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ABSTRACT 
Visual encodings are the medium through which information is 
displayed, perceived, interpreted, and finally transferred from a 
visualization to the user. Traditionally, such encodings display 
information as representations of length, color, size, slope, 
position, and other glyphs. Guidelines for such encodings have 
been proposed, but they generally assume a small display, small 
datasets, and a relatively static user. Large, high-resolution 
visualizations are able to display far more information 
simultaneously, allowing users to leverage physical navigation 
(movement) as an effective interaction through which to explore 
the data space. In this paper, we analyze if and how the choice of 
visual encodings for large, high-resolution visualizations affects 
physical navigation, and ultimately task performance for a spatial 
information visualization task.  
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1 INTRODUCTION 
Large, high-resolution displays are compelling tools for 

information visualization. The number of available pixels allows 
for large quantities of information to be simultaneously displayed. 
These displays typically exceed the limits of visual acuity, 
providing the user with the opportunity to employ physical 
navigation to explore the data space. In other words, rather than 
using tools such as pan and zoom, the user moves his or her eyes, 
head, and body to navigate the space. For example, to perform the 
common visualization task of moving between overview and 
detail, the large, high-resolution display user can simply move 
back or step closer to change the level of detail. Physical 
navigation allows the user to leverage physical and cognitive tools 
like proprioception, optical flow, and spatial memory to enhance 
his or her comprehension of the visualization. The environmental 
cues provide context, coherency, and a reduced need for internal 
memory, which can improve user performance for basic 
visualization tasks [1, 22]. 

In order to gain insight from visualizations, users rely heavily 
on perception as a means for interpreting and decoding the 
embedded information they see. The properties of human 
perception provide both an opportunity as well as a challenge for 

visualization designers. By leveraging the properties of human 
perception, visualization designers can improve both the quality 
and the quantity of information displayed [19]. Conversely, 
human perception can also be “fooled” by misleading or 
unintended patterns in visualizations, leading to misapprehensions 
and misunderstandings [14]. Thus, it is critical to understand the 
properties of different visualizations and how they will be 
perceived.  

The introduction of physical navigation creates an environment 
where visualizations are potentially observed from many 
distances, viewing angles, and scales. This has the potential to 
create additional perceptual issues due to: (1) the increased role of 
peripheral vision, (2) potential distortions of certain encodings 
caused by extreme viewing distances and angles, and (3) different 
encodings’ abilities to display meaningful information when 
observed beyond the limits of basic visual acuities. We also need 
to consider how encodings interact as more of them become 
visibly available – do they combine into meaningful patterns, or 
do they interfere with one another and create false patterns or no 
patterns. We refer to the overall effectiveness of a visualization as 
it scales up as its perceptual scalability.  

Of particular interest is the perceptual scalability of visual 
encodings with respect to physical zooming, that is, moving 
forwards and backwards to traverse the various levels of detail 
from full overview to the details of a single glyph. Ideally, as the 
user moves back away from the display, encodings should “adapt” 
and continue to provide the user with meaningful information. 
While this may be provided actively by tracking the user and 
updating the visualization, we are primarily concerned with how 
the actual attributes of the encodings are perceived as the user 
moves around.  

As the user moves back away from the display, it creates an 
effect we refer to as visual aggregation. Visual aggregation occurs 
through a combination of visual acuity (details of individual 
glyphs start to be lost with distance) and perceptual effects caused 
by the introduction of increased numbers of glyphs into the visual 
field. The painting technique of pointillism makes use of this 
phenomenon to turn what appears to be a field of individual 
colored dots into recognizable scenes as the viewer steps back 
from the painting. Similarly, the goal of visual aggregation in 
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Figure 1. A user standing while analyzing a 100 megapixel 
large display visualization encoded using color.  
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information visualization is for the viewer to be able to perceive 
patterns in the data when the visualization is viewed from a 
distance. Thus, visual aggregation becomes important when 
considering physical navigation as the means for interaction, just 
as computational aggregation techniques [10] are important when 
users virtually navigate (e.g., panning, zooming, etc.) a 
visualization.  

In this paper, we describe our study of four primary visual 
encodings (color, length, slope, position) on a large, high-
resolution display. Our analysis examines the performance and the 
behavior of subjects performing a basic visualization task to 
provide insight in the perceptual scalability of the various 
encodings. 

