the images by the type of animal in the image. We

use the edamame pods for the second task, to evaluate how

well our method can re-organize images by a second feature.

The pods are labeled with two features: the number of seeds

in the pod and the maturity of the pod. With this dataset, we

initially organize the pods by the number of seeds in each

pod and simulate interactions to re-organize them by their

maturity, measuring the quality of the resulting projection.

6.1.2 Simulation engine

The simulation engine consists of two main components: the

interaction simulator and the layout evaluator. The simulation

process consists of the following steps: (1) project the images

using WMDS to create an initial layout of the data, (2) use

the interaction simulator to select a subset of size n from

each class and fully organize them into clusters (Fig. 7a), (3)

learn new weights using WMDS−1 that respect the simulated

interactions and project the whole dataset using those weights

(Fig. 7b, c), and last, (4) use the layout evaluator to measure

the performance of the resulting layout. Steps (1) and (3)

are described above in Sect. 4, while steps (2) and (4) are

discussed in more detail below. We repeat this process many

times for different numbers of interactions per class (different

values of n).
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Fig. 7 Example of the simulation process. In a the analyst organizes

a sample of images from each relevant label and our method learns

new weights based on this layout. b Shows the projection of the full

dataset using the learned weights, generalizing the layout based on the

user’s interactions. c Shows the performance of the resulting layout with

respect to the ground truth of the dataset. The updated projection has a

Silhouette score of 0.455

Interaction simulator For each semantic interaction, the

simulator randomly selects n samples from each image class.

It then generates the pairwise distance matrix using the fol-

lowing equation, where xi and x j are two of the randomly

selected images:

||xi − x j || =

{

0 if xi and x j are from the same class√
2 otherwise

With this equation, the simulated analyst places images

of the same class directly on top of one another to show

the model that they should be placed together. In contrast, it

places images of different classes sufficiently far apart (
√

2)

to teach the model that those images are dissimilar from

one another. Figure 7a provides an example of the seman-

tic interaction that the interaction simulator is mimicking.

After simulating the interactions, the simulation engine uses

our method to learn new weights that account for the rela-

tionships defined by the interactions and projects the entire

dataset using these weights.

Layout evaluator To measure how effectively our method

captures the simulated analyst’s feedback, we calculate the

adjusted Silhouette score of classes in the resulting projec-

tion [43]. The Silhouette score evaluates a clustering on two

bases: cohesiveness and separation. The cohesiveness aims

to minimize the separation within a given cluster while the

separation aims to maximize the distance to the nearest clus-

ters. It returns a value from − 1 to 1, where values near zero

indicate overlapping clusters, negative values indicate mis-

assigned data and a positive score indicates the cohesiveness

and separation of the clusters.

However, because our goal is to create a well-organized

dimension reduction based on human feedback rather than

a succinct clustering, we do not prioritize compact, highly

separated clusters as valuable information may be con-

tained in the spread of clusters. For example, in Sec. 5.1,

the first phenotype that we teach the DR (maturity stage),

the “diseased” phenotype spans both “ready-to-harvest” and

“late-to-harvest” as well. Thus, while the pods have distinct

classes, the spread of the clusters still contains useful infor-

mation. s a result, the ideal Silhouette score would fall around

0.5, rather than 1. Conceptually, this would prioritize layouts

where, on average, points are approximately twice as far from

the points in the nearest class as they are from the points in

their own class. To accommodate this, we multiply the Sil-

houette score by two, such that one becomes the ideal score

for our DR, values less than one are too diffused, and val-

ues greater than one are too clustered. Figure 7c provides an

example of a well-organized layout with an adjusted Silhou-

ette score of 0.91.

6.2 Results

Task 1: Organize by distinct visual feature Figure 8 shows

a plot of the Silhouette score against the number of points

moved in each category. From this plot, we see that as we

increase the number of points moved in each class our method

steadily increases in its ability to organize the points. While

the performance continues to increase, we see that after inter-

acting with around five to ten points per category, the benefits

of moving more points become marginal. Figure 7b, c shows

an example layout after a user moves five points per class. We

can see that by moving relatively few points from each class

to define similarities in the dataset, our method creates a lay-

out, with an adjusted Silhouette score of 0.91, that respects

these relationships and effectively applies them to the greater

dataset.
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Fig. 8 The Silhouette score of the projection layout over the number

of control points moved per category for the first task, organizing by a

distinct visual feature

Fig. 9 The adjusted Silhouette score of the projection layout over the

number of control points moved per category for the second task, re-

organizing by a second visual feature

Task 2: Re-organize by a second visual feature Our sec-

ond task focuses on re-organizing our DR layout based on a

second distinct visual feature. For this example, we use the

edamame pod dataset. We initially organize the pods based

on the number of seeds in each pod. A natural follow-up

task is to re-organize based on a different feature, namely

the maturity stage of the pods. Thus, we evaluate how many

interactions it takes to move between two DR layouts orga-

nized by different visual features. Figure 9 shows a plot of

the adjusted Silhouette score for each visual feature against

the number of points moved in each category. We see that

our method quickly picks up on the new feature and begins

adjusting the layout accordingly.

