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Exploring high-dimensional data is challenging. Dimension reduction algorithms, such as weighted multidi-
mensional scaling, support data exploration by projecting datasets to two dimensions for visualization. These
projections can be explored through parametric interaction, tweaking underlying parameterizations, and
observation-level interaction, directly interacting with the points within the projection. In this paper, we
present the results of a controlled usability study determining the differences, advantages, and drawbacks
among parametric interaction, observation-level interaction, and their combination. The study assesses both
interaction technique effects on domain-specific high-dimensional data analyses performed by non-experts
of statistical algorithms. This study is performed using Andromeda, a tool that enables both parametric and
observation-level interaction to provide in-depth data exploration. The results indicate that the two forms
of interaction serve different, but complementary, purposes in gaining insight through steerable dimension
reduction algorithms.
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1 INTRODUCTION

With the amount of analyzable data growing rapidly, we must develop tools to strengthen our
ability to learn all that we can from data. Statistical and mathematical models enable us to explore
large amounts of data and gain a better understanding of the structure, patterns, and contents
within a dataset. The goal of visual analytics is to design intuitive methods for interacting with
these models to improve data exploration techniques.

One method frequently utilized for understanding high-dimensional data is dimension reduction.
Dimension reduction algorithms, such as Weighted Multidimensional Scaling (WMDS) [Kruskal
and Wish 1978; Torgerson 1958], project high-dimensional data into low-dimensional spaces. These
algorithms thus have the potential to summarize high-dimensional information in a form that
is accessible to analysts, such as two-dimensional graphs [Pérez et al. 2015]. In turn, interacting
with hundreds of dimensions is also accessible to analysts, as dimension reduced visualizations
often avoid visual limitations that common high-dimensional visualization techniques (e.g. parallel
coordinates, heatmaps) do not [Munzner 2014]. Thus, the visual analytics community may further
improve the utility of dimension reduction by enhancing the output with information visualization
and developing tools that allow for visual interaction.

In this paper, we consider such improvements and enhancements when using WMDS to visualize
data. WMDS is easy to interpret and includes parameters that enable multiple forms of interaction.
This is due to WMDS spatializations using distance between observations' that reflect relative
similarity; two points close to each other in a WMDS low-dimensional spatialization are considered
more similar to each other in the high-dimensional space than are two points far from each other.
To define high-dimensional similarity, WMDS uses a vector of attribute weight parameters to
compute a weighted distance function. That is, for WMDS, each attribute in a dataset is assigned a
weight, and these weights reflect the importance of the associated attributes or degree to which
each attributes is represented in a spatialization. Thus, the attribute weights determine the primary
attributes in which observations are similar and different. For example, when all weights are equal,
all attributes in a dataset are equally represented in a WMDS spatialization, and observations close
to each other are more similar across all dimensions, relative to distant observations. When weights
are unequal, the attributes with higher weights have more influence on a resulting spatialization
than those with lower weights. Thus, observations close in proximity are similar (relative to those
that are distant), primarily in the attributes with high weights.

A strong advantage of the weight parameters is that they enable WMDS to generate multiple
projections of the same data. Because any one set of low-dimensional coordinates produced by
WMDS cannot perfectly represent a high-dimensional dataset, it is helpful to assess multiple
projections. When weights change, the directions of WMDS projections also change, and new
spatializations of data are revealed. The challenge, however, is determining useful specifications of
attribute weights. For this, human computer interaction has shown useful [Paulovich et al. 2012].

In the context of data exploration, we highlight two interaction techniques: parametric interac-
tion and observation-level interaction. Parametric interaction (PI) refers to an analyst directly
adjusting parameters of an algorithm or model, thereby modifying output of that model [Endert
et al. 2011]. In our tool Andromeda (see Fig. 1), these parameters are weights of a distance function
that is placed on the attributes of a dataset. Parametric interaction is available in several tools [Jeong

n this work, we refer to items in a dataset as observations and the properties or dimensions of those items as attributes.
With respect to the animal dataset used in this study, the animals themselves are the observations, and the quantitative
properties of the animals (color, habitat, etc.) are the attributes. Observation-level interaction manipulates the observations
directly, while parametric interaction manipulates parameters of the distance function applied to the attributes. In the
examples discussed here, the parameters are the attribute weights used to bias the distance function in WMDS.
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Fig. 1. Andromeda interface exploring a multi-dimensional dataset about animals: (a) the observation view
projects data points onto 2D, (b) the parametric view displays all attribute weights as sliders, and selected
data point values as dots on the sliders, (c) the animation slider animates transitions, (d) the button to update
the layout in OLI, and (e) the green point that is being moved by the analyst to be near some selected red
points.

et al. 2009; PNNL 2010] in which analysts may alter underlying model parameters by adjusting
some interactive graphical component.