2 RELATED WORK 
Previous work details the properties and construction of visual 

encodings, and lists numerous encoding variants 
[3],[5],[18],[19],[13-14]. The design of encodings is more 
complex than may first seem, relying on a combination of the 
human visual and perceptual abilities [19]. A significant amount 
of work has been conducted to determine the perceptual 
effectiveness of many of these visual encodings.  For example, 
Healey et al. examined which encodings support fast preattentive 
processing by the human visual system [11] Cleveland and 
McGill [8] comparatively tested user performance of a common 
set of visual encodings, determining a relative order of 
effectiveness for standard, paper-sized visualizations containing a 
small number of datapoints. Color, an inherently complex 
encoding, can be further analyzed in terms of its components (i.e. 
hue, saturation, luminance) [20].  

However, these guidelines were developed assuming that the 
user is focused on a fairly small amount of data in visualizations 
on standard-sized displays. Furthermore, their studies assume the 
user is at a fixed viewing distance and angle from the 
visualization, where each encoding is perceived within the 
applicable visual acuity required to decode the glyph. This leads 
us to the question of how effective these encodings are when 
presented on a large high-resolution visualization, where users are 
constantly changing these view parameters, and greater amount of 
data is visualized.  

Physical navigation is fundamental to the use of large, high-
resolution displays, suggesting care be taken in the design of tools 
and visualization to ensure proper support. Thus, we are interested 
in studying how the visual encodings effect the physical 
navigation based on how well each encoding visually aggregates. 
Some initial work on the relevant issues may help to inform 
design:  

In terms of (1) exploiting peripheral vision, color encoding 
should emphasize luminance over hue [19]. Motion and animation 
have shown to be effective for peripheral awareness [2, 16]. 
Chewar et al. found that position (given a common axis) and color 
were effective in busy dual task scenarios [7]. While these results 
say more about peripheral attention, peripheral vision likely 
played a role due to the visual separation of the dual tasks. 

In terms of (2) distortions due to extreme viewing angles, 
Wigdor et al. examined how visual encodings are affected by the 
position of the viewer [21]. In particular, they looked at what 
happens when information must be displayed at oblique or right 
angles to the viewer. They found that the accuracy of length, 
position, and angle are significantly superior to area and slope 
under these conditions. 

In terms of (3) visual aggregation, Yost et al. suggests the use 
of “filled” encodings such as colored bar-graph instead of line-
graph encodings to better enable visual aggregation at a distance 
[22]. Eick et al. point out the importance of considering the 
scalability of the individual encodings (i.e. what is the minimum 
amount of pixels needed to produce an effective glyph given an 
encoding) [9]. To understand how these issues come together and 
develop guidelines for large display visualizations, we take a 
holistic approach to examine the effectiveness of various visual 
encodings in the context of large scale visualizations on large 
high-resolution displays. 

3 METHOD 
The purpose of this study is to analyze how the choice of visual 

encodings can directly impact physical navigation and task 
performance on large, high-resolution visualizations. In particular, 
we are interested in how the encodings impact physical navigation 
behaviors and strategies (especially whether they support or 
inhibit physical zooming) and how those behaviors translate into 
task performance. Ultimately this will help us to understand the 
issues that affect the perceptual scalability of various 
encodings. To accomplish these goals, this study examines user 
task performance and user behavior with four glyph-based 
encodings on small and large displays, where users are physically 
navigating in the presence of a large amount of uniformly 
spatially referenced single-dimensional data. We hypothesize that 
the design of the encoding directly impacts the users’ ability to 
physically navigate, ultimately affecting task performance. 

3.1 Equipment 
The display used for this experiment is a tiled powerwall 

consisting of fifty twenty-inch LCD monitors arranged in a 10 x 5 
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Figure 2. Overview with corresponding enhanced views of a small portion of the visualization for each encoding. 
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matrix, providing a total resolution of 16,000 x 6,000 or 96 
Megapixels (Figure 1). For the large display visualizations, the 
participants were shown a full-sized visualization covering the 
entire display, while the small display visualizations used a single 
monitor in the center of the display. The visualization was written 
in OpenGL, using Chromium to distribute it across the wall [12].  

The physical dimensions of the open floor in front of the 
display measures 17 ft. wide by 15 ft. deep. Subject behavior was 
recorded using two video cameras and a Vicon motion capture 
system that tracked the subject’s head. 

3.2 Visualization Design 
For this study, the visualizations we developed are conceptually 

based on the embedded visualization recommended for large, 
high-resolution displays by Yost et al. [22]. In essence, rather than 
focusing on a single, simple visualization across the whole 
display, in which position would be the most obvious encoding, 
we are considering the case in which position on the display 
already has meaning – for example, population statistics or sensor 
data embedded within a geospatial visualization. Each 
visualization was generated using the Diamond Square algorithm 
[15], which produces realistic terrain visualizations (Figure 2). 

