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Modern visual analytic tools promote human-in-the-loop analysis but are limited in their ability to direct
the user toward interesting and promising directions of study. This problem is especially acute when the
analysis task is exploratory in nature, e.g., the discovery of potentially coordinated relationships in massive
text datasets. Such tasks are very common in domains like intelligence analysis and security forensics where
the goal is to uncover surprising coalitions bridging multiple types of relations. We introduce new maximum
entropy models to discover surprising chains of relationships leveraging count data about entity occurrences
in documents. These models are embedded in a visual analytic system called MERCER that treats relationship
bundles as first class objects and directs the user toward promising lines of inquiry. We demonstrate how user
input can judiciously direct analysis toward valid conclusions whereas a purely algorithmic approach could
be led astray. Experimental results on both synthetic and real datasets from the intelligence community are
presented.
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1 INTRODUCTION

Unstructured exploration of relationships from large text datasets is a crucial problem in many
application domains, e.g., intelligence analysis, biomedical discovery, analysis of legal briefs and
opinions. The state-of-the-art today involves two broad classes of techniques. Visual analytic tools,
e.g., Jigsaw [47], support the exploration of relationships extracted from large text datasets. While
they promote human-in-the-loop analysis, identifying promising leads to explore is left to the
creativity of the user. At the other end of the spectrum, text relationship exploration techniques
such as storytelling [21] provide interesting artifacts (e.g., stories, summaries) for analysis but are
limited in their ability to incorporate user input to steer the discovery process.

Our goal here is to realize an amalgamation of algorithmic and human-driven techniques to
support the discovery of coordinated relationship chains from document collections. A coordinated
relationship (also called a bicluster) is one in which a group of entities are related to another group
of entities via a common relation. It is thus a generalization of a relationship instance. A chain
of such coordinated relationships enables us to bundle groups of entities across various domains
and relate them through a succession of individual relationships. The primary artifact of interest
are thus chains summarizing how entities in a document collection are related. We introduce new
maximum entropy (MaxEnt) models to identify surprising chains of interest and rank them for
inspection by the user. In intelligence analysis, such chains can reveal how hitherto unconnected
people or places are related through a sequence of intermediaries. In biomedical discovery, such
chains can reveal how proteins involved in distinct pathways are related through cross-talk via
other proteins or signaling molecules. In legal briefs, one can use chains to determine how rationale
for court opinions vary over the years and are buttressed by the precedence structure implicit in
legal history.

As shown in Fig. 1 (left), we envisage an interactive approach wherein user feedback is woven
at each stage and used to rank the most interesting chains for further exploration. Such user
feedbacks are also taken into account by the algorithm for further investigations of the data. We
will demonstrate through case studies how such an approach gets users to their intended objectives
compared to a purely algorithmic approach (Fig. 1 (right)). The work presented here is implemented
in a system — Maximum Entropy Relational Chain ExploRer (MERCER) that uses a variety of visual
exploration strategies and algorithmic means to foster user exploration.

Our key contributions are:

(1) MERCER is a marriage of two of our prior works [51, 61] but supercedes the state-of-the-art
in these papers in significant, orthogonal, ways. MERCER is a significant improvement
over the work presented in [51] because Sun et al. [51] provides support for only manual
exploration of coordinated relationships. MERCER is a significant improvement over the
work presented in [61] because Wu et al. [61] only presents approaches to rank chains
involving a binary maximum entropy model whereas MERCER introduces more general
maximum entropy approaches for real-valued data.

(2) We present two path strategies (full path and stepwise) to help analyze datasets. Using our
proposed maximum entropy models, the full path strategy discovers the most surprising
bicluster chains from all possible chains involving an analyst-selected bicluster. The stepwise
strategy evaluates biclusters neighboring a user-specified one, and prioritizes possible
connected information with the current pieces under investigation. Both strategies directs
analysts to reveal hidden plots involving surprising relational patterns.

(3) We describe new visual encodings and summary as well as detailed views to support
user-guided exploration of coordinated relationships in massive datasets. Besides basic
color codings (e.g., connection-oriented highlighting presented in [51]), MERCER offers
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Fig. 1. lllustration of MERCER. (left) Discovery of coordinated relationship chains is aided by regular incor-
poration of user feedback. (right) Unaided algorithmic discovery of relationship chains leads to long lists of
patterns that might not lead to the desired answer.

highlighting mechanisms aimed at pointing out surprising information. Enhanced with the
proposed maximum entropy models, this highlighting capability not only directs user’s
attention to important connected pieces of information, but also visually prioritizes them
in a usable manner.

(4) We describe experimental results on both large, synthetic datasets (to illustrate efficiency
and effectiveness of our algorithms) and small, real datasets (to illustrate how users can
interactively explore a realistic text dataset. In particular, we show how MERCER enables
the user to more quickly arrive at plots of interest than the traditional manual approach
described in [51].

2 PRELIMINARIES

Figure 2 illustrates the workflow in MERCER. By taking the background information from the
document-entity transactional matrix, the MERCER system infers the maximum entropy model,
which will be described in detail in Section 3. From the document-entity matrix, multiple entity-
entity relations are extracted and surprisingness measure for relational patterns is defined based
on the MaxEnt model (Section 4). By interacting with analysts, our visualization interface displays
the surprising relational patterns discovered from the multiple entity-entity relations, and also
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Fig. 2. MERCER system workflow.

provides analysts’ feedback to the MaxEnt model, which will in turn help to further discover
additional surprising patterns (Section 5). In this section, we introduce some preliminary concepts
and notations that will be useful to understand the MERCER system and the rest of this paper.

Multi-relational schema. Let’s suppose that we have [ domains or universes which will be denoted
by U;, i € 1...1 throughout the paper. An entity is a member of U; and an entity set E; is just a
subset of U;. We use R = R(U;,Uj) to represent a binary relation between some domains U; and
U;. Given a set of domains U = {U;,Us, ...,U;} and a set of relations R = {Ry,Ry, ...,Rp}, a
multi-relational schema S(U ,R) is defined as a connected bipartite graph whose vertex set is given
by U U R and edge set is the collection of edges each of which connects a relation R; € R and a
domain U; € U that the relation R; involves. In this paper, we will focus on binary relationships,
e.g. each R; is a binary relation. Thus, all the vertices in R in the bipartite graph will have degree of
two. Binary relations usually can be represented as binary data matrices. In the rest of this paper,
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we will use these two terms interchangeably depending on which one is easier to use to present
and explain our proposed model and algorithm.

Tiles. A tile T, a notion introduced by Geerts et al. [14], is essentially a rectangle in a binary data
matrix. Formally, it is defined as a tuple T = (r(T),c(T)) where r(T) is a set of row identifiers (e.g.,
row IDs) and ¢(T) is a set of column identifiers (e.g., column IDs) over the data matrix. This most
general form definition imposes no constraints on values of the matrix entries identified by a tile.
Thus, each element in a tile can be any valid value in the data matrix. In the binary case, when all
entries within a tile T have the same value (i.e., either all 1s or all 0s), T is an exact tile. Otherwise
we say it is a noisy tile.

Biclusters. As local patterns of interest over binary relations, we consider binary biclusters.
Although the concept of biclusters was first introduced over real-valued data [5], as a generalization
of this concept to binary data, we will use the word biclusters to refer to the local patterns over
binary relations defined below in the rest of this paper. A bicluster, represented by B = (E;,E;), on
arelation R = R(U;,Uj), consists of two entity sets E; € U; and E; C U; such that E; X E; C R. As
such a bicluster is a special case of an exact tile, one in which all the elements are 1. Further, we say
a bicluster B = (E;, E;) is closed if for every entity e; € U; \ E;, there is some entity e; € E; such that
(ei,ej) ¢ R and for every entity e; € U; \ E;, there is some entity e; € E; such that (e;,e;) € R. In
other words, E; is maximal (w.r.t. E;) so that we cannot add more elements to E; without violating
the premise of a bicluster. If a pair of entities e; € U;,e; € U; belongs to a bicluster B, we represent
this fact by (e;,e;) € B. In the rest of this paper, all the biclusters we mention refer to closed
biclusters.

Redescriptions. Suppose that we have two biclusters B = (E;,E;) and C = (F}, Fi), where E; C Uj,
E;,F; € Uj, and Fy C Ug. Note that E; and F;j lie in the same domain. Assume that we are given a
threshold 0 < ¢ < 1. We define that B and C are approximate redescriptors of each other, which we
represent by B ~,, ; C if the Jaccard coefficient |Ej N FJ-‘ / |Ej U FJ-‘ > ¢. The threshold ¢ is usually
specified by users, consequently we often drop ¢ from the notation and write B ~; C. The index
j indicates the common domain over which we should take the Jaccard coefficient. When this
domain is clear from the context we often ignore the index j from the notation. If B ~; ; C, then we
must have E; = F; in which case we say that B is an exact redescription of C. This definition is a
generalization of the definition given by Zaki and Ramakrishnan [64], who define redescriptions
for itemsets over their mutual domain, transactions, such that the set E; consists of transactions
containing itemset E; and the set F; consists of transactions containing itemset Fj.