Although it has been shown to be useful, parametric interaction can challenge analysts who do
not have a strong knowledge of the underlying model. This complexity led to the development
of a new way to interact with mathematical models: observation-level interaction. Observation-
level interaction (OLI) refers to directly interacting with individual points in a visual display,
e.g., a 2D spatialization, through familiar and comfortable interactions, and having methods in
place to interpret the semantic meaning of the interactions to adjust the display-generating model
accordingly [Brown et al. 2012; Endert et al. 2011; House and Han 2015; Leman et al. 2013]. The
natural approach for interpreting interactions relies on an inverted version of the display-generating
model that uses the manipulated points to solve for new input parameters in a semi-supervised
machine-learning fashion. In the case of WMDS, the inverse model takes as input a given set of
moved points and learns a new weight vector that generates a new spatialization. The difference in
information flow between PI and OLI is summarized in Fig. 2%

2Complementing PI and OLI interactions are Surface-Level Interactions. In contrast to PI and OLI, these interactions
do not affect the underlying model parameters. Rather, they provide additional methods for analysts to glean insights
from the data projections without modifying said projections. Examples of surface-level interactions include scaling and
rotating the projection, linking data between views, and obtaining raw data values via details-on-demand [Leman et al.
2013]. As surface-level interactions do not affect the model, we focus on PI vs. OLI in this study; however, it is important to
acknowledge their existence.
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Fig. 2. A pipeline demonstrating the difference between Parametric and Observation-Level Interaction. With
Parametric Interaction, an analyst directly manipulates the set of weights that control the layout algorithm.
Using Observation-Level Interaction, an analyst instead manipulates the observations within the visualization,
requiring the system to invert the layout algorithm and determine the appropriate weights to generate the
new, user-steered visualization.

Due to the different natures of PI and OLI, we believe that these interactions afford distinct types
of insights and explorations into the data. This means that PI, OLI, and their combination may
afford different types of insights. Therefore, it is important for visual analytics tool designers to
understand these differences in order to create appropriate tools for the task at hand.

Our contribution in this work is the design, results, and discussion of a controlled usability
study to assess differences, advantages, and drawbacks to parametric interaction, observation-level
interaction, and their combination. In particular, we sought to determine how the three different
types of interaction (PI, OLL, and combined) support various tasks in high-dimensional data analysis
when performed by non-experts of statistical algorithms. To support this usability study, we created
Andromeda, a tool that combines parametric interaction with observation-level interaction to afford
multiple ways of interacting with WMDS-projected data. We hypothesize that different tasks or
insights will result in or inspire the use of different forms of interaction and vice versa.

Specifically, our study addresses the following research questions:

(1) RQ1: Given benchmark tasks within specific categories as defined in [Amar et al. 2005],
do the three different types of interaction (PI, OLI, combined) affect the correctness of the
analysts’ answers? Does the type of interaction affect the speed at which they arrive at their
answers? When afforded both types of interaction, do analysts select the type of interaction
that we expect for each task?

(2) RQ2: How do the three different types of interaction (PI, OLI, combined) affect the
analysts’ insights in an open-ended analysis task?

2 RELATED WORK
2.1 Visualizing and Interacting with High-Dimensional Data

The field of visual analytics focuses on the design of interactive visualizations that may enhance the
sensemaking of data, beyond what static visualizations can provide [Cook and Thomas 2005]. This
is because static visualizations for complex data, no matter how intricate the method for creating
them, will undoubtedly mask or hide some information in data. When this happens, it is up to
analysts— users of the visualizations— to reconcile what is hidden with what is revealed to make
sense of the data. Interactions may assist in this reconciliation. However, interactive tools are only
useful if the design makes sense to the analyst, correctly portrays the underlying model, and allows
the analyst to conduct analyses efficiently. Much research exists to guide designers during creation
of interfaces for information visualization [Card et al. 1999; Munzner 2014; Shneiderman 2010; Yi
et al. 2007].
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High-dimensional data are particularly vulnerable to masking or hiding information in the
visualized data. By the very fact that dimensions are being reduced for visualization, we know that
information is lost in the process of creating visualizations. Indeed, many solutions are proposed
for visualizing high-dimensional data without dimension reduction, such as parallel coordinates
and heatmaps, but they cease to be effective visual abstractions as the number of dimensions enters
the hundreds [Choo et al. 2010; Munzner 2014; Pérez et al. 2015]. Information is lost in the clutter
and simple occlusion of important visual features.