The values we chose to represent ranged from one to nine. Due 
to the quantitative nature of our data, the encodings we chose to 
test were color, length, slope, and position. A sample of each 
glyph used in the study can be seen in Figure 3. Each glyph is 20 
x 20 pixels, and a 5 pixel buffer separates the glyphs on each side.  
Using a constant glyph size allowed us to hold size, spacing, and 
data density constant independent of encoding or value. While a 
color glyph may occupy as little as one pixel, we found that a 20 x 
20 glyph is a reasonable size for the other encodings, as their 
construction requires a higher number of pixels. 

This glyph size allowed us to display 153,600 glyphs in the 
large visualization and 3072 glyphs on the small visualization. 
The size of the glyphs did not change from the large to the small 
condition, only the number of data points. 

Color. Each glyph for the color encoding occupied the entire 
400 pixels. The colors we used were originally developed by 
Brewer et al. [4], who found this particular color ramp effective 
for quantitative data such as ours.  

Length. The length encoding consisted of a glyph including a 
20 pixel wide, solid white bar varying in height depending on 
value. The tallest (i.e. highest value) bar was 18 pixels tall, while 
the shortest was only 2, meaning that each intervening value was 
represented by an additional two pixels of height. The reason that 
neither 0 nor 20 were used was because during testing we found 
that when the minimum and maximum values were represented 
with the two extremes (0 and 20 pixel tall bars, respectively), the 
glyphs were too definitive, removing the need for comparisons, 
making them unsuitable for this particular study.  

Slope. The glyph utilizing the slope encoding was a line with 
varying slope, ranging from 5 degrees (representing the value 0) 
to 85 degrees (representing the value 9). The desire to avoid 
definitive encodings (0 and 90 degrees) again motivated the 
choice of range. Due to the total size of 400 pixels allocated to 
each encoding, aliasing is present with many of the slopes drawn.  

Position. Position, in this study, is represented as a yellow, one 
pixel line drawn on a dark gray background. The position of this 
line from the bottom is equal to the height of the bar drawn in the 
length encoding glyphs. Each glyph has its own axis, as the spatial 
location occupies meaning in the visualizations used in this study, 
and thus a full display scatterplot with a common axis was not 
used.  

These encodings were chosen based on their defining 
characteristics. For instance, position and length are different, as 
position can act as length if it is filled in (in this case, filling in the 
area under the yellow bar), but using these two allows us to 
explore this difference. The slope encoding, when used in this 
style of visualization, allows us to observe how visual aggregation 
creates a textural effect. We elaborate on these points in the 
discussion.  

3.3 Experiment Design  
The experiment had 12 participants (1 female and 11 male). All 

of them were undergraduate computer science students. The ages 
of the participants ranged from 20 to 23, with an average age of 
21. No participant reported any known color blindness. Six 
participants reported corrected vision. None of the participants 
had prior experience with large display visualizations. 

Each participant was shown 32 visualizations, broken down as 
follows: 16 large display visualizations (4 per encoding), and 16 
small display visualizations (4 per encoding). For each trial, the 
ordering of the 32 visualizations was randomized to minimize any 
ordering effect. Prior to the study, each participant was shown a 
total of 8 practice visualizations (one of each encoding, both on 
the small and large display condition) to get comfortable with the 
task, display sizes, and encodings. The task for each visualization 
was to find the maximum value in the visualization, and walk up 
and point to it – an inherently multiscale task requiring both 
overview of the entire visualization as well as detail of specific 
regions. Two starting locations were marked on the floor: one for 
the small display visualizations placed 3 feet away, and one for 
the large display visualizations placed 9 feet away, both centered 
with respect to the display.  

4 RESULTS 
We collected both quantitative and qualitative data during this 

study. Timing and accuracy data were obtained for each 
visualization in order to assess task performance. We asked 
participants to perform their task as “quickly and accurately as 
possible”, informing them that they are only allowed one answer 
per visualization. VICON (motion tracking) data was recorded for 
analysis of their physical navigation and behavior. In addition, 
video and audio footage was captured for post-study analysis. 
Finally, following each trial, the participants were debriefed with 
a series of questions concerning their experience, strategies for 
solving the task, and comments regarding encoding preference.  