Bicluster Chains. We define a bicluster chain C as an ordered set of biclusters {By,B,,. ..,Bx} and
an ordered bag of domain indices {j1,jz,. - - ,jk—1} such that for each pair of adjacent biclusters they
are redescriptions of each other, e.g. B; ~j, Bi.1. Note that this definition implicitly requires that
two adjacent biclusters share a common domain. If a bicluster By, is a member of a bicluster chain
C, we will denote this by B, € C in this paper.

Surprisingness. In the knowledge discovery tasks studied here, the primary goal is to extract novel,
interesting, or unusual knowledge. That is, we aim to discover results that are highly informative
compared to what we already know—we are not so much interested in what we already do know,
or what can be trivially induced from such knowledge. To this end, we suppose a probability
distribution p that represents the user’s current beliefs about the data. When mining the data (e.g.,
for a bicluster or chain), we can use p to determine the likelihood of a result under our current
beliefs: if the likelihood is high, this indicates that we probably already know about it, and thus,
reporting it to users would provide little new information. In contrast, if the likelihood of a result is
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very low, the result would be quite interesting, thus potentially conveying a lot of new information.
In Section 3, we will discuss how to infer such a probability distribution for both binary and
real-valued data matrices.

Problem Statement. Given a multi-relational dataset, a bicluster chain across multiple relations
describes a progression of entity coalitions. We are particularly interested in chains that are
surprising w.r.t. what we already know since these could help to uncover the plots hidden in the
multi-relational dataset. More formally, given a multi-relational dataset schema S(U,R), where
U = {Uy,U,,..., U} and R = {Ry,Ry,. .., Ry}, we aim to iteratively discover non-redundant
bicluster chains that are most surprising with respect to each other and w.r.t. the background
knowledge with the assistance of visual analysis techniques.

3 TILE-BASED MAXIMUM ENTROPY MODEL

Our problem statement is based on a notion of a multi-relational schema. In practice, one approach to
infer such multi-relational datasets from a transactional dataset is to rely on the item co-occurrence
information in transactions where these items involved in binary relations are from different
domains (e.g., entities discovered from a document collection, and then subsequently related by
co-occurrence). More specifically, we assume that our schema was generated from a transactional
data matrix D (see Fig. 2). This data matrix can be viewed as a matrix of size N-by-M. We will
introduce the method of obtaining a schema from D in Section 4. In this approach the columns of
D correspond to the entities of the schema. Hence, we will refer to the columns of D as entities.

3.1 Maximum Entropy Model for Binary Data

In this section, we will formally define the maximum entropy (MaxEnt) model for binary data
matrices using tiles as background knowledge—recall that a tile is a more general notion than
a bicluster. In order to understand the model derivation in the context of binary data, we first
introduce some notations for binary MaxEnt model. Then, MaxEnt theory for modeling binary data
given tiles as background information will be reviewed, and finally, we will identify how we can
estimate the model by maximizing the likelihood.

3.1.1  Notation for Tiles. Suppose we are given a binary data matrix D of size N-by-M and a tile
T, we define the (relative) frequency of T in D, fr(T; D), as

1
fr(T;D) = D(@i.j) . (1)
lo (D) <i,j);<7>

Here, D(i,j) denotes the entry (i,j) in D, and o(T) = {(i,j) | i € r(T),j € c(T)} represents the cells
covered by tile T in the data matrix D. Remember that a tile T is called ‘exact’ if the corresponding
entries D(i,j) Y(i,j) € o(T) are all 1 (resp. 0). This indicates for exact tiles, fr(T;D) = 1 or
fr(T; D) = 0. Otherwise, it is called a ‘noisy’ tile.

Let D be the space of all the possible binary data matrices of size N-by-M, and p be the probability
distribution defined over the data matrix space D. Then, the expected frequency of the tile T with
respect to the data matrix probability distribution p is defined as

fr(T;p) =E[fr(T;D)] = Z p(D)fr(T; D). (2)

DeD

By combining these definitions, we can derive the following lemma.
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LeEmMA 3.1 ([61]). Given a dataset distribution p and a tile T, the expected frequency of tile T is

1 ..
fr(T;p) = G Z p(@)=1)
(i.j)eo(T)
where p((i,]j) = 1) represents the probability of a data matrix having 1 at entry (i,j) under the data
matrix distribution p.

Lemma 3.1 can be trivially proved by substituting fr(T; D) in Equation (2) with Equation (1) and
switching the summations.

3.1.2  Global MaxEnt Model from Tiles. In this section, we will develop a global statistical model
based on tiles. Suppose we are given a set of tiles 7, and each tile T € 7 is associated with a
frequency yr—which typically can be trivially calculated from the data. This tile set 7~ provides
information about the data at hand, and we would like to estimate a distribution p over the space of
all the possible data matrices © which conform with the information given in 7°. In other words,
we would like to be able to determine how probable is a data matrix D € D given the tile set 7.

To derive a good statistical model, we adopt a principled approach and apply the maximum
entropy principle [23] from information theory. Generally speaking, the MaxEnt principle identifies
the best distribution given background knowledge as the unique distribution which represents
the provided background information but is maximally random otherwise. MaxEnt modeling has
recently attracted much attention in the realm of data mining as a tool for identifying subjective
interestingness of results with respect to background knowledge [10, 29, 55, 60].

To formally define a MaxEnt distribution, we first specify the space of probability distribution
candidates. Here, these are all the possible data matrix distributions which are consistent with
the information given by the tile set 7. Hence, we define the data matrix distribution space as:
P ={p| fr(T;p) = yr,VYT € T }. Among all these possible distribution candidates, we choose the
distribution pi- that maximizes the entropy,

B H
Py = argmax ®)
Here, H(p) denotes the entropy of the data matrix probability distribution p, which is defined as
H(p) =~ ) p(D)logp(D)

DeD

Next, to infer the MaxEnt distribution p7-, we rely on a classical theorem about how MaxEnt
distributions can be factorized. In particular, Theorem 3.1 in [6] states that for a given set of testable
statistics 7 (background knowledge, here a tile set), a distribution p- is the maximum entropy
distribution if and only if it can be written as

, exp( X Ar-lo(T)|-fr(T:D)) D¢Z
pq-(D) TeT
0 DeZ ,
where A7 is the weight for fr(T; D) and Z is a collection of data matrices such that p(D) = 0, for

allp e P.

De Bie [10] formalized the MaxEnt model for a binary matrix D given row and column margins—
also known as a Rasch [37] model. Here, we consider a more general scenario of binary data
and tiles. In this case, we additionally know [Theorem 2 in 29, 55] that given a tile set 7, with
T (i,j) ={T € T | (i,j) € o(T)}, we can further factorize the maximum entropy distribution pZ- as

vy =[] prGi)=DGj) .
(

i.j)eD
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ALGORITHM 1: Iterative Scaling Algorithm (binary dataset)

input :atile set 7, target frequencies {yr | T € 7 }.
output: maximum entropy distribution pj < p.

p < a N-by-M matrix with all values of %;
forT € 7,yr =0,1do
| plij) « yr. forall (i,j) € o(T);
end
while not converged do
forTe7T,0<yr <1ldo

find x such that: fr(T;p) = ¥ (i j)eo(T) 1_(%%
pli.)) & s, for all (i,j) € o (T);
end
end

where

€xp (ZTGT(i,j) AT)

exp (Zreﬂi,j) /IT) +1
This result allows us to represent the MaxEnt distribution p}- of binary data matrices given back-
ground information in the form of a set of tiles 7~ by a product of Bernoulli random variables, each
of which denotes a single entry in the data matrix D. We need to emphasize here that this model is
a different MaxEnt model compared to that when independence between rows in the data matrix D
is assumed [see, e.g., 35, 54, 60]. Here, for example, in the special case where the given tiles are all
exact (y7 = 0 or 1), the resulting MaxEnt distribution will have a very simple form:

yr if AT € T such that (i,j) € o(T)

pr (i) =1) = { 1 otherwise.

p((i,j)=1) = or0,1.

3.1.3 Inferring the MaxEnt Distribution. To estimate the parameters of the Bernoulli random
variables mentioned above, we follow a standard approach and apply the well known Iterative
Scaling (IS) algorithm [7] to infer the tile based MaxEnt model over binary data matrices. Algorithm 1
illustrates the details of this IS algorithm for binary data. Briefly speaking, for each tile T € 77, the
algorithm updates the probability distribution p such that the expected frequency of 1s under the
distribution p matches the given frequency yr. Clearly, during this iterative update procedure, we
may change the expected frequencies of other tiles, and hence several iterations are required until
the probability distribution p converges. For the proof of convergence, please refer to Theorem 3.2
in [6]. In practice, the algorithm typically takes on the order of seconds to converge.

3.2 Maximum Entropy Model for Real-valued Data

In this section, we introduce the MaxEnt model for real-valued data with tiles as background
knowledge. We first extend the concept of tiles from binary transactional matrix to a real-valued
transactional matrix. Then, we formulate the global MaxEnt model over the real-valued transactional
data, and finally, we provide an efficient algorithm to infer the real-valued MaxEnt distribution.

3.2.1 Notation for Tiles. As stated earlier, a document-entity transactional matrix D usually
contains occurrence (count) information for each entity in every document of the corpus. Count
data is integer valued but without loss of generality, the entries in the real-valued transactional
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matrix D is considered to be normalized into the range of [0,1] (e.g. each entry of D can be divided
by the maximum entry of D).

