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ABSTRACT

Direct manipulation interactions on projections are often incor-
porated in visual analytics applications. These interactions enable
analysts to provide feedback to the system, demonstrating relation-
ships that the analyst wishes to find within the projection. However,
determining the precise intent of the analyst is a challenge; when
an analyst interacts with a projection, the system could infer a
variety of possible interpretations. In this work, we explore interac-
tion design considerations for the simultaneous use of dimension
reduction and clustering algorithms to address this challenge.

CCS CONCEPTS

« Human-centered computing — Visualization; Visual ana-
lytics; Visualization design and evaluation methods;

KEYWORDS

Dimension reduction, clustering, interaction, visual analytics

ACM Reference Format:

John Wenskovitch, Michelle Dowling, Chris North. 2019. Simultaneous
Interaction with Dimension Reduction and Clustering Projections. In 24th
International Conference on Intelligent User Interfaces (IUI 19 Companion),
March 17-20, 2019, Marina del Rey, CA, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3308557.3308718

1 INTRODUCTION

“What respect to what” was described as a usability issue with
direct manipulations in interactive projections by Self et al [9]. This
usability issue revolves around interpreting the analyst’s intent
accurately. That is, when the analyst moves an observation to a
new position, what is that movement in relation to? Interactive
projections are a popular feature in visual analytics applications [1-
3,5-8, 11]. As such, resolving this “with respect to what” problem is
increasingly important in order to capture the intent of the analyst.

In previous work, we evaluated the design possibilities for the
creation of projections that feature dimension reduction and cluster-
ing algorithms [10], and we proposed a cluster membership solution
to “with respect to what,” utilizing interactive clustering reassign-
ment to communicate similarity relationships in the projection [11].
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Figure 1: An analyst repositions the Grizzly Bear observa-
tion within the projection, indicated by the orange arrow.

This use of clustering is a natural choice, as implicit clusters often
form in projections that display similarity relationships.
However, ambiguity in the interpretation of these interactions
does still exist after explicit clustering has been introduced, as
described next in our motivating example. In this work, our goal is
to begin to explore the interaction space for the simultaneous use
of dimension reduction and clustering algorithms, particularly in
interactive projections that feature a learning component.

2 MOTIVATING EXAMPLE

To motivate our discussion of this interaction space, consider the
example shown in Figure 1. Here, an analyst is provided with a
dimension-reduced projection of an animal dataset, positioned ac-
cording to their attribute relationships. A clustering algorithm then
groups the observations into discrete categories. After viewing the
projection, the analyst repositions the Grizzly Bear, changing both
its position and cluster assignment. With this simple interaction,
the analyst could be trying to convey a number of possible intents.

The analyst may be considering only relationships between the
animals in the projection, such as with respect to the starting po-
sition of the interaction (“the Grizzly Bear is not similar to the
animals near the source”) or the ending position of the observation.
The analyst may also be limiting their comparison to a single ob-
servation, communicating a relationship with respect to just the
closest observation (“the Grizzly Bear is most similar to the Lion”).

Alternatively, the analyst may have mapped semantic meaning
onto the cluster groupings in the projection, attempting to com-
municate a membership assignment update based on those groups
(“the Grizzly Bear is a better fit in the Predators cluster than in
the Pets cluster”). Such relationships could incorporate both the
source and the target cluster, or perhaps a case where the target
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is irrelevant (“the Grizzly Bear appears to be an outlier in the Pets
cluster and belongs elsewhere”) or the source is irrelevant.

3 INTERACTION DESIGN CONSIDERATIONS

The preceding example suggests the following dimensions to con-
sider when interpreting the intent of an interaction:

Interaction Target: The interaction could be applied to the
observations, the clusters, or both.

Cardinality: The interaction could be applied to a variety of
cardinalities: the nearest observation, the nearest n observations, all
observations within a cluster, or all observations in the projection.

With Respect To What: Is the important relationship relative
to other observations in the projection at the source of the interac-
tion, the destination of the interaction, or both?

Level of Thinking: When performing the interaction, is the
analyst is thinking high- or low-dimensionally? In other words, is
the analyst merely altering the projection, or are they considering
all properties of a group of observations?

Visual Design: Is the intent of the interaction influenced by the
way that observations and clusters are encoded in the visualization?
For example, using a boundary to delineate cluster membership
may imply that dragging an observation across the boundary leads
to a reclassification.

4 CAPTURING INTERACTIONS WITH A
DATA FLOW REPRESENTATION

In the case of a visualization system that incorporates dimension
reduction and clustering algorithms into the same interface, each
of these algorithms represent a separate model in a multi-model
pipeline sequence [1, 4]. The order of these models in the sequence
can therefore change both the meaning and the behavior of the
visualization. For the motivating example, running the dimension
reduction computation before the clustering computation implies
that a dataset is reduced from the high-dimensional space to the
low-dimensional space, after which the clustering algorithm is
performed on the low-dimensional data.

The intricacies of interactions can be demonstrated by showing
how data flows through the pipeline. For example, the pipelines
displayed in Figure 2 shows three different possible models for the
motivating example. The interaction directions modeled by these
pipelines reflect the system interpretation of a direct manipula-
tion interaction. In the first, a Clustering Model detects a change
in cluster membership, followed by learning distances with a Di-
mension Reduction Model, indicating the importance of the cluster
membership change to the interaction. In the second, the model
order is swapped, and the distance computation occurs prior to
the cluster membership computation, indicating the importance of
the distance change to the interaction. In the third, the greyed-out
interaction computation of the Dimension Reduction model indi-
cates that only cluster membership alterations are considered by
this system. Still further system and interaction designs could be
supported by altering the flow of data in the pipeline.
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Figure 2: Three representations of data flow based on
the motivating example. W=dimension weights, HD=high-
dimensional data, LD=low-dimensional data, M-=cluster
membership.
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