4.1 Task Completion Time 
The timing data corresponds to the time elapsed between the 

start of a single visualization (the participant was at their marked 
starting location and the visualization was shown) and the 
participant signifying their answer by pointing to a glyph on the 

 
Figure 3. Legend of each encoding used, in order of their 
corresponding value, ranging from 9 (highest) to 1 (lowest). 
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map (physically touching the glyph). We allowed only a single 
answer as we are interested in how quickly the participants found 
what they perceived as the correct answer (i.e. when they thought 
they were finished). They were informed of a two minute time 
limit for each visualization, but no participant ever reached the 
limit. However, a small number of “best guesses” were observed 
(especially for the position encoding on the large display), where 
participants essentially gave up and chose a nearby high-value 
glyph after exhaustive searching. The accuracy of their responses 
is analyzed further in section 4.2 in terms of “rate” (whether their 
answers were correct or not) and “response” (the value of their 
answer versus the correct answer).  

There are two independent variables in this study, encoding 
type and display size. Table 1 shows the means and standard 
deviations for completion time for the two primary effects. The 
color encoding is the best among the four encodings in terms of 
completion time (7.216s). Position showed the poorest 
performance (24.822s). We performed a two-way within subject 
ANOVA to test the effects of our two factors (encoding type and 
display size). In order to meet ANOVA assumptions, square root 
values were used for analysis. We found a significant effect for 
both encoding type and display size: F(3,33) =11.10, p < 0.001 
and F(1,11) = 92.419, p < 0.001, respectively. An LSD post hoc 
test revealed that participants exhibited the shortest completion 
time for visualizations encoded using color (p<0.05). There is no 
significant difference in completion time between slope and 
length (p>0.05), and participants took the longest time to 
complete the task when position was the encoding used (p<0.05). 

 

Table 1. Mean and standard deviations (SD) for task completion 
time in terms of the two primary factors (encoding and display size). 

 Encoding  Display Size 
 Slope Color Length Position  Large Small 
Mean 18.130 7.216 15.835 24.822  26.810 5.978 

SD 16.331 6.070 17.326 26.208  21.989 4.635 
 

As such, we found that there is no significant two-way 
interaction term. This means that in both display size conditions, 
color is the significantly better encoding than length and slope, 
and these two encodings are significant better than position. 

Figure 4 shows the order of effectiveness in terms of 
completion time remains unchanged from the small to the large 
display trials and an increase in task completion times occurred 
between the large and small display condition. This is expected as 
the number of data points increased. Interestingly, while not the 
focus of our study, our results also duplicate a result reported by 
Yost et al. [22]. Upon analyzing the timing data, we see that 

completion times on the large display are larger, but they are not 
larger by the same factor by which the data was increased, a factor 
of fifty. A normalized comparison of the small and large display 
conditions can be seen in Figure 5, where we present a “time per 
data point” view of the results for each encoding, derived by 
dividing the mean completion time by the number of data points 
used for each display size.  

4.2 Accuracy 
We analyzed accuracy in two ways. First, we analyzed “rate”, 

the percentage of “correct” (i.e. participant selected the value 9) 
versus “wrong” answers (i.e. participant selected any value other 
than 9). Second, we analyzed the actual responses, analyzing the 
participants’ answers versus the correct (i.e. value 9) answer.  

4.2.1 Rate 
As mentioned before, participants were asked to find the 

maximum value and they were only allowed a single attempt per 
trial. There were 8 (4 encodings x 2 display size) combinations in 
the experiment, each repeated 4 times under each combination. 
The means and standard deviations are shown in Table 2. As 
shown, participants exhibited the best performance when using 
the color encoding (accuracy rate=0.979). In contrast, position 
performed the worst among these four encodings (accuracy 
rate=0.392). In terms of display size, participants had higher 
accuracy rate in the small display condition (accuracy rate=0.879) 
than in the large display condition (accuracy rate=0.331).  

Table 2. Mean and standard deviations (SD) for accuracy rate in 
terms of the two primary factors (encoding and display size). 

 Encoding  Display Size 
 Slope Color Length Position  Large Small 

Mean     0.448 0.979 0.594 0.396  0.328 0.880 
SD 0.410 0.071 0.422 0.382  0.340 0.186 

 
A within subject ANOVA for encoding type and display size 

shows significant effects: F(3,33) = 72.653, p <0 .001 and F(1,11) 
= 3183546, p <0.001, respectively. An LSD post hoc test revealed 
that each encoding is statistically different from each other except 
for slope and position (p>0.05). This means that the accuracy rate 
is significantly higher for color than for length (p<0.05), and 
length is significantly higher than both slope and position 
(p<0.01). There is no significant difference between slope and 
position (p>0.05).  