A tile T over a real-valued matrix D is still defined as the tuple T = (r(T),c(T)) which identifies a
sub-matrix from D. Compared to the frequency of a tile defined in the binary case, more descriptive
statistical measures can be defined for real-valued tiles. In our scenario, we choose the sum of the
values and sum of the squared values identified by a tile T, which are represented by f,,, and f,
respectively. More specifically, f,, and f,, are defined as follow:

fm(TID)= > DGj) 3)
V(i,j)ea(T)

fATID) = > D¥ij)
v(i.j)eo(T)

3.22  Global MaxEnt Model from Tiles. A real-valued MaxEnt model was first proposed by Kon-
tonasios et al. [28]. Given a set of real-valued tiles 7~ where for every entry (i,j) in the matrix D,
there exists at least a tile T € 7 such that (i,j) € o(T). Each tile T € 7 is associated with fm(T)
and fv (T) as its basic statistics. Then, the probability distribution space of real-valued data matrices
can be defined as

= | Ep[fin(T | D)) = fu(T),Ep[fo(T | D)] = fulT)NT € T} .

Here, fm and fv denote the empirical values of the statistics associated with tiles, which can be
computed from the given real-valued data matrix, and E,[-] represents the expectation with respect
to the probability distribution p. Among all the candidate distribution p € #, we choose the one
that maximizes the entropy according to:

Py = argmax{ 9§p(D log p(D)d }

To be more specific, inferring the MaxEnt distribution could be formulated as the following
optimization problem:

po- = argmax {— 56 p(D) log p(D)dD} (4)
r D
9§P(D)fm(T | DYAD = f(T), VT € T
36 p(D)fo(T | D)AD = fo(T), VT € T
D

9§p(D)dD =1,pD)=0

Since the optimization problem defined above is convex, by applying the approach of Lagrange
multipliers, we can derive that the MaxEnt distribution has the following exponential form:

p*¢<D>——exp( DT A fu(T | D) - ZA&“’fva)).

TeT TeT
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ALGORITHM 2: MaxEnt model inference (real-valued dataset)
input :atile set 77, target tile statistics { f;u(T | D), fo(T | D) | T € T }.
output: Maximum entropy distribution p’fr parameterized by a; j and f; ;.

Initialize /I(Tm) and A(Tv) randomly VT € T;
A=A T eT;
while not converged do
updateAlphaBeta(A);
compute gradient using Equation (6) and (7);
perform a conjugate gradient update on A;
end

Substituting f,,(T | D) and f,(T | D) with their definitions from Equation (3), the MaxEnt
distribution could be simplified as:

) 1 . .
pr=7 l_[ exp (_ﬁi,jDz(l,J)—ai,jD(”J)) ®)
(i.j)eD
= 1—1 pz,](D(l’]))
(i,j)eD

where

i, j

PR 2
(B | 120 5]
T l/ﬁi,]‘

= Z A(Tm) . By = Z A(T‘u)

(i,j)€a (T) (i,j)€a(T)
TeT TinT

pl,j(D(l,J))

Equation (5) indicates that the real-valued MaxEnt distribution over the matrix D could be factorized
into the product of the distributions of D(i,j) where each D(i,j) follows the Gaussian distribution:

D(i.)) N( aij 1 )
i,j) ~ e A
! 2Pi; 2P

In addition, we can also compute the normalizing constant Z in Equation (5) as

Z=¢ [ ew(-piD0.)) - @i;D(.)) dD

D (i.j)eD

Il
™
o)
=P
<

o

<

gl
—_
»-lk‘ Q
YRS
s
~—————

(i,
3.2.3 Inferring the MaxEnt Distribution. To infer the real-valued MaxEnt distribution, we need
to estimate the values of the model parameters /I(Tm) and A(Tv). We leverage the duality between
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maximum entropy and maximum likelihood formulations [41] by solving the following problem:

max: L) =logp(D) = ) (=27 fu(T) = 27" fo(1)) ~log Z
TeT

+ 7 (A f(@) = 2P fu(T))

TeT

(i.j)eD
s.t. ﬂi,j >0, V(l,]) eD

The above optimization problem is convex and can be solved efficiently by state-of-the-art opti-
mization algorithms. Here, we choose the conjugate gradient method to solve this problem, where
the gradient of the objective function £(A) is given by:

ILQA @i\
TN W - S B A ©)
0A (ii)ea(m) \PH
LA 1 a\
8.5 (g
Ny’ e\ Py

4 SCORING BICLUSTERS AND CHAINS

We now turn our attention to using the above formalisms to help score our patterns, viz., biclusters
and bicluster chains. But before we do so, we need to pay attention to the relational schema over
which these patterns are inferred, as this influences how patterns can be represented as tiles, in
order to be incorporated as knowledge in our maximum entropy models.

4.1 Entity-Entity Relation Extraction

In this section, we describe the approach to construct a multi-relational schema S(%,R) from a
transaction data matrix D. Recall that whenever an element D(r,e;) has a non-zero value (e.g. 1 in
the binary case or a fraction in the range of [0,1] in the real-valued case), this denotes that entity
e; appears in row r of D. As an example, when considering text data, an entity would correspond
to a word or concept, and a row to a document in which this word occurs. (Thus, note that when
considering text data we currently model occurrences of entities at the granularity of documents.
Admittedly, this is a coarse modeling in contrast to modeling occurrences at the level of sentences,
but it suffices for our purposes.)

To extract entity-entity relations from transaction data matrix D, we utilize the entity co-
occurrence information. To be more specific, each binary relation in R stores the entity co-
occurrences in data matrix D between two entity domains, e.g. for each R = R(U;,U;) in R,
(e,f) € Rfore € U;, f € Uj, and e and f appear at least once together in a row in D.

4.2 Background Model Definition

Next, to discover non-trivial and interesting patterns, we need to incorporate some basic information
about the multi-relational schema S(U,R) into the model. For such basic background knowledge
over D we use the column marginals and the row marginals for each entity domain. To this end,
following Wu et al. [61] we construct a tile set 7, consisting of a tile per column, a tile set 7o,
consisting of a tile per row per entity domain, and a tile set 7y, consisting of a tile per entity
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domain but spanning all rows. Formally, we have

(]:Ol = {(UD’e)leEU7U€ﬂ}’
Tow = {(r,U)|reUp,UeU}, and
7;lom = {(UD’U) | Ue (L[}

Here, Up represents the domain of all the documents in the dataset (e.g. the set of all rows in the
data matrix D). We refer to the combination of these three tile sets as the background tile set
Tvack = Trow Y Teot U Tgom- Given the background tiles Tp .k, the background MaxEnt model pp,ck
can be inferred using iterative scaling (see Sect. 3.1.3) and the conjugate gradient method (see
Sect. 3.2.3) for binary and real-valued cases, respectively.

4.3 Quality Scores

To assess the quality of a given bicluster B with regard to our background knowledge, we need
to first convert it into tiles such that we can infer the corresponding MaxEnt model. Below we
specify how we do this conversion for biclusters from entity-entity relations. For a given bicluster
B = (E;,E;), we construct a tile set 7, consisting of |E;]| |EJ‘ tiles, as follows

T8 = {(rows(X; D), X) | X = {e;,e;} with (e;,e;) € B} (8)

where rows(X; D) is the set of rows that contain X in D, e.g. the corresponding entries for X in the
matrix D that have non-zero values.

To evaluate the quality of a bicluster chain C, for each bicluster B € C, we construct the set of
tiles 7p as illustrated by Equation (8), and the tile set that corresponds to a bicluster chain C is then
Tc = Upec 7B-

Next, we describe the metrics that measure how much information a bicluster B (or the corre-
sponding tile set 7) gives with regard to the background model pp,.r. Motivated by [9], the global
score is defined as follows:

Sglobal(B) = KL(psl|pvack) » ©)

where pp represents the MaxEnt distribution inferred over the background tile set 75401 and the tile
set 7g for the bicluster B.