As discussed earlier, dimension reduction models reduce the data from high-dimensional space
into a more tractable low-dimensional space. These models are used in a wide variety of fields
and come in many forms. Dimension reduction is used to reduce the complexity of datasets in
fields such as statistics [Fukunaga 2013; Mardia et al. 1980], astronomy [Feigelson and Babu 2012;
Way et al. 2012], machine learning [Jain et al. 2000; Ripley 2007], and visualization [Brehmer
et al. 2014; Choo et al. 2010; Ingram et al. 2010; Jeong et al. 2009; Johansson and Johansson 2009;
Kandogan 2012; Pagliosa et al. 2015]. Though we focus on WMDS in this work, the collection of
dimension reduction techniques also includes Principal Component Analysis (PCA) [Jolliffe 2002],
feature selection [Guyon and Elisseeff 2003], Isomap [Tenenbaum et al. 2000], and t-SNE [Maaten
and Hinton 2008]. A survey of the many flavors of MDS can be found in [France and Carroll
2011]. Other non-traditional methods have been developed to support high-dimensional data
exploration [dos Santos Amorim et al. 2012; Gleicher 2013; Joia et al. 2011]. These techniques have
yet to be incorporated into an interactive visual analytics tool.

2.2 Alternative Interactive Tools for Multidimensional Data Exploration

A number of tools have been developed to afford analysts with the ability to interact with high-
dimensional datasets. For example, IN-SPIRE’s Galaxy View displays text documents as points in
topical clusters in a two-dimensional space where proximity implies similarity [Pérez et al. 2015;
PNNL 2010]. However, within these tools, only surface-level interactions are possible. In IN-SPIRE,
the analyst can explore the data by selecting groups of points. The selection is cross-referenced with
other types of visualizations and graphs for the analyst to gain more insight. These surface-level
interactions are useful; however, the analyst has no control over the parameters that are used to
process or display the data.

Other tools have more complex interactions that manipulate the visualization itself. Two examples
of such tools include iVisClassifier [Choo et al. 2010] and Projection Inspector [Pagliosa et al. 2015].
iVisClassifier enable surface-level interactions to brush and link data displayed across parallel
coordinates, heatmaps, and a scatterplot, as well as more complex interactions for outlier detection,
selecting subsections of points, classifying points, and determining representative points in a
cluster, the spread of a cluster, and points that are between clusters. Projection Inspector allows the
analyst to interactively investigate different projections of high-dimensional data by combining
different projection algorithms. In addition to these tools, other groups such as Schaefer et. al. and
Johansson et. al. have found new methods for optimizing visualizations of high-dimensional data
to reflect certain data structures, such as clusters or user-defined structures of interest [Johansson
and Johansson 2009; Schaefer et al. 2013].

A specific class of more complex interactions enables the analyst to adjust the parameters of
the dimension reduction model itself to not only visualize high-dimensional data but also to in-
spect the data from multiple perspectives. Systems such as STREAMIT [Alsakran et al. 2011],
Dust & Magnet [Yi et al. 2005], Star Coordinates [Kandogan 2000], iPCA [Jeong et al. 2009], and
DimStiller [Ingram et al. 2010] allow parametric interaction where the analyst directly manipulates
the model parameters, triggering an update to the visualization. STREAMIT uses a force-directed
layout to visualize streaming text documents based on keyword similarity. Analysts can modify
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the numeric parameters (i.e. importance of keywords) to update the visualization. Dust & Magnet
displays the parameters (i.e. attribute weights) as “magnets” within the observation visualization.
Analysts can directly interact with the magnets to modify their importance. Similarly, Star Coordi-
nates enables analysts to manipulate the axes of a biplot to increase or decrease attribute weights.
This direct manipulation of the visualization can be more intuitive for an analyst than increasing
or decreasing a numerical value. However, both approaches still solely provide parametric inter-
action that could limit the depth and effectiveness of data exploration. In addition to parametric
interaction, both iPCA and DimStiller enable other forms of interaction to provide a variety of data
exploration techniques. For example, iPCA allows interactions with the eigenvectors along with
alternate, linked views of the data, whereas DimStiller models dimension reduction in a framework
of analysis steps, chaining together operators into pipelines of expressions. Although these forms
of interaction are useful, they all require the analyst to have a deep understanding of the underlying
models to interact with the tool effectively.

Other tools such as User Guided MDS [Endert et al. 2011], ForceSPIRE [Endert et al. 2012a,b],
and Dis-Function [Brown et al. 2012] incorporate OLI for the analyst to physically adjust points
within a visualization. OLI was developed to directly manipulate observations in the plot to update
the dimension reduction model parameters, instead of having to rely on manipulating parameters.
Thus, these tools utilize the relatability of OLI so the analyst can focus on the data rather than on
learning the details of the underlying models. However, the effects of using OLI as opposed to PIin
visual analytics tasks has not yet been well studied. In this paper, we seek to address the critical
need for usability studies to determine whether OLI supports analysis differently than parametric
interaction.