The two-way interaction term between encoding type and 
display size is significant, F(3,33)=30.732, p<0.001. Figure 6 
shows the accuracy rate for each encoding given the display size. 
The effect of display size is not significant for the color encoding 
(p>0.05). This means that using color, participants’ accuracy rates 

 
Figure 4. Average task completion time and standard 
deviations (SD). 

 

 
Figure 5. Average task completion time, normalized based 
on number of data points. 

106 2011



do not show a significant difference between the small and large 
display conditions. In contrast, when using length, slope, or 
position, the effect of display size becomes significant. The small 
display condition performs significantly better than the large 
display condition for these three encodings (p<0.001).  

There is no significant difference in terms of accuracy rate 
between color and length for the small display condition (p>0.05). 
However, the accuracy rate does significantly decrease from color 
to length in the large display condition (p<0.001). This suggests 
that for the large display condition, the color encoding maintains 
effective accuracy rates compared to the small display condition.  

Further, a post-hoc Tukey test for the small display condition 
reveals the following groups based on similarity: (1) color and 
length, and (2) slope and position. Similar analysis of the large 
display condition reveals these groups: (1) color, (2) length, and 
(3) slope and position. This will be discussed in the next section. 

4.2.2 Response 
The second analysis of accuracy is in terms of the actual value 

of each user’s response. We define the response as the average of 
each participant’s value of their answer for the four times they 
were presented that encoding type and display size condition.  The 
response analysis is meant to represents how close a participant’s 
response to the correct answer. The larger the response value, the 
closer to it is the correct answer, 9. 

Table 3 shows the means and standard deviations of each 
encoding type and display size for the participant responses. As 
shown, participants had the smallest amount of error from the 
correct answer using the color encoding. In contrast, position 
performed the worst, as the mean is the farthest from the accurate 
answer. Overall, the small display condition trials resulted in 
answers closer to the correct answer than large display condition 
trials. This result is expected, as the number of data points is 
significantly reduced (by a factor of 50), and the entire dataset 
was visible to the participants without any interaction or 
movement.  

Table 3. Mean and standard deviations (SD) for user response 
accuracy in terms of the two primary factors (encoding and display 
size). 

 Encoding  Display Size 
 Color Length Slope Position  Large Small 
Mean 8.969 8.573 8.255 8.268  8.210 8.823 

SD 0.111 0.428 0.493 0.493  0.481 0.289 
 

A two-way within subject ANOVA was used to analyze the 
responses. This analysis reveals that there are two significant main 
effects, encoding type: F(3,33)=44.642, p<0.001 and display size: 

F(1,11)=149.249, p<0.001. An LSD post hoc test shows that color 
performs significantly better than length (p<0.001), and length is 
significantly better than both slope and position (p<0.005). There 
is no significant difference between slope and position (p>0.05).  

The interaction between encoding type and display size is 
significant (F(3,33)=3.184, p<0.001) and shown in Figure 7. The 
effect of display size is not significant for the color encoding 
(p>0.05), which means that when using color, the participants’ 
responses show no significant difference between the small and 
large display conditions. In contrast, when using length, slope, or 
position, the display size effect is obvious. These three encodings 
perform significantly better under the small display condition than 
the large (p<0.001). This further illustrates the point that although 
differences between encodings occur even on small display 
visualizations, the effects are amplified on large display 
visualizations. 

There is no significant difference in response values between 
color and length for the small display condition (p>0.05). 
However, there is a significant decrease in performance from 
color to length on the large display condition (p<0.001). This 
suggests that when used for a large display visualization, the color 
encoding maintains a comparable response accuracy as the size of 
the visualization increases. On the small display, participants 
exhibit similar performance when using either the color or length 
encoding. These results again suggest that for both the small and 
large display conditions, color is the superior encoding in terms of 
response accuracy. 

Further, a post-hoc Tukey test for the small display condition 
reveals the following groups based on similarity: (1) color and 
length, and (2) slope and position. The analysis of the large 
display condition shows these groups: (1) color, (2) length, and 
(3) slope and position.  

A difference in the breakdown of the response accuracy can 
also be seen based on the encoding. For the small display 
condition, the majority of the answers were correct. However, 
there are significantly more errors for slope and position than for 
color and length – hence the two significantly different groups. 
For color on the small display condition, 100% of the reported 
answers were correct, while length only had one incorrect answer. 
In the large display condition, the groupings changed – color is 
significantly different from the remaining encoding types. This is 
reflected by color being the only encoding on the large display 
condition where the majority of the answers are correct (only 1 
seven and 1 eight reported). Further, length was significantly 
different due the responses having a higher amount of correct 
answers compared to slope and position. The overall ordering of 
effectiveness in terms of accuracy remains unchanged between the 
small and large display. 