For both of binary and real-valued MaxEnt model, the MaxEnt distribution p(D) can be factorized
as

pd) =[] p(DG.j) -

(i.j)eD
Thus, this global score can be written as:

p5(D)
Pback (D)

N p5(D(i. )
[ psei) 2 o8 @Gy P

sglobal(B) 9517 (D IOg ——dD

D (i.j)eD (i,j)eD
pB(D(i.)))
(t])eDf po(Di) pback(D(l 5))) DGi.J)
= > KL(ps(D(.)Ippack (D)) - (10)
(i,j)eD

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Interactive Discovery of Coordinated Relational Chains 39:13

For the binary MaxEnt model, D(i, j) follows the Bernoulli distribution
exp (ZTeT(i,j) /IT)
exp (ZTeT(i,j) AT) +1

and the global score for binary MaxEnt model would be:

1_
Sgobal (B) = (quog 95+ (1 - qs) log ——I2_ )
(i.j)eD Gback 1- 9back

D(i,j) ~ Bernoulli(q), where q =

For the real-valued MaxEnt model, D(i, j) follows the Gaussian distribution
. aij 1
D ~ 1 [-55t o)
2Pi; 2Pi;
Given any two normal distribution Py, = N (u1,07) and Py, = N (u2,02), we can verify that the
KL-divergence between these two normal distribution is:

0'12 + (111 —ﬂ2)2 _1

02
KL(P P =log — + .
(P |IPpy,) gal 27 5

(11)

Combining Equation (10) and (11), the global score for the real-valued maximum entropy model is:

) (B) (back) (back) (B) \? .
ij ij (back)[ %i.j ij
Sglobal = Z Slog— s+ — & thi (back) 2B | T3 (12)
(iep | 2 ij 26 26, 2B, 2

However, using the global score defined above requires us to re-infer the MaxEnt model for
every candidate bicluster that needs to be evaluated, which could be computationally expensive
and thus not applicable to our interactive mining sitting. Moreover, sgjopq €valuates a candidate
globally, whereas typically most information is local: at most a few entries in the maximum
entropy distribution will be affected by adding B into the model. Making use of this observation
and considering the ease of computation, to reduce the computational cost of candidate bicluster
evaluation, we define the score sj,.q;(B) that measures the local surprisingness of a tile set as

slocal(B) == Z Z lOngack(D(i,j)) b (13)

TeTs (i,j)€a(T)

which is an approximation of the local negative log-likelihood of the bicluster B. For both binary and
real-valued MaxEnt model, ppqcx(D(i,j)) indicates the probability (or probability density) evaluated
at the value D(i,j) under the current background MaxEnt model. Notice that although the global
and local scores are described using the notation of biclusters here, they can also be directly adopted
to assess the quality of bicluster chains because fundamentally these scores are defined around the
concept of tiles and bicluster chains (and can thus be trivially converted to a set of tiles as described
at the beginning of this section).

5 MERCER

MERCER is a visual analytics system, supported by the maximum entropy model above, to support
interactive exploration of coordinated relationships using biclusters. Coordinated relationships
are groups of relations, connecting sets of entities from different domains (e.g., people, location,
organization, etc.), which potentially indicate coalitions between these entities. MERCER extends a
recently proposed bicluster visualization, BiSet [51], by incorporating MaxEnt models to support
user exploration of entity coalitions for sensemaking purposes. In this section, we first briefly
introduce BiSet, followed by the enhancements that MERCER provides.
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Fig. 3. Visual representations of a bicluster that includes three entities in D7 and three entities in D2. (A)

displays all individual relationships between the two sets of entities from the two domains, D7 and D2. (B)
Realtionships are aggregated as an edge bundle that represents a bicluster.
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Fig. 4. An example of four bicluster-chains (b7 - b4, b2 - b4, b2 - b5 and b3 - b5). These chains consist of
entities from three domains, D1, D2 and D3. b1 and b4 are connected through el. b2 and b4 share e7 and e2.
b2 and b5 are linked by e3. b3 and b5 are connected by e3 and e5.

5.1 BiSet Technique Overview

The key idea is that BiSet visualizes the mined biclusters in context as edge bundles between sets of
related entities. BiSet uses lists as the basic layout to present entities and biclusters. Figure 3 shows
an example of a visualized bicluster in BiSet. In Figure 3, (A) shows all individual edges between
related entities and (B) presents the same bicluster as an edge bundle. BiSet enables both ways to
show the coalition of entities with two modes: link mode and bicluster mode. Link mode displays
the individual connections among entities in a dataset, while bicluster mode offers a more clear
representation to show identified biclusters in the dataset. Based on these visual representations,
BiSet can visually show bicluster-chains as connected edge bundles through their shared entities.
Figure 4 shows four bicluster-chains (b1 - b4, b2 - b4, b2 - b5 and b3 - b5) visualized using BiSet.
Each of them consists of two different biclusters including entities from three domains. The two
biclusters in each chain are visually connected through one or two shared entities. For example,
bicluster b2 and b4 are connected by entity el and e2. With edges, BiSet enables users to see
members of bicluster-chains and how these biclusters are connected. This potentially guides users
to interpret the coalition among sets of entities from multiple domains in an organized manner
(e.g., checking connected biclusters from left to right).

To support exploratory analysis, BiSet treats edge bundles as first class objects, so users can
directly manipulate them (e.g., drag and move) to spatially organize them in meaningful ways.
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Fig. 5. Detailed visual encodings in MERCER. 1a, 2a and 3a depict the normal state of an entity, a bicluster
and edges, respectively. 1b, 2b and 3b depict the connection-oriented highlighting state of an entity, a bicluster
and edges, when users select bicluster 2c, hover over entity 1f and select entity Tc. Te, 2d and 3c illustrate the
surprisingness-oriented highlighting state of an entity, a bicluster and edges. 1d demonstrates larger fonts of
entities as users hover the mouse pointer over their previously selected entity 7c. Moreover, 2e represents a
bicluster (in the normal state) with its edges chosen to be hidden by users.

BiSet also offers automatic ordering for entities and biclusters to help users organize them. For
example, entities can be ordered based on their frequency in a dataset and biclusters can be ordered
by size (i.e., the number of entities participating in a bicluster). Moreover, BiSet can highlight
bicluster-chains as users select their members (e.g., entities and biclusters). This provides visual
clues for users to follow in conducting their analysis.

5.2 Adaptions from BiSet to MERCER

Key adaptions, from BiSet to MERCER, lie in two levels: representation-level (specifically visual
encoding), and interaction-level, (human-model interaction, in particular). MERCER shares the
basic visual encodings in shape and size (to represent entities, biclusters and edges) with BiSet,
but it introduces surprisingness oriented highlighting, which is not included in BiSet. Detailed
visual encodings in MERCER is discussed in Section 5.3. This surprisingness oriented highlighting
aims at supporting human-model interactions in MERCER. The capability of enabling human-
model interactions is the essential difference between BiSet and MERCER. This capability helps to
address recently identified usability challenges of using biclusters for sensemaking (e.g., bicluster
evaluation and prioritization) [49, 52]. Without human-model interactions, in BiSet, users have
to check biclusters or bicluster-chains (based on connection oriented highlighting) and manually
figure out potentially useful ones. This may take much cognitive effort, especially when data is
large. However, in MERCER, users can explicitly request computation to help them find potentially
useful biclusters or bicluster-chains, by directly interacting with a bicluster. Moreover, by revealing
the surprisingness oriented highlighting, MERCER helps to prioritize biclusters and bicluster-chains
to support user explorations. The human-model interaction capability and evaluation strategies are
discussed in Section 5.4 and Section 5.5, respectively.
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5.3 MERCER Visual Encoding

5.3.1 Shape and Size. In MERCER, entities and biclusters are represented as rectangles (e.g., 1a
and 2a in Figure 5), and edges are visualized as Bézier curves. We use Bézier curves because they
can generate more smooth edges, compared with polylines [32]. Rectangles indicating entities are
equal in length, while those representing biclusters are not. MERCER applies a linear mapping
function to determine the length of a bundle based on the total number of its related entities. In a
bicluster rectangle, MERCER uses two colored regions (light green and light gray) to indicate the
proportion between its related entities in lists of both sides (left and right). In an entity rectangle, a
small rectangle is displayed on the left to indicate its frequency in a dataset. The length of these
rectangles is determined by the frequency of the associated entities with a linear mapping function.
These helps users to visually discriminate entities from biclusters. Moreover, when users hover over
a selected entity or bicluster (e.g., entity Ic and bicluster 2c in Figure 5), the font of its related entities
is enlarged (e.g., comparing 1d with 1b in Figure 5). This helps users review relevant information of
their previous selections.

5.3.2  Color Coding. MERCER applies color coding to entities, biclusters and edges to indicate
their states and allows users to hide edges of biclusters to reduce visual clutter (see 2e in Figure
5). In MERCER, entities, biclusters and edges have two basic states: normal and highlighted. The
normal state is the default state for entities, biclusters and edges. Examples of the normal state
for them are shown as 1a, 2a and 3a, respectively, in Figure 5. To encode surprisingness, MERCER
supports two types of highlighting states: connection oriented highlighting (colored as orange in
Figure 5) and surprisingness oriented highlighting (color as red in Figure 5), which encode two
levels of information: the coalition of entities and the surprisingness of the coalition. The former
indicates the linkage of entities, emphasizing the connections between entities. The latter reveals
the model-evaluated surprisingness of different sets of entity coalitions. In Figure 5, examples
of connection-oriented highlighting for entities, biclusters and edges are shown as 1b, 2b and 3b,
respectively; while examples of surprisingness-oriented highlighting are presented as Ie, 2d and 3c.

The connection oriented highlighting state is triggered as users hover or select an entity or a
bicluster. For example, when users hover the mouse pointer over the entity If, its directly connected
bicluster 2b is highlighted and other entities that belong to this bicluster are also highlighted. The
surprisingness oriented highlighting state is triggered by explicit user request of model evaluation.
For instance, in Figure 5, as users request to find the most surprising chains with bicluster 2c as
the starting point, MERCER highlights entities and biclusters in a chain that has the highest score
given by the proposed maximum entropy model (the approach to discover such a chain will be
described in Section 5.5 below). With our color codings, MERCER empowers users to explore entity
coalitions by directing them to computationally identified surprising chains.