It should be noted that some tools do enable the manipulation of observations, but not for the
purpose of manipulating the underlying model parameters, and thus are considered surface-level
interactions and not OLIL For example, many implementations of force-directed layouts allow
analysts to drag or pin nodes in place. Similarly, tools such as GGobi allow analysts to constrain
MDS layouts [Wickham et al. 2011]. Pinning introduces a form of constraint on the visual layout,
constraining the underlying model to a sub-optimal solution. In essence, pinning represents a user
interaction to position one or more observations in precise locations, causing the remainder of
the observations to reposition in response to those constraints. In contrast, OLI interactions are
an analyst request to update the underlying model in such a way that selected observations are
positioned closer together or further apart without specifying precise coordinates. OLI interactions
are expressive [Endert et al. 2011] in that they invoke model learning.

2.3 Evaluation of Insights in Multidimensional Data Exploration Tools

Under the evaluation scenario taxonomy for information visualization systems proposed by Lam
et al.,, evaluation for multidimensional data exploration tools similar to Andromeda falls under
the “Evaluating Visual Data Analysis and Reasoning” category [Lam et al. 2012]. The goal of such
evaluation is to identify “if and how a visualization tool supports the generation of actionable and
relevant knowledge in a domain” The output of such evaluations can include quantifiable evaluation
like the number of insights obtained during analysis (for example [Saraiya et al. 2005]) or subjective
evaluation such as opinions on the quality of the data analysis experience (for example [Seo and
Shneiderman 2006]).

Indeed, the insight technique is a popular evaluation method for such systems in the literature.
Systems such as ForceSPIRE [Endert et al. 2012b], StarSPIRE [Bradel et al. 2014], DimStiller [Ingram
et al. 2010], and the analysis of representative factor generation performed in [Turkay et al. 2012]
are evaluated using Use Cases or Case Studies that highlight insights generated while using each
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tool. In this paper, we use this same technique to conduct a user study to evaluate the properties of
insights afforded by OLI as opposed to PL

2.4 Interaction in Human-Centered Machine Learning

While systems that learn from analysts have existed for some time, the advancement focus has
undergone a recent shift from developing new machine learning algorithms to advances in studying
and supporting user behavior [Amershi et al. 2014; Stumpf et al. 2009]. These human-centered
machine learning systems are producing advancements in a number of domains, including but
not limited to visualization [Kapoor et al. 2010; Talbot et al. 2009], text classification [Kulesza et al.
2011], image classification [Fogarty et al. 2008], and robotics [Cakmak et al. 2010; Kaochar et al.
2011].

If both parametric and observation-level interaction are generalized to their basic ideas (direct
manipulation of model parameters for parametric interaction, learning new parameters based on
other user interactions for observation-level interaction), then each can be found in the human-
centered machine learning literature. For example, ManiMatrix [Kapoor et al. 2010] is a visualization
system which allows analysts to directly refine values in a confusion matrix and see the effects of
such refinements on the model, a clear example of parametric interaction. In contract, the Crayons
system [Fails and Olsen 2003] represents a fully OLI system for image classification, with the
analyst providing iterative feedback to the system by selecting image regions and allowing the
system to classify features based on that information.

Still other projects such as EluciDebug [Kulesza et al. 2015], a system to support explanatory
debugging, allow analysts to refine the model through both PI and OLL In EluciDebug, OLI comes
in the form of what Kulesza et al. call instance-based feedback, in which analysts can apply a label to
an item, and the classifier then uses that label as part of its training set. This falls under a clustering,
“this belong here” approach to OLI [Wenskovitch et al. 2018]. PI is supported by feature-based
feedback, wherein an analyst tells the classifier why an item should be labeled in a certain manner
due to the features that it contains or feature values that it matches. This distinction between telling
the system why an item is classified in a certain way versus classifying the item and letting the
system determine why, matches the difference between PI and OLI in the context of Andromeda.

3 ANDROMEDA DESIGN

Andromeda is an interactive visual analytics tool designed to demonstrate and study how interac-
tivity aids analysts in the exploration of high-dimensional data. It provides a way for analysts to
interact with the input and output of weighted multidimensional scaling (WMDS) through PI and
OLI (respectively). Examples throughout this paper use a modified version of an animal dataset
provided by Lampert et al. that contains 49 animal observations over 72 attributes [2009]. We
provided this dataset for participants to explore during a usability study, that is described in the
next section.