We believe the difference of accuracy and task completion time 
between the large and the small display conditions was largely 

 
Figure 6. Accuracy rates and standard deviations (SD), where 
1.0 denotes all responses for that condition were correct. 

 
Figure 7. Average response accuracy (9 being correct).  

 

1072011



due to the way each encoding visually aggregates. For the small 
display, the encodings were only observed from a detail level (i.e. 
the participants did not have to physically navigate to gain an 
overview). However, in the large display condition, it became 
critical for the encodings to function effectively in the aggregated 
(overview) state, allowing for effective physical navigation 
strategies. Through analyzing the participants’ movements and 
behaviors, we gain further insight into how each encoding 
supported visually aggregation and physical navigation. 

4.3 Movement and Behavior 
We draw from both our observations during the trials as well as 

recorded motion capture data for our analysis of participants’ 
physical movements and behaviors during their trials. This data 
provides valuable evidence as to the way each participant reacted 
to the visually aggregated form of each encoding.  

From the motion capture data we extracted top-down traces of 
the movement of the participant through the space in front of the 
display over the course of a single task, as shown in Figure 8. The 
presented traces are representative samples of the behaviors 
exhibited across the participants in reaction to the different 
encodings. Each trace begins at a fixed starting point (center of 
the display, 9 feet back), and ends with the participant reporting 
their answer while touching the display (represented by the star). 
These views only show 2 dimensional movements and do not 
account for vertical head movement generated by participants 
leaning down or standing on their toes to view the low and high 
regions of the display. The movements associated with the small 
display visualizations were negligible, as the participants did not 
have to navigate physically to use the visualization. Each trace is 
on a common distance scale, as well as a common time scale 
(represented by the color shift from red to blue). 

Color. As illustrated in the example motion traces, the actual 
identification of the target glyph or its close neighborhood could 
be done from the back of the space. Once the target region was 
identified the participants would move very directly up to the 
display to point at their answer. As we can see in the example 
traces, there was not a lot of re-examination of the visualization as 
they got closer, indicating that they were very sure of their 
response from a distance. There are a couple of explanations for 
this. First, the color glyphs make maximum use of the available 
pixels, making them easier to see from a distance. Second, color 
aggregates well into regions. As one participant noted, it was 
“easier to see what areas not to look at from back here”. What he 
was referring to was the ability to stand back and spot areas where 
no potential targets existed, thus reducing the extent of the 
visualization that had to be considered and examined. 

Length. The behaviors observed during the length encoding 
condition were similar to those displayed during the color 
condition. As with color, participants seemed to be able to quickly 
winnow down the regions of interest, but then they had to “zoom 
in” (walk closer) to look at the detail view for actual comparisons. 
This can be seen in the motion traces: as participants move 
towards the display, it is not to immediately identify the answer, 
but rather to compare a small number of possible targets, and only 
then making a decision. For example, the top length participant 
shown in Figure 8 moved towards the display to compare two 
possible targets. His first target was near the middle of the 
visualization. He approached the target, then backed up to his 
right, compared the two targets, and ultimately made a decision to 
select the target on his far right. Participants reported that the 
length encoding roughly aggregated to color regions that helped to 
reduce the potential regions of interest. As one participant pointed 
out while analyzing the visualization from the starting point, “I 
have to find areas with lots of white”. However, individual 
differences between glyphs could not be seen from a distance, 
requiring participants to move closer to make comparisons 
between candidate targets. 

Slope. For the slope encoding, we can see that the participants 
immediately moved closer to the display, stopping about halfway 
there, and then spending a large amount of time at that distance to 
analyze the visualization, before moving closer to confirm their 
answers. The movements indicate that they were unable to make 
out values (of both individual glyphs or clusters) from the starting 
point. After moving closer, they were able to see values of these 
clusters of interest, then move in yet closer to confirm their 
findings. One of the participants provided this explanation for the 
observed behavior: “With slope, I could see the boundaries of the 
clusters, but had to come closer to tell if they were high or low 
values”. 