5.4 Human-model Interaction

MERCER allows human-model interaction with visualizations to support visual analytics of entity
coalitions. To enable this capability, we incorporate the proposed maximum entropy models into
MERCER. Figure 6 illustrates the human-model interaction flow in MERCER. Visual representations
in MERCER work as the bridge to enable the interaction between users and the proposed models.
After inspecting the visualized biclusters and bicluster-chains, users can explicitly request model
evaluations using right click menus on a bicluster. This further triggers the maximum entropy
model to evaluate either all paths passing through the requested bicluster or its neighboring
biclusters. Then, based on results of the model evaluation, MERCER highlights the most surprising
bicluster-chain including the user requested bicluster or neighboring biclusters. We address this
with a detailed discussion in Section 5.5. Moreover, users can mark highlighted bicluster(s), based
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Fig. 6. The human-model interaction flow in MERCER. Visual representations in MERCER enable the
interaction between users and the proposed maximum entropy models.

on model evaluation, as useful one(s) by using a right click menu on the bicluster(s). This implicitly
evokes a model update function, which informs the model that the information in a marked bicluster
has been known by users. Then the model updates its background information to take the marked
bicluster(s) into account and prepare for further user requested evaluations. This human-model
interaction flow in MERCER enables the combination the human cognition with computations for
the exploration of entity coalitions.

5.5 Model Evaluation Strategies

MERCER offers two strategies to evaluate bicluster-chains, using the proposed maximum entropy
models, based on explicit user requests: full path evaluation and stepwise evaluation. Both ways
require users to explicitly specify a bicluster based on its visual information, e.g. size of a bicluster,
frequency of corresponding entities, etc., to initiate the chain. The former evaluates all bicluster-
chains passing through the bicluster that users request for evaluation, while the latter evaluates
neighboring biclusters that satisfy a certain degree of overlap with the user-specified one. MERCER
enables users to explicitly issue an evaluation request from a bicluster with a right click menu.
From the menu, users can choose the desired way of evaluation.

5.5.1 Full Path Evaluation. The full path evaluation in MERCER includes three key steps: 1)
path search, 2) path evaluation, and 3) path rank. In MERCER, a path, passing through a bicluster,
refers to a set of biclusters (e.g., {b2, b4} in Figure 4), which can be connected through certain
entities to form a bicluster-chain. In the path search step, MERCER finds all possible paths passing
through the bicluster that users request for evaluation. Similar to tree search, MERCER treats
the user requested bicluster as a root node and applies depth-first search to find all paths starting
from this bicluster. If the user requested bicluster is not from the left or right most relation in the
user specified multi-relational schema, MERCER performs bidirectional search and then combines
identified paths in the left and those in the right together to obtain all paths going through this
bicluster. Then in the path evaluation step, MERCER converts each bicluster-chain, found in the
previous step, into a unique set of tiles following the Equation (8) in Section 4.3, and applies the
maximum entropy models to score them. Finally, based on the score from the model, in the path
rank step, MERCER ranks these bicluster-chains and visually highlights the one that has the highest
score (e.g., {2¢, 2d} in Figure 5). Thus, with the full path evaluation in MERCER, users can get the
most surprising bicluster-chain for the bicluster requested for evaluation.

5.5.2  Stepwise Evaluation. The stepwise evaluation in MERCER examines neighboring biclusters
for the one that users request for evaluation. Neighboring biclusters for a specific bicluster refers
to those that can meet certain degree of overlaps, with respect to participated entities, with a
user requested bicluster. MERCER uses the Jaccard coefficient to measure the degree of overlaps
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Fig. 7. Exampled results from the stepwise evaluation in MERCER. (a) shows the bicluster selected by a
user to initiate the maximum entropy model evaluation. (b) represents the most surprising bicluster in the
same bicluster list as the one requested for evaluation. (c) illustrates the most surprising bicluster in another
bicluster list.
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Fig. 8. Document view mode in MERCER. (A) depicts the bicluster ID, relevant document ID(s) and associated
entities. (B) shows the content of a document. (C) lists all document IDs in a dataset with a search function.

between two biclusters with a default threshold set as 0.1. Thus, for a specific bicluster, its potential
neighboring biclusters are those sharing at least one domain (e.g., people, location, date, etc.) with
this one.

Similar to the full path evaluation, the stepwise evaluation also has three key steps, including:
1) neighboring bicluster search, 2) neighboring bicluster evaluation, and 3) neighboring bicluster
coloring. Based on a user specified bicluster for evaluation, MERCER first identifies its neighbor-
ing biclusters using the Jaccard coefficient. Then, MERCER converts the identified neighboring
biclusters into different sets of tiles following Equation (8) and employs the maximum entropy
models to score them. Based on the model evaluation score, BiSet applies a linear mapping function
to assign the opacity value of surprisingness oriented highlighting color to these biclusters. The
more red a color is, and the higher score this neighboring bicluster gets, which indicates more
surprising information. Figure 7 gives an example of the stepwise evaluation in MERCER. In this
example, users request to evaluate a bicluster (see a), MERCER highlights neighboring biclusters

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2010.



Interactive Discovery of Coordinated Relational Chains 39:19

based on their model evaluation scores. Of these highlighted biclusters, bicluster b shows the most
surprising one in the same bicluster list as that requested for evaluation, and bicluster c is the most
surprising bicluster in the adjacent bicluster list. Although bicluster b here could not be used to
extend the users selected bicluster g, it has the potential to reveal entities related to the bicluster a
and the plots. Thus, we also take the most surprising bicluster from the same relation of the users
selected bicluster into account. Such stepwise evaluation potentially enables to involve users in the
process of building a meaningful bicluster-chain. Each time after a stepwise evaluation, users can
investigate highlighted neighboring biclusters, identify and then select useful one(s) for further
exploration. Users can iterate this process and build a bicluster-chain that is meaningful for them.

5.6 Bicluster based Evidence Retrieval

In MERCER, users can directly retrieve related documents from biclusters by using a right click
menu. Users can use a right click menu to open a popup view, where relevant documents are
listed, as is shown in Figure 8. This helps users review information relevant to this bicluster
and verify computationally identified coalitions of entities. This document view is on top of the
relationship exploration view with transparency, so users can simultaneously see both the visualized
relationships and corresponding documents. Moreover, after reading documents, users can quickly
return to the relationship exploration view by closing it.

6 EXPERIMENTS

We describe the experimental results over both synthetic and real datasets. For real datasets,
we focus primarily on datasets from the domain of intelligence analysis. Through a case study,
we demonstrate how the proposed maximum entropy models embedded in our visual analytics
approach helps analysts to explore text datasets, such as used in intelligence analysis. All exper-
iments described in this section were conducted on a Xeon 2.4GHz machine with 1TB memory.
Performance results (for synthetic data) were obtained by averaging over 10 independent runs.

6.1 Results on Synthetic Data

To evaluate the runtime performance of the proposed maximum entropy models with respect to the
data characteristics, we generate synthetic datasets. Since we focused on the runtime performance
of the proposed models here, and the multi-relational schema of the dataset will not affect how the
proposed models are inferred over the data matrix D, we will temporarily ignore the multi-relational
schema of the dataset in the synthetic data for now. The synthetic datasets are parameterized
as follows. The data matrix D consists of N rows and M columns, or entities, and f§ denotes the
density of the data matrix D. For each entry in the data matrix D, we set its value to be non-zero
with probability . For the binary case, the non-zero values would naturally be one, and for the
real-valued case, the non-zero values are generated from a standard uniform distribution. In order
to avoid the scenario that too many rows or columns in D contains only zeros, a non-zero value is
placed randomly in a row or column if it only contains zeros.

In our experiments, we explore data matrix D sizes of (N = 1000, M = 1000), (N = 2000,M =
2000), and (N = 3000, M = 3000), and varied the density S of the data matrix D from 0.01 to 0.05 in
steps of 0.01. To infer the maximum entropy models, we use column margin and row margin tiles as
the set of constraint tiles for the proposed model (see Sect. 3). We first investigate the time needed to
infer the maximum entropy models. Figure 9 shows the model inference time for the binary and real-
valued maximum entropy formulations. As expected, model inference increases with dataset size
and requires more time for the real-valued model. Since the real-valued maximum entropy model
adopts the conjugate gradient method, model inference time heavily depends upon the structure of
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Fig. 9. Time to infer the binary (left) and real-valued (right, Y-axis is in log scale) maximum entropy model on
synthetic datasets. The error bars represent the standard deviation

the given dataset, the number of constraint tiles, and how fast the model converges to the optimal
solution along the gradient direction. For example, in our experiments we used the row and column
margin tiles as the constraints for the real-valued maximum entropy model, the dimension of the
gradient could be 2(M + N) (that would be 4,000 dimension when N = 1000, M = 1000 for our
synthetic datasets).

Another interesting phenomenon we observed here is that as the density § of the data matrix
D increases, the inference time required by the real-valued maximum entropy model decreases.
One explanation for this phenomenon is that denser data matrices provide more information to the
maximum entropy model about the underlying data generation distribution through the constraint
tiles. This aids the model in rapidly learning the structure of the data space and search for the
optimal solution with fewer iterations of the conjugate gradient algorithm.