For development, we applied an iterative user interface design process with analysts informally
assessing each iteration [Nielsen 1993]. We applied Andromeda in an educational setting in graduate
and undergraduate courses related to data analysis [Self et al. 2017]. Each course used a different
iteration of the system so that we could learn from the students’ analyses. Users were prompted
to reflect on their processes and explain any challenges they encountered while using the system.
We analyzed the insights and processes from each class to see if analysts did what we expected.
If not, we altered our interactions and design choices to encourage more efficient usage and to
address the challenges the students encountered. The discoveries from these courses led to interface
modifications and the version of Andromeda we present here. A summary of the features and visual
encodings of the Andromeda system are summarized in Table 1.
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Andromeda is composed of two main views: the observation view (Fig. 1a) and the parameter
view (Fig. 1b). These views are discussed next.

Table 1. Andromeda Interactions and Encodings

Interaction Feature Description and Encoding
Type
Attribute
Parametric Weight Drag attribute slider handle to the right (increase weight) or the
Interaction Sliders left (decrease weight). Attribute slider length will adjust. The
(PT) (update model spatialization is updated automatically after this interaction.
weights)

Drag point: Dragging a point with the mouse (with the Ctrl
key down) will cause a green halo around the point and a green
line tracking the point from its original position.

Observation- Manipulate  Highlight point(s): Clicking a single point or drawing a box

level Observations around multiple points (with the Ctrl key down) will create a
Interaction (update model green halo around the point(s).
(OLI) weights) Click “Update Layout”: Begins the Inverse WDMS compu-

tation on the points with a green halo to learn new attribute
weights; the spatialization is updated automatically after this
computation.

Hover over points: Hovering the mouse cursor over a point
will display the raw data for that observation as blue points on
the attribute sliders and will turn that observation blue.

Details on  Select point(s): Clicking a single point or drawing a box around

Surface- . . I .
1112Vae<{e Demand multiple points will display the raw data for the observation(s)
. (no effect on  on the attribute sliders as maroon dots and will turn those ob-
Interaction .
model) servations maroon.

View raw data: Hovering the mouse cursor over the attribute
slider handle will display a tooltip above that handle, displaying
the raw attribute data values for selected points.

3.1 The Parameter View

This view displays the weighted attributes (Fig. 1b). Each attribute is represented by an attribute
slider that serves as a visual representation of the relative weight compared to all other attribute
sliders. Thus, this chart visualizes the model’s weight vector, representing the distribution of
importance across all attributes.

The parametric interactions afforded by Andromeda allow analysts to directly manipulate
parameters of the underlying spatialization model (see Fig. 3a for a visual algorithmic pipeline).
Andromeda allows this via manipulation of the attribute sliders in the parameter view. The analyst
can drag the handle of the slider to adjust the weight of that attribute. Since all weights must
sum to 1 (a constraint of WMDS), the interface automatically modifies the weights of all other
attributes in response to increasing or decreasing the weight of one attribute. This parametric
interaction provides the values for the statistical model’s parameters as well as feedback about
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Fig. 3. Algorithmic pipeline (a) for parametric interaction and (b) for observation-level interaction.

which attributes are important to the analyst. In response to this parametric interaction, each time
an analyst increases or decreases an attribute weight, WMDS is rerun to calculate the observation
layout based on this new weight vector. Optionally, the weight sliders can be vertically sorted by
their weight values, placing the most important attributes at the top.

The parameter view also displays the raw data values of the high-dimensional data. All raw
data values are normalized to fit a constant scale across all attributes. This scale is used to plot the
raw data onto the attribute sliders. When a point is selected or hovered over in the observation
view, the corresponding raw data values are drawn onto each attribute slider as a colored dot. The
maximum raw data value for a specific attribute will be placed on the far right of the slider, while a
lower raw data value will appear closer to the left. In Fig. 1b, the selected maroon points in the
observation view are animals that do not live in the desert (top attribute slider); therefore, the raw
points appear toward the left of the slider. As an attribute weight is increased, the plotted raw
data dots are stretched to fill the slider. The raw data is not changing, rather the relative distances
between the values are changing based on the emphasis placed on that particular attribute. This
visually reinforces the effect that weights have on the computed distances between points in the
observation view. An example of a parametric interaction to answer Q4 from our study is shown in
Fig. 4.