Position. The movement traces show fairly clearly how 
ineffectual the position encoding was. The longer traces indicate a 
longer task completion time, with the movements and paths 
illustrating an inefficient method of physically navigation. The 
motion data shows both participants immediately moving right up 
the display (at a distance of less than 4 feet from the display) and 
performing “lawnmower” searches, considering each value 
individually. After scanning the entire display, they would move 
back to a point where they felt confident of their answer and 
report it. This strategy also made it difficult for potential 
candidate to be remembered and returned to since there was 
minimal context to help the participant relocate a particular glyph. 
This poor physical navigation strategy can be primarily attributed 
to the paucity of information available from the “overview” 

 
Figure 8. Motion traces showing a top-down view of a single user physically navigating while analyzing the large display visualization. 
Encodings shown below each column. The traces shift color from red to blue to indicate time (on a common scale). The distance from the 
starting point in the back of the space to the display at is 10 feet. The width of the display is over 14 feet. 
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obtained from the back of the space (near the starting point, 9 feet 
from the display). Participants commented that they “cannot make 
out anything from [this distance]”, and “it all looks the same”. 
Instead of gaining an overview, one participant described the 
visualization from this distance as “distracting and not useful”. 
This meant that no regions could be ruled out and every glyph had 
to be examined until the target was identified. 

5 DISCUSSION 
By combining the performance and behavioral data, we gain 
insight into the perceptual scalability of these encodings. The 
degree to which an encoding effectively aggregated is clearly 
shown in the patterns of behavior. There is then a clear link to the 
performance associated with each encoding, showing the 
importance of visual aggregation and perceptual scalability. In 
addition, we can point out that this also impacted the participants’ 
encoding preference, as all 12 participants reported color as their 
preferred encoding in both conditions. Further, we can discuss 
factors to consider when choosing visual encodings intended for 
large, high-resolution visualizations. 

The primacy of physical navigation in the use of large, high-
resolution displays means that it must be considered during the 
development of any tool or visualization for these displays. As 
such, we must ask how the results of our study can inform us 
about the design of visual encodings (and their ability to cope 
with visual aggregation) to support physical navigation. Drawing 
from both the participants’ behavior and their comments, we can 
further consider the properties of encodings that leads to useful 
visual aggregation. Each of these properties must be analyzed in 
terms of the visual and perceptual system of users, as both are 
inherently necessary for information visualization. 

We can identify three levels of aggregation that are important. 
The first level is the glyph level – what happens to individual 
glyphs as the limits of visual acuity are reached. As the user 
moves away from the glyph, fine details will be lost, and we can 
roughly approximate the behavior of glyphs as the average of the 
pixel values within the region it is displayed (including any 
background used to differentiate it). This also means that pixels 
having a low contrast with respect to the background will also 
fade. We can take advantage of this effect to “remove” detailed 
information from the overview [22], but we also want the 
remaining encoding to provide at least an approximation of the 
original value. Here we see one of the real benefits of color as an 
encoding – the average across the glyph is the same as the glyph, 
so even as pixel-level acuity is lost, the glyphs retain their 
distinctness.  

The second level of aggregation occurs when multiple glyphs 
merge. Here, two or more adjacent glyphs appear to merge 
together, either through loss of visual acuity or through perceptual 
factors, such as the Gestalt principle of similarity, which causes 
objects with similar properties, such as color or shape, to be seen 
as being part of a group [6]. Color is particularly compelling 
because it is perceptually dominant and is robust in the face of 
feature removal (i.e., red remains red at a distance, while a 
pentagon may become indistinguishable from a circle). The 
factors for determining how well a glyph aggregates at the glyph 
level should be taken into account again here as well. There 
should be a smooth transition from one glyph to the next (in terms 
of pixel usage values).  

Finally, the third level of aggregation is the aggregation of 
multiple glyphs into a field. At this level, the combined 
contribution of a multitude of glyphs will result in fields of either 
color or texture depending on the underlying glyphs. As the goal 
is to detect patterns, there are two primary considerations for an 
encoding. The first consideration is for perceptual boundaries 
between regions containing different values. The second 

consideration is for the distinctiveness of those regions. In other 
words, can the viewer not only tell that there are two regions, but 
can he or she also tell what the dominant value is for the region.  

It is instructive to now reconsider the encodings in light of this 
model. The color encoding is particularly effective because it 
scales well. The use of the entire glyph to represent the encoded 
value meant that individual values were still available in the 
overview. Perceptually, color groups well, so the delineation of 
regions was high. In addition, since the aggregated regions used 
the same encoding as the individual glyphs, it was easy for the 
participants to assign values to various regions. 