We also measured the runtime performance of evaluating tile sets with the proposed binary and
real-valued maximum entropy models since the patterns (biclusters or bicluster chains) whose
qualities we would like to assess will eventually be converted into a set of tiles in our framework.
To be more specific, we randomly generated a set of tiles over the synthetic data matrix, and
compared the time required to evaluate this tile set with both global score and local score using
converged binary and real-valued models, and Figure 10 illustrates the results. As we can see from
this figure, in both binary and real-valued maximum entropy model, evaluating tile sets using
the global score requires more time than the local score, which is expected since the global score
requires a complete re-inference of the model. The difference of runtime performance between
global and local scores is significant in the real-valued model due to this model inference step.
When applying the real-valued maximum entropy model in practical applications, such as the one
here necessitating real-time interaction, we can employ an asynchronized model inference scheme,
e.g. creating a daemon process to infer the model when the system is idle, and adopt the local score
to evaluate tile sets.
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Fig. 10. Time to evaluate a set of tiles with the binary (left) and real-valued (right) maximum entropy model
on synthetic datasets. The set of solid lines on the top represents the results of global score, and the set of
dash lines at the bottom represents the results of local score. The error bars represent the standard deviation,
and the Y-axis is in log scale.

6.2 Evaluation on Real Dataset: A Usage Scenario

In this section, we walk through an intelligence analysis scenario to demonstrate how MERCER,
particularly incorporating the proposed maximum entropy models for identifying surprising entity
coalitions, can support an analyst to discover a coordinated activity via visual analysis of entity
coalitions. For ease of description, we use a small dataset, viz. The Sign of the Crescent [22], which
includes 41 fictional intelligence reports about three coordinated terrorist plots in three cities. Each
plot involves at least four suspicious people. 24 of these reports are relevant to the plots. We use
LCM [58] to identify closed biclusters from this dataset with the minimum support parameter set to
3. This assures that each bicluster has at least three entities from one domain. This generates 337
biclusters from 284 unique entities and 495 individual relationships (based on entity co-occurrence
in the reports).

In order to try to discover all the possible plots hidden in the Crescent dataset, in MERCER, we set
the threshold for the Jaccard coefficient as 0.05, which is a loose constraint. This enables the model to
evaluate those neighboring biclusters that has a few entity overlaps with user specified biclusters for
assessment. Although MERCER fully supports pattern evaluations with the real-valued maximum
entropy model, we observed that the model evaluation results of a given bicluster were similar when
using the binary and the real-valued maximum entropy models in our experiments over the Crescent
dataset. Thus, we only present the use case study using the binary maximum entropy model here
to demonstrate the effectiveness of the proposed MERCER technique when assisting analysts in
conducting intelligence analysis tasks.

To illustrate the benefits of integrating the maximum entropy models into visual analytic tools,
in this intelligence analysis scenario, we use BiSet [51] as the baseline approach for comparison
purposes. Notice that BiSet does not has the capability of model evaluations, and thus it just provides
the connection oriented highlighting function for users to manually explore entity coalitions. We
begin our discussions with the use case of BiSet, and then discuss the use case of MERCER.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:22 H. Wu et al.

In our scenario, suppose that Linda is an intelligence analyst. She has a task to read intelligence
reports and identify potential terrorist threats and key persons from the Crescent dataset. She
opens BiSet, picks four identified domains (people, location, phone number and date), and starts
her analysis. Figure 11 to Figure 16 demonstrate Linda’s key analytical steps using BiSet. Figure 17
and Figure 18 show the key steps of Linda’s analytical process using MERCER. The BiSet use case
and Figure 17 are informed by the previous publication of the BiSet technique [51].

6.2.1 BiSet Use Case. Linda starts analysis by checking people’s names. When she hovers the
mouse over an entity, BiSet highlights its related bundles and entities. Immediately she notices that
A. Ramazi is active in three bundles. This indicates that he may be involved in three coordinated
activities. Linda selects it (Figure 11) to focus on the highlighted entities of these bundles. She
finds that A. Ramazi is involved in two cells with five people (S. Khallad, T. al Adel, B. Dhaliwal, C.
Webster and F. Goba). One cell is in Germany and the other cell is more broadly located in four
countries. A. Ramazi is the only person connecting the two cells. Moreover, two overlapped groups
of people (sharing A. Ramazi and C. Webster) are involved in the broader cell, and each group has
its unique person, B. Dhaliwal and F. Goba, respectively.

Saeed Khaliad German, y

Tawfiq al Adel Hamburg g cel I 1
Hani al Hallak Amsterdam
Bagwant Dhaliwal us
Select[P Abdul Ramazi k ] i Charlottesville
Clark Webster Virginia D cel |2
Faysal Goba Afghanistan
Jamal Kalifa United Arab Emirates
Abu al Masri Atianta.
Mukhtar Galab The Netherlands
Hans Pakes Richmond
Yasein Mosed Queens

Ralph Goode New York City

Abul Hassan Salman Los Angeles
Fig. 11. Selecting A. Ramazi and finding that there are two similar bundles and two cells.

Then Linda decides to investigate the two overlapped groups, since she aims to know what brings
the unique people to them. She checks B. Dhaliwal first. After hovering the mouse over it, two
bundles are highlighted. Following their edges, Linda finds that two people’s names (B. Dhaliwal
and C. Webster) and four locations (Charlottesville, Virginia, Afghanistan and Richmond) are shared
by them, and the bigger one is connected with a new name, H. Pakes (see Figure 12). Then she
checks F. Goba in the same way. This time three names (M. Galab, Y. Mosed and Z. al Shibh) and
three bundles are highlighted, and one name, M. Galab, has a high frequency (see Figure 13).

Linda quickly notices this, so she decides to temporarily pause her analysis of B. Dhaliwal, and
moves on with F. Goba. Linda hovers the mouse over M. Galab to check what additional information
it can lead to. However, no additional bundles or names are highlighted. Linda realizes that people
potentially connected with M. Galab have already been highlighted in the current view. The bundle
(shown in Figure 13 as the black box in the middle) reveals two people (F. Goba and Y. Mosed) related
with M. Galab, and all their activities are in the US, including Charlottesville, Virginia, Atlanta, Los
Angeles, New Orleans and Georgia. Linda get this key insight based on the group of locations in
this bundle. The relations from this bundle are important, and Linda hypothesizes that the three
people (M. Galab, Y. Mosed and Z. al Shibh) may work on something together in the US. Thus, by
following this tail [25], she wants to find more related information.
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Saeed Khaliad Germany
Tawfiq al Adel Hamburg
Hani al Hallak Amsterdam
Mouseover L» Bagwant Dhaliwal k ] us
[ Abdul Ramazi ] e — Charlottesville
Clark Webster — — Virginia
Faysal Goba — Afghanistan
Jamal Kalifa United Arab Emirates
Abu al Masri B Atlanta
Mukhtar Galab T The Netherlands
Hans Pakes Richmond
Yasein Mosed ’ Queens
Ralph Goode New York City
Abul Hassan Saman Los Angeles
Ziad al Shibh New Orleans
Clark Adams Georgia
Wallace Wilson Capitol Ave.

Fig. 12. When hovering the mouse over B. Dhaliwal, one name and two bundles are highlighted.

Saeed Khaliad Germany
Tawfig al Adel Hamburg
Hani al Hallak Amsterdam
Bagwant Dhaliwal — us
[ Abdul Ramazi ] e - Charlottesville
Clark Webster - — Virginia
MOUSEOVEr.........[ouwp FaysaiGoba [ = — Afghanistan
Jamal Kalifa - United Arab Emirates
Abu al Masri Atlanta
H Ig h """"""" b Mukhtar Galab The Netherlands
frequency o Richmond
Yasein Mosed Queens
Ralph Goode New York City
Abul Hassan Salman Los Angeles
Ziad al Shibh New Orleans
Clark Adams ‘ Georgia
Wallace Wilson Capitol Ave.

Hamid Alwan Guantanamo

Alwan Sudan

Fig. 13. When exploring F. Goba, three names and three bundles are highlighted.

After Linda selects this useful bundle, BiSet highlights its related bundles that can form bicluster
chains. Five bundles, between the location list and the phone number list, are highlighted (Figure 14),
and two bundles, between the phone number list and the date list, are highlighted (Figure 15).
Relevant entities in these lists are also highlighted. For these newly highlighted bundles, Linda
finds that there are two big ones (relatively longer shown in Figure 14 and Figure 15). These two
bundles seem useful since they have more relations. Linda decides to check them and find how
bundles from different relationship lists are connected. For bundles between the location list and the
phone number list (from top to bottom in Figure 14), Linda finds that the first and the third bundle
share two locations (Charlottesville and Virginia) with the selected bundle, and other highlighted
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Germany b 700-658-2317
Hamburg a0e750.6302
o1 1207870734

United Arab Emirates
8047748920

us
718-352.8479
Clark Webster Alghanistan i
— H 1070173
Jamal Kalifa New York City

732.455-6352
Abu al Masr Chariottesville

7037340104
Hans Pakes Virginia

Faysal Gob Atants 7064376673
aysal Gova tanta

Mukntar Galab k I - Geogia 7135568213

Yasein Mosed
Raiph Goode New Orieans

Harid Awan Queens

Fig. 14. After selecting a useful bundle, five bundles (in-between the list of location and phone number) are
highlighted. Checking connected entities of the first and the third bundles.