3.2 The Observation View

The resulting observation layout calculated by WMDS is displayed in the observation view. Each
point represents one observation of the high-dimensional data. In our examples with the animal
dataset, each point represents one animal. This view has two modes, View Mode and OLI Mode,
which analysts can toggle between with the control (Ctrl) modifier key. Without the modifier key,
analysts can explore and view the points in View Mode through the surface-level interactions of
hovering over (blue point) and selecting points (maroon points) to view the corresponding raw
data. We use color to link selected points to the parameter view where the raw data is displayed.
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Fig. 4. A example of a parametric interaction in Andromeda, in this case answering Q4 from our study.
To determine which animal is most timid, an analyst can (a) load the dataset of animals to see the initial,
equally-weighted WMDS projection, and then (b) maximally increase the weight of the Timid attribute to
generate a new projection. The analyst is then presented with a one-dimensional spectrum of timidity, and
can use a surface-level interaction (mouseover) to check whether the animal at the top or the bottom of the
spectrum represents the greatest level of timidity. The deer, at the top of the spectrum, has the highest Timid
value in the dataset, as indicated by the accompanying blue glyph on the “timid” bar in (b).

With the modifier key, the analyst enters OLI Mode, which allows for observation-level inter-
action. When a point is moved in OLI Mode by dragging it with the mouse, it is encoded with a
green halo and a line from its original location to its new location (see Chimpanzee in Fig. 1a). In
this mode, points that are clicked (but not moved) are considered highlighted. These points are
also encoded with a green halo, but do not have a line since they were not moved (see Moose,
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Gorilla, Wolf and Leopard in Fig. 1a). The green halo of the moved points matches the outline of
the “Update Layout” button as a visual cue that all points with green halos will be considered by
the algorithm triggered by clicking “Update Layout” (Fig. 1d).

After points have been moved, the analyst can click the “Update Layout” button to perform the
OLI algorithm. This algorithm recalculates the layout based on the new low-dimensional coordinates
of the moved and highlighted points (points with green halos). To do so, the algorithm begins
by calculating the optimized weight vector that best represents the relative pairwise distances
between these low-dimensional points [Hu et al. 2013]. Thus, the moved points serve as the training
feedback for machine learning the updated weights. Effectively, this inverts the WMDS algorithm
to use the low-dimensional coordinates of the moved points as input to calculate the optimized
weight vector as output. This part of the OLI algorithm is denoted as WMDS™! in Fig. 3b. We
use an optimization algorithm as described in [House and Han 2015; Hu et al. 2013; Leman et al.
2013] that minimizes a stress function with respect to the weight vector, w, given user-specified
low-dimensional coordinates, r*,

n n
@ = arg min Z Z (distL(rf, r;) — distg(w, d;, dj))z (1)
1 0p 57 G54

To represent each attribute weight as a proportion, the weight vector w is constrained by the
requirements that all weights must sum to 1 and that each weight must be positive. The functions
dist; and disty refer to the Euclidean distance between points i and j in low-dimensional and

high-dimensional space respectively, except disty is weighted Euclidean distance based on w.
To complete the OLI algorithm, WMDS is then run with the new weight vector to update the
coordinates of all points (i.e., not just the moved points). Low-dimensional coordinates, r, are
determined based on minimizing a stress function with respect to r given the new weight vector, w,

n n
r = arg min Z Z (dist(ri, ;) — disty (o, d;, dj))2 2)
Msofn 521 j50

With the new low-dimensional coordinates calculated, all points in the observation view animate
to their new locations, giving the analyst a visual representation of the movement of the points.
The attribute sliders are also updated to reflect the new attribute weight values computed by
the optimization. The analyst can repeat this animation by interacting with the animation slider
(Fig. 1c). This slider allows the analyst to manually trace all points between the previous and current
locations. The end effect of the OLI interaction is that the algorithm produces a new projection that
best reflects the analyst’s input feedback as supported by the data. An example of observation-level

interaction to answer Q7a from our study is shown in Fig. 5.

4 STUDY DESIGN

The goal of this study is to test and compare OLI and PI, and to discover how these interactions
affect data analysis tasks and the types of insights gained.

4.1 Conditions and Participants

We performed a between-subjects usability study with three groups, each with a different interaction
capability: an OLI group (called OLI), a PI group (called PI), and a group that had both PI and
OLI (called Both). Each group had a version of the Andromeda interface with functionality to
match their assigned interaction(s): one with Andromeda that only enabled OLI (referred to as
OLI-Andromeda), one with Andromeda that only enabled PI (referred to as PI-Andromeda), and
one with both PI and OLI enabled (referred to as Both-Andromeda). Additionally, each of these
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Fig. 5. A example of a observation-level interaction in Andromeda, in this case answering Q7a from our study.
To determine which animals are similar to Elephants and Blue Whales, but dissimilar from Wolves and Tigers,
an analyst would begin by loading the dataset (identical to Fig. 4a), and then (a) selecting and dragging the
Blue Whale and Elephant to one area of the projection, and separately selecting and dragging the Wolf and
Tiger into another distant area of the projection. After clicking the “Update Layout” button, the WMDS™
algorithm learns new attribute weights based on only the observations that were moved or highlighted.
Immediately following this computation, a new projection is displayed that repositions all observations based
on the new weights (which shows that the Stalker, Active, and Meat attributes are relevant to the analyst’s
interaction). From the positions of the observations, the analyst can then see that animals such as the Pig
and Walrus are similar to the Blue Whale and Elephant, but dissimilar from the Wolf and Tiger.
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versions of Andromeda allowed surface-level interactions. Thus, the independent variable for the
study is the interaction group.