7 Discussion

General framework for analysis using deep-learning features

One of the central problems with using deep-learning fea-

ture representations in data analysis is the loss of access to

the original data features. Typically, people must sacrifice

analysis transparency for performance. However, our method

presents a framework in which we maintain access to the orig-

inal data features by leveraging the underlying deep-learning

model to create explanations from the underlying data fea-

tures. Through the use of weighted backpropagation, we push

the information learned by the projection model back through

the neural network to generate explanations relative to the

underlying data features. In doing so, we take a step toward

solving the “two black boxes” problem, as defined by Wen-

skovitch and North [44]. The “two black boxes” problem

identifies both the deep-learning algorithm and the human

cognitive process as black boxes that impede the learning pro-

cess. In our method, semantic interactions with the projection

allow people to express some of their cognitive processes to

the machine. In return, the model presents explanations that

illustrate how it uses the provided information. This creates a

synergy between the machine and the human and facilitates

a more complete analysis experience. This framework can be

generally applied to analytics methods using deep-learning

representations of data.

Feature representation choice In our method, we use

ResNet18 to extract image features. However, alternative

methods for feature extraction could be used. Bian et al.

explored additional methods for feature extraction, including

color histogram and Scale-Invariant Feature Transform [45].

We explored these methods as well but found that feature

representations from convolutional neural networks provide

the most meaningful projections and explanations. Addition-

ally, while we chose to use ResNet 18, our method supports

swapping in other neural network feature extractors, includ-

ing those designed for specific tasks and datasets. This allows

people to further customize projections of their data for the

given analysis task. Additionally, our method can facilitate

the comparison of different feature representations to identify

the one most appropriate for a given task.

Furthermore, we note that the scope of our research con-

tributions is focused on demonstrating the effectiveness of

our interactive DR method for images, rather than compar-

ing or evaluating our method against different image models.

ResNet was chosen to demonstrate the capabilities of our

interactive DR strategy and to serve as a concrete example of

the application of our interactive DR model. While it is pos-

sible that other image models could influence the results,

our emphasis lies in the novel aspects of our interactive

DR approach, which enables users to explore and manipu-

late the 2D projection space, obtain visual explanations, and

investigate complex visual relationships in image data. By

integrating both human-mental models and pre-trained deep

neural models, our method provides a novel perspective for

understanding and interacting with image collections.

Other methods for explanation Our method uses weighted

backpropagation to create explanations of the effects of

semantic interactions. However, this method is only one can-
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didate for creating explanations of interactions. There exist

other methods for generating feature explanations that we

can adapt to our method. For example, we also adapted Grad-

CAM to consider the weights from the projection model to

generate explanations [31]. We found that Grad-CAM excels

when images contain multiple entities; however, it falls flat

when searching for specific image features. As our method

benefits from finer-grained explanations, Grad-CAM was

not a suitable method. Adapting other methods for creating

model explanations remains to be explored in future work.

Retaining human feedback While our method helps peo-

ple explore many organizations of images and incrementally

build a mental model of the underlying data, it has lim-

ited knowledge retention for iteratively fine-tuning a single

model. To overcome this, we need to explore methods

for incorporating learned information back into the feature

extractor to update the representation to retain human feed-

back throughout the image sorting process, similar to Bian

et al.’s method for textual data [27]. The drawback to this

is that it trades fine-tuning of a single model for the abil-

ity to easily change the basis of the organization. If the user

specifies contradicting information over the course of sev-

eral iterations of interaction, it may confuse the model and

produce a less organized layout of the images. This method

and its limits remain to be explored in future work.

Scalability of explanations One outstanding challenge in

designing explanations for collections of images is scalabil-

ity. Methods such as ours require people to inspect individual

images, to understand the important features. In the presence

of large datasets, this becomes cumbersome and impractical.

Currently, the only solution offered by our method is to plot

the explanations themselves rather than the images, enabling

people to consume them more quickly. This, however, still

has drawbacks for larger datasets due to the occlusion of plot-

ted images and the time required to visually scan through

many explanations. The natural solution would be to create

summary explanations for sets of images. However, images

present a unique challenge in that it is non-trivial to summa-

rize a set of images. An additional solution could be to design

metrics that suggest important explanations, e.g., explana-

tions that change substantially after an interaction, to help

reduce the amount of explanations to inspect. Future work

is needed to explore how to support scalable explanations of

images.

8 Conclusion

In this paper, we presented an interactive dimension reduc-

tion method for exploring image data using deep-learning

representations of images. Our method provides seman-

tic interactions that allow people to incorporate their prior

knowledge into the projection model. It uses custom-defined

relationships to learn new projection weights optimal for

respecting these relationships. Additionally, our method

provides visual explanations of the effects of semantic inter-

actions on the placement of images in the projection. These

explanations illustrate the image features most important for

projecting the images and illustrate the effects of interactions.

We provide a real-world usage scenario and quantitative anal-

ysis to demonstrate the method’s effectiveness at organizing

data from human-defined similarities. Overall, we found that

our method was able to capture human feedback and incor-

porate it into the model. Our visual explanations help bridge

the gap between the feature space and the original images

to illustrate the knowledge learned by the model, creating

a synergy between humans and machines that facilitates a

more complete analysis experience.
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