Germany Tass02017 i 21 Ao, 200
Hamburg aoe750.6000 22 Ao, 200

011207670734 24 Apri, 2003

United Arab Emirates H o
8067748020 H bt

us 1 Apr, 2008
Tress2 a7 !

Alghanistan i 20 Aor, 2003
) i :

New York Gty 10 Apr, 2008
732-455-6392 :,

Charlottesville m—— 11 April, 2003

7037340104
Virginia 12 Apri, 2008

e 7064376673
2 12 Feb. 1887

Georgia 713556.9213 13 Apri, 2003

14 Apri, 2003
18 Apri, 2003

18 Apri, 2003

Fig. 15. After selecting a useful bundle, two bundles (in-between the list of phone number and date) are
highlighted.

bundles just share one location with the selected one. Compared with the first bundle, the third
one is related with less locations that are not associated the selected bundle. Linda chooses to
focus on information highly connected with the selected bundle, instead of additional information,
so she considers the third bundle a useful one. Using a similar strategy in another bicluster list
(between the phone number list and the date list), she finds that the bigger bundle (the top listed
one in Figure 15) is more useful.

After this, Linda uses the right click menu to hide edges of other bundles for creating a clear
view (see Figure 16). Then, in her workspace, there are three bundles connecting with each other
through two shared locations (Charlottesville and Virginia) and three shared phone numbers (703-
659-2317 and 804-759-6302 and 1070173). Linda feels that she has found a good number of relations,
connecting four groups of entities, which may reveal a suspicious activity. Therefore, she decides
to read relevant documents to collect details about these connections and make her hypothesis.

These three connected bundles direct Linda to eight reports, and all of them are relevant to
the plot. By referring to the entities with bright shading in the four connected groups (shown in
Figure 16), Linda reads these reports. The darker shading indicates that an entity is shared more
times. This information helps to direct her attention to more important entities in the reports. After
reading these reports, she identifies four key persons involved in a potential threat as follows:

F. Goba, M. Galab and Y. Mosed, following the commands from A. Ramazi, plan to
attack AMTRAK Train 19 at 9:00 am on April 30.

In this use case, Linda has to manually check details about shared entities to determine which
biclusters are meaningful and useful, because BiSet does not provide the function of model based
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bicluster or chain evaluation. With just connection oriented highlighting, Linda has to verify many
connected biclusters to find potentially useful ones. This limits her analysis strategy as stepwise
search, and such search focuses on checking the shared entities of investigated biclusters. Thus,
it takes Linda significant effort to work at the entity-level information to identify a meaningful
bicluster chain.

6.2.2 MERCER Use Case. Similar to the previous case, Linda begins analysis by hovering indi-
vidual entities in the list of people. MERCER highlights related bundles and entities as she hovers
the mouse over an entity. Immediately she finds that A. Ramazi is active in three bundles (Figure 17
(1)), which indicates that this person is involved in three coordinated activities. Based on edges,
Linda finds that two bundles are similar (see the black dotted box in Figure 17 (1)) due to the number
of their shared entities. Thus, she decides to further investigate them.

With the right click menu on the two bundles, Linda uses the stepwise evaluation function,
provided by MERCER, to find their neighboring bundles that contain the most surprising information
(Figure 17 (2) and (3)). Based on evaluated scores from the maximum entropy model, MERCER
highlights their most surprising neighboring bundles. She finds that the most surprising bundles
connected with the two investigated bundles are the same. This indicates that the model-suggested
most surprising bundle may be important and worthy of further inspection, and so Linda decides
to find more relevant information from it.

Linda chooses the full path evaluation function on this model-suggested bundle to find the
most surprising bicluster-chain. MERCER highlights the path (Figure 17 (4)) passing through this
bundle having the highest evaluation score from the maximum entropy model. This provides four
connected sets of entities from all the selected domains (people, location, phone and date). Linda
feels that she has discovered enough information for a story, so she checks entities involved in
this chain and reads documents from the three connected bundles. The three bundles directs Linda
to nine reports in total, and eight of them are relevant to each other. After reading these relevant
reports, she identifies a potential threat with four key persons as follows:

F. Goba, M. Galab and Y. Mosed, following the commands from A. Ramazi, plan to
attack AMTRAK Train 19 at 9:00 am on April 30.

Linda is satisfied with this finding and marks the bundles in this model suggested chain as useful,
using the right click menu. This informs the integrated maximum entropy model in MERCER that
the information in these bundles has been known to the analyst, and so the model updates its
background information for further evaluations.

The content of one report, from the bundle in the middle of the surprising chain (a in Figure 17
(4)), is irrelevant to that of the other eight, but the entities extracted from this report are connected
with those in the identified threat. Thus, Linda considers the information in this report as potentially
useful clues, which may lead to some other threat plot(s). In order to check what new information it
can bring in, she uses the full path evaluation function on the bundle in the middle of the surprising
chain (a in Figure 17 (4)). Based on this request, MERCER highlights another chain (Figure 18 (5)).
This newly highlighted chain has one new bundle (a in Figure 18 (5)), and this chain merged with
previously suggested surprising chain (comparing Figure 17 (4) with Figure 18 (5)). By checking
this newly brought in bundle, Linda finds that all its entities are different from those in previously
investigated bundles. In order to connect this new piece of information with previously examined
pieces, Linda decides to use the stepwise evaluation function on this bundle.

After this stage, MERCER highlights just one bundle (Figure 18 (6)), which is the most surprising
one suggested by the model. From this bundle, Linda finds that it includes the person, B. Dhaliwal.
This quickly catches her attention since she remembers that B. Dhaliwal is connected with A.
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Fig. 18. A process of finding another key threat plot. (5): Finding the most surprising bicluster-chain by the maximum entropy model from the bundle marked
in the black dotted box. (6): Requesting the stepwise evaluation on the bundle a in (5). (7): Based on the most surprising bundle shown in (6), requesting to
find its most surprising bicluster-chain. (8): Based on the shared entity, B. Dhaliwal, requesting to find the most surprising bicluster-chain from the bundle

that includes B. Dhaliwal and A. Ramazi. The chain from this step and that from the previous step merge together.
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Ramazi (Figure 17 (1)). Because of this connection, Linda decides to find more information from
this bundle and another bundle that includes B. Dhaliwal and A. Ramazi (the bundle on top in the
black dotted box in Figure 17 (1)), so she requests the full path evaluation from them. Based on
the request from the newly highlighted bundle shown in Figure 18 (6), MERCER highlights a new
bicluster-chain (Figure 18 (7)). Then based on the evaluation request from the bundle including B.
Dhaliwal and A. Ramazi, MERCER highlights another chain. Linda finds these two chains merge
together (Figure 18 (8)). The two merged chains both include new pieces of information which
connects with the previous findings. Thus, Linda decides to read the reports that are related to
these four bundles.

From the four bundles, in the document view of MERCER, Linda finds in total ten unique reports.
Of the ten reports, six show evidences about a new threat and three are those relevant to previously
identified threat plot. Based on the six reports, Linda identifies the potential threat as:

B. Dhaliwal and A. Ramazi plan to attack the New York Stock Exchange at 9:00 am
on April 30.

Considering the connections between this plot and the previously identified one (e.g., they share
some people’s names and date), Linda also confirms that A. Ramazi is the key person who coordinates
the two planned attacks.

With the capability of model evaluations, in this use case, MERCER effectively directs Linda to
discover potentially meaningful biclusters or bicluster-chains. Using colors to visually indicate
the model evaluation scores in MERCER, Linda can easily see the most surprising bicluster or
bicluster-chain, evaluated by the maximum entropy model. Compared with the previous use
case of BiSet, following the model-suggested biclusters or chains saves Linda significant time in
checking entity-level overlaps for meaningful bicluster identification. In this use case, the maximum
entropy model shares the burden of Linda for foraging information (e.g., finding potentially useful
biclusters or chains). Thus, compared with the first use case, Linda can spend more time and effort
to synthesize the visualized structured information for hypothesis generation.

6.2.3 Comparison between BiSet and MERCER. Both BiSet and MERCER can highlight entities
and biclusters based on connections, and visually present entities and biclusters (algorithmically
identified structured information) in an organized manner. However, compared with BiSet, MERCER
also enables the highlighting entities and biclusters based on identified surprising coalitions from
the maximum entropy model. Comparing the two cases discussed above, we find that MERCER
better supports the user’s sensemaking process of exploring entity coalitions, than BiSet does, from
two key aspects: 1) efficiency and 2) exploring new analytical paths.

Compared with BiSet, MERCER more effectively directs users’ attention to potentially useful
biclusters or bicluster-chains by visually prioritizing them with colors based on their maximum
entropy model evaluation scores. The model evaluation function provided in MERCER eases the
process for users to find useful biclusters, particularly compared with manually entity overlap
investigation. For example, in the first use case, a user has to examine in total 9 biclusters (4 in the
left most bicluster list, 5 in the middle bicluster list and 2 in the right most bicluster list as shown in
Figure 16), before she finally identifies a meaningful bicluster-chain that covers the information of
a potential threat. However, in the second use case, MERCER directs the user to a bicluster-chain
after she investigates 3 biclusters (in the left most bicluster list shown in Figure 17). Although this
chain is slightly different from the manually identified one in the first use case, it covers the same
amount of information as the other one does. Thus, in the second use case, MERCER saves the
user from checking highlighted biclusters in the other two lists, and effectively provides a useful
bicluster-chain for users to explore.
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Based on the four user selected domains (visualized as a fixed schema), it is hard to identify all
three threat plots in the Crescent dataset because not all pre-identified biclusters can be shown.
However, from the two cases, we can find that MERCER can direct users from one identified plot
to a new plot via a surprising bicluster-chain. However, when users manually forage relevant
information, it is not easy for them to make such transitions due to cognitive tunneling [56]. In the
first use case, the key bundle that can lead to a new plot is actually identified not as useful as the
one shown as b in Figure 16. Thus, MERCER significantly aids in identifying coalitions of entities
worthy of further exploration.