We recruited participants from both the undergraduate and graduate levels across multiple
disciplines in order to obtain a diverse population in regards to experience and knowledge of data
analysis. Our 30 participants spanned six disciplines including biology, business, computer science,
engineering, education, and data analytics. No participants considered themselves experts with
Multidimensional Scaling; 11 had never heard of it; 16 had never used it, but had heard about it;
and 3 had learned about it in a class. Participants ranged from 19 to 34 years of age. A summary
of the participants from this study, broken down by discipline and education level, is included in
Table 2. 10 participants were randomly assigned to each of the three groups: OLI, PI, and Both.

Table 2. Participants Broken down by Discipline and Level

Discipline # of Participants Level # of Participants
Biology 6 Undergraduate 13
Business 1

Computer Science 10 Graduate 15
Data Analytics 1
Education 1 Professional 2
Engineering 11
Total 30 Total 30

4.2 Data, Tasks, and Hypotheses

Participants used their assigned version of Andromeda to explore a high-dimensional dataset
of animals [Lampert et al. 2009]. The data included 49 animals (observations) and 72 attributes.
The attributes are characteristics describing the animals such as Furry, Speed, Size, and “Ocean”
(referring to ocean-dwelling). The values ranged from 0 to 100, where 0 means low and 100 means
high. For example, a grizzly bear has a furriness value of 82, whereas a blue whale has a furriness
value of 0.

We designed two sets of data analysis tasks to perform on this data: benchmark tasks and insight
tasks [North 2006]. See Appendix A.1 for the complete list of task questions from this study.

For RQ1, the benchmark tasks were designed to examine analyst performance on specific
types of data analysis tasks. 8 short answer questions (Q3-Q8 on the survey including subquestions)
were designed as benchmark tasks based on a subset of the low-level analysis tasks outlined by
Amar et. al. that analysts pose when analyzing multi-dimensional data [2005]. We chose a variety
of tasks that we believed was easiest to answer using one of the two types of interaction (OLI and
PI). Table 3 lists the benchmark tasks and their hypothesized associated interactions.

To create our hypothesis on which type of interaction would enable participants to answer each
question more easily, we assessed the type of task associated with each question as well as the type
of data specifically related to the question. For example, Q4, “What animal is the most timid?” was
classified as a find extremum task that centered around a specific attribute. Thus, we hypothesized
this question would be easier to answer with PI rather then OLL This is because it should be easy
to find the answer by maximizing the weight of the timid attribute and finding the most timid
animal at one end of the resulting nearly-1D projection (as seen in Fig. 4). In contrast, OLI would
require more of a trial-and-error process of using surface-level interactions to view the timid-ness
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Table 3. Benchmark Tasks

Hypothesized
Question Low-Level Task  Interaction
Type
Q3 - How likely is it for the gorilla to live in the jungle? Retrieve value Surface
Q4 - What animal is most timid? Find extremum PI
Q5 — What animals are quadrupedal and slow? Filter PI
Q6a — Describe the distribution of the agility characteris- Characterize PI
tic. distribution
Q6b — Are any characteristics strongly related to agility?
How? Why? Correlate PI
Q7a — What other animals are like the elephant and blue
whale, but not like the tiger and wolf? Why? Cluster OLL
Q7b — What animals are similar to the tiger and wolf, but
dissimilar to the elephant and blue whale? Why? Cluster OLL
Q8 — Characterize and compare vegetarians, carnivores, Domain Both
and omnivores. Knowledge

of each animal and manually search for the maximum. Similarly, tasks related to attribute filters,
distributions, and correlations are all attribute-centric and therefore matched to PI.

For questions classified as cluster tasks, e.g., Q7a: “What other animals are like the elephant
and blue whale, but not like the tiger and the wolf?” we hypothesized that OLI would be more
efficient (see Fig. 5 for an example sequence of interactions) because the question focuses on data
observations. With OLI, analysts can easily create these clusters and find other nearby animals.
In contrast, PI would require more steps to manually find which attributes these animals share
via surface-level interactions and then attempt to create the relevant clusters using PI on those
attributes.