The length encoding is weaker than color for glyph-level 
aggregation, functioning better on a detailed level where 
comparisons have to be made between values (e.g. what percent is 
X greater than Y). Additionally, there are clear differences from 
low to high values (as can be seen in Figure 3), but there is little to 
differentiate neighboring values. This is borne out by the behavior 
of the subjects. While they were able to use visual aggregation to 
rapidly select areas of interest, it was a rough “lighter” or “darker” 
differentiation, lacking the finer granularity provided by color.  

The slope encoding is interesting because the individual glyphs 
aggregate into the same color. The only difference between 
regions was a textural one caused by the different orientation of 
the lines. The orientation contrast allowed the boundaries of 
regions to be perceived [17], but the lack of distinctiveness 
between regions made it impossible for the participants to say 
anything about the general value of a particular region. This 
explains the difficulty experienced by the subjects with this 
encoding. They could perceive patterns from a distance, but they 
could not actually know what value a region represented. 

Considering the position encoding, we see it is lacking in both 
of these features. The value of the glyph is encoded entirely by the 
thin bar. As such, the color of the aggregated form of the encoding 
is the same for all values – a slightly yellowish gray that was only 
barely distinguishable from the background. The bar is also a 
feature that is rapidly lost due to limitations of visual acuity, so no 
remnant of the value remains in the full overview. Closer in, since 
the orientation of all of the bars is the same, there is also no 

Table 4. Summary of visual aggregation 

 Distant 
(~ 9 ft.) 

Intermediate 
(~ 5 ft.) 

Close 
(~ 2 ft.) 

Color Aggregates as color 
 
Distinguish 
individual and field 
values 
 
All tasks 

(same) (same) 

Length Aggregates as 
luminance 
 
Approximate field 
values 
 
Region 
Identification 

Increased aggregate 
granularity 
 
Approximate 
individual values 
 
Candidate selection 

 
 
 
Distinguish 
individual values 
 
Comparison and 
selection 

Slope Aggregates as 
texture 
 
Recognize field 
boundaries 
 
Task not supported 

Aggregates as flow 
fields 
 
Approximate field 
values 
 
Region identification, 
Candidate selection 

 
 
 
Distinguish 
individual values 
 
Comparison and 
selection 

Position No aggregation 
 
Task not supported 

No aggregation 
 
Task not supported 

“Lawnmower 
search”  
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variation in texture, and so no fields are perceivable. There is 
some merging between glyphs, but only horizontally to form 
“waves” along the rows, which no participant found useful for 
detecting the strictly two-dimensional patterns in the data.  

Overall, the visual aggregation results from this study are 
summarized in Table 4. In general, for visual aggregation across 
uniformly placed representations, color should be a primary 
consideration. It is clear that the most control over the aggregated 
form is achieved by explicitly encoding the attributes containing 
potential patterns into color. This works best with ordinal data that 
can be encoded using some form of color ramp. This will allow 
similar values to be encoded into similar colors, making it easier 
to perceive regions that are not necessarily dominated by a single 
value, but containing a range of neighboring values. The length 
encoding worked without color, because the quantity of pixels 
varied between values, creating a perception of distinguishable 
regions of dark and light, and similar encodings that vary the 
quantity of pixels may also be similarly effective.  

6 CONCLUSION 
In this study we analyze how visual encodings impact the 
effectiveness of large, high-resolution visualizations. Through 
analysis of the task performance metrics and the user movements 
and behaviors based on the encoding used, we found that the 
choice of visual encoding directly affects the physical navigation 
of participants, which can result in significantly impact task 
performance. Color visualizations on the large display produced 
96% accuracy and were more than twice as fast in performance, 
while the remaining encodings were less than 25% accurate and 
significantly slower. This highlights color’s ability to visually 
aggregate well, as evidenced by the observational data. The users 
were able to identify both clusters and targets from an overview 
level. In contrast, position did not visually aggregate well, forcing 
users to resort to naïve search while close to the display.  

To support physical navigation, encodings need to have a 
balance between the expressiveness of glyphs and good visual 
aggregation properties. Visual aggregation needs to be considered 
both at the glyph level in terms of the distinctiveness of each 
aggregated glyph, and at the field level in terms of the coherency 
of clusters and regions. 

Large, high-resolution visualizations have the ability to not only 
show more information, but also afford the opportunity for users 
to interact with their data via natural, physical movement. Such an 
advantage must be accompanied by encodings that support this 
movement. Therefore, as designers chose encodings for large 
display visualizations, we urge them to consider the key 
characteristic of each encoding – the way in which it visually 
aggregates. 
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