7 RELATED WORK

In this section we survey related work. In particular, we discuss work related with regard to mining
surprising patterns, iterative data mining, mining multi-relational datasets, finding plots in data,
and bicluster visualizations for data exploration.

7.1 Mining Biclusters

Mining biclusters is an extensively studied area of data mining, and many algorithms for mining
biclusters from varied data types have been proposed, e.g. [2, 5, 39, 42, 57, 59, 63]. Bicluster mining,
however, is not the primary aim in this paper; instead it is only a component in our proposed
framework. Moreover, the above mentioned studies do not assess whether the mined clusters are
subjectively interesting. A comprehensive survey of biclustering algorithms was given by Madeira
and Oliveira [34].

7.2 Mining Surprising Patterns

There is, however, significant literature on mining representative/succinct/surprising patterns [e.g.,
27] as well as on explicit summarization [e.g., 8]. Wang and Parthasarathy [60] summarized a
collection of frequent patterns by means of a row-based MaxEnt model, heuristically mining and
adding the most significant itemsets in a level-wise fashion. Tatti [54] showed that querying such a
model is PP-hard. Mampaey et al. [35] gave a convex heuristic, allowing more efficient search for the
most informative set of patterns. De Bie [10] formalized how to model a binary matrix by MaxEnt
using row and column margins as background knowledge, which allows efficient calculation of
probabilities per cell in the matrix. Kontonasios et al. [28] first proposed a real-valued MaxEnt
model for assessing patterns over real-valued rectangular databases. These papers all focus on
mining surprising patterns from a single relation. They do not explore the multi-relational scenario,
and can hence not find connections among surprising patterns from different relations—the problem
we focus on.

7.3 Iterative Data Mining

Iterative data mining as we study was first proposed by Hanhijarvi et al. [18]. The general idea is
to iteratively mine the result that is most significant given our accumulated knowledge about the
data. To assess significance, they build upon the swap-randomization approach of Gionis et al. [15]
and evaluate empirical p-values. With the help of real-valued MaxEnt model, Kontonasios et al.
[30] proposed a subjective interestingness measure called Information Ratio to iteratively identify
and rank the interesting structures in real-valued data. Mampaey et al. [35] and Kontonasios
et al. [30] show that ranking results using a static MaxEnt model leads to redundancy in the top-
ranked results, and that iterative updating provides a principled approach for avoiding this type of
redundancy. Tatti and Vreeken [55] discussed comparing the informativeness of results by different
methods on the same data. They gave a proof-of-concept for single binary relations, for which
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results naturally translate into tiles, and gave a MaxEnt model in which tiles can be incorporated
as background knowledge. In this work we build upon this framework, translating bicluster chains
(over multiple relations) into tiles to measure surprisingness with regard to background knowledge
using a maximum entropy model.

7.4 Multi-relational Mining

Mining relational data is a rich research area [12] with a plethora of approaches ranging from
relational association rules [11] to inductive logic programming (ILP) [33]. The idea of composing
redescriptions [64] and biclusters to form patterns in multi-relational data was first proposed by Jin
et al. [24]. Cerf et al. [4] introduced the DATAPEELER algorithm to tackle the challenge of directly
discovering closed patterns from n-ary relations in multi-relational data. Later, Cerf et al. [3] refined
DATAPEELER for finding both closed and noise-tolerant patterns. These frameworks do not provide
any criterion for measuring subjective interestingness of the multi-relational patterns. Ojala et al.
[36] studied randomization techniques for multi-relational databases with the goal to evaluate
the statistical significance of database queries. Spyropoulou and De Bie [43] and Spyropoulou
et al. [46] proposed to transform a multi-relational database into a K-partite graph, and to mine
maximal complete connected subset (MCCS) patterns that are surprising with regard to a MaxEnt
model based on the margins of this data. Spyropoulou et al. [45] extended this approach to finding
interesting local patterns in multi-relational data with n-ary relationships. Bicluster chains and
MCCS patterns both identify redescriptions between relations, but whereas MCCS patterns by
definition only identify exact pair-wise redescriptions (completely connected subsets), bicluster
chains also allow for approximate redescriptions (incompletely connected subsets). All except for
the most simple bicluster chains our methods discovered in the experiments of Section 6 include
inexact redescriptions, and could hence not be found under the MCCS paradigm. Another key
difference is that we iteratively update our MaxEnt model to include all patterns we mined so
far. Later, Spyropoulou and De Bie [44] further extended MCCS patterns to support discovering
approximate multi-relational patterns (¢-CCS), where dense local patterns (e.g. dense tiles but not
biclusters in our scenario) from binary relations are allowed to be used to construct the a-CCS
patterns. Compared to our bicluster chain approach proposed in this paper, these are two different
fundamental approaches to formulate and solve the same problem. However, the differences
between these two approaches from the theoretical perspective and whether they perform similarly
or not over the same dataset need to be further investigated in future work.

7.5 ‘Finding Plots’

The key difference between finding plots, and finding biclusters or surprising patterns is the notion
of chaining patterns into a chain, or plot. Commercial software such as Palantir provide significant
graphic and visualization capabilities to explore networks of connections but do not otherwise
automate the process of uncovering plots from document collections. Shahaf and Guestrin [40]
studied the problem of summarizing a large collection of news articles by finding a chain that
represents the main events; given either a start or end-point article, their goal is to find a chain of
intermediate articles that is maximally coherent. In contrast, in our setup we know neither the
start nor end points. Further, in intelligence analysis, it is well known that plots are often loosely
organized with no common all-connecting thread, so coherence cannot be used as a driving criterion.
Most importantly, we consider data matrices where a row (or, document) may be so sparse or small
(e.g., 1-paragraph snippets) that it is difficult to calculate statistically meaningful scores. Storytelling
algorithms [e.g., 20, 21, 31] are another related thread of research; they provide algorithmic ways
to rank connections between entities but do not focus on entity coalitions and how such coalitions
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are maintained through multiple sources of evidence. Wu et al. [61] proposed a framework to
discover the plots by detecting non-obvious coalitions of entities from multi-relational datasets
with maximum entropy principle and further support iterative, human-in-the-loop, knowledge
discovery. However, no visualization framework was developed to enable analysts to be involved
when discovering the surprising entity coaliations in that work. Moreover, we also propose the full
path and step-wise chain search strategies and combine them together to help analyts to explore
the data.

7.6 Bicluster Visualizations

Finally, we give an overview of work on bicluster visualization techniques. Biclusters offer a usable
and effective way to present coalitions among sets of entities across multiple domains. Various
visualizations have been proposed to present biclusters for sensemaking of data in different fields.
One typical application domain of bicluster visualizations is bioinformatics, where biclusters are
visualized to help bioinformaticians to identify groups of genes that have similar behavior under
certain groups of conditions (e.g., BicAt [1], Bicluster viewer [19], BicOverlapper 2.0 [38], BIGGEsTS
[16], BiVoc [17], Expression Profiler [26], GAP [62] and Furby [48]). In addition, Fiaux et al. [13]
and Sun et al. [50] applied biclusters in Bixplorer, a visual analytics tool, to support intelligence
analysts for text analytics. Evaluations of these tools show promising results, which indicates that
using visualized bicluster to empower data exploration is beneficial.

In order to systematically inform the design of bicluster visualizations, a five-level design
framework has been proposed [53] and the key design trade-off to visualize biclusters has been
identified: Entity-centric and relationship-centric [51]. This design framework highlights five levels
of relationships that underlie the notions of biclusters and bicluster chains. The design trade-off
suggests that bicluster visualizations should visually represent both the membership of entities and
the overlap among biclusters in a human perceptible and usable manner.

8 CONCLUSION

Our approach to discover multi-relational patterns with maximum entropy models in a visual
analytics tool is a significant step in formalizing a previously unarticulated knowledge discovery
problem and supporting its solution in an interactive manner. We have primarily showcased results
in intelligence analysis; however, the theory and methods presented are applicable for analysis of
unstructured or discrete multi-relational data in general—such as for biological knowledge discovery
from text. The key requirement to apply our methods is that the data should be transformed into
our data model.

Some of the directions for future work include (i) obviating the need to mine all biclusters prior to
composition, (ii) improving the scalability of the proposed models and framework to be able to deal
with even larger datasets, (iii) enabling dynamic and flexible multi-relational schema generation to
support better sensemaking and hidden plot discovery, (iv) incorporating weights on relationships
to account for differing veracities and trustworthiness of evidence. Ultimately, the key is to support
more expressive forms of human-in-the-loop knowledge discovery.
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