Q3 was designed as a simple retrieval task that should be easily answered using only the surface-
level interaction to select the Gorilla and view its Jungle attribute value. Q8 was designed to require
domain knowledge, since the data does not contain information about vegetarian, carnivore, or
omnivore. We expect that both types of interaction (OLI and PI) would be useful to group animals
based on their believed diet, or investigate related attributes such as “chew teeth”

Our hypothesis for RQ1 is that the participants with the appropriate interaction type (OLI or
PI) should be able to answer the corresponding benchmark tasks more quickly and accurately.
Furthermore, we hypothesized that the participants in the Both group, who could use both OLI and
PI, would choose to use the interaction (OLI or PI) that we hypothesized was most appropriate for
the given question.

For RQ2, the insight tasks were designed to examine the insight generating capabilities of the
interactions. Two questions (Q9-Q10 on the survey) were open-ended insight questions. For RQ2,
we hypothesize that OLI would produce observation-centric insights that emphasize cardinality,
such as clusters. Additionally, we hypothesize that PI would produce attribute-centric insights that
emphasize dimensionality, such as extremum and correlations.
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4.3 Procedure and Data Collection

To begin, participants were shown a short tutorial video corresponding to one of the three tool
variations (OLI-Andromeda or PI-Andromeda, Both-Andromeda) randomly assigned to them. Par-
ticipants then completed an online survey. The first two survey questions were biographical. The
next two sets of questions asked them to analyze the data according to the previously described
tasks; survey questions Q3-Q8 (eight total including subquestions) concerned benchmark tasks
(RQ1), and Q9-Q10 reflected insights (RQ2). Both of these sets of data analysis questions required
participants to analyze the data using their assigned tool, and then type their answers into a textbox.
Then, Q11-Q17 were about participants’ understanding of WMDS concepts after having used
Andromeda; we discuss these in Future Work in Section 6.5.

The dependent variables in the study included: (RQ1) Performance on the benchmark tasks
Q3-08, including time, accuracy, and interaction logs; (RQ2) Written insights that were analyzed
for dimensionality, cardinality, and interestingness. Additionally, we asked the participants to think
aloud while they worked, with the goal of capturing miscellaneous thoughts while answering the
survey questions and exploring the data. Participants each spent 1 to 1.5 hours completing the
study.

5 RESULTS

Our results are divided into two sections, each mapping to the two categories of questions described
in the previous section: benchmark tasks and insights.

5.1 Benchmark Tasks: Questions Q3-Q8

Per RQ1, participants answered questions containing individual benchmark tasks using one of the
three versions of Andromeda (OLI-Andromeda, PI-Andromeda, Both-Andromeda). We first give an
overview of the results and then discuss each benchmark task individually.

Overall, the strongest result in the benchmark tasks concerns the expected vs actual inter-
action type. Fig. 6 breaks down the 10 participants in the Both condition into the number who
actually used each interaction type (OLI or PI) while performing each of the benchmark tasks,
with annotations below each question displaying our hypothesized interaction type. This is good
evidence that our hypothesis is supported regarding which interaction type (OLI or PI) analysts
would choose when given access to both. That is, the participants in the Both condition, who
had access to both OLI and PI interactions, tended to use the expected interaction type for each
benchmark task, though there are several exceptions that we justify in future subsections.

We also examined the correctness of the participants’ answers to the benchmark task questions.
Table 4 shows an average correctness score for each question, with the highest average correctness
for each question in bold. Correctness was measured by comparing participants’ answers to a pre-
defined correct answer using a simple 3-level scoring scheme. If a participant’s answer contains all
of the important criteria defined in the correct answer (e.g. list of data attributes and observations),
then the score is 1. If a participant’s answer contains only a portion of the correct criteria then the
score is 0.5. If the answer fails to contain any of the correct criteria, the score is 0. The trends in the
correctness results are not strong given our hypothesized most appropriate interactions.

We further analyzed the time participants took to answer each benchmark task question. Fig. 7
presents each question by average task duration for each of the interaction methods. Through
video analysis, we recorded task times, not including time spent reading the task question or
typing answers. While the overall pattern makes sense in terms of task difficulty , significant
differences were rarely found between interaction types due to large variance and small sample
sizes. Interestingly, for the Both condition, performance times tended to more closely match the
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Fig. 6. Of the 10 participants provided with both OLI and PI capabilities, this chart shows the type of
interaction they actually used to answer each question. The type of interaction labeled below the question
number is the hypothesized interaction; e.g., Pl was expected to be used for question 4, for which 9 of the
10 participants used Pl. The “Neither” bars refer to participants who exclusively relied on surface-level
interactions, using neither Pl nor OLI to address the task. Participants performed the expected interaction a
majority of the time in 5 of the 8 questions; however, questions Q3, Q6b and Q8 went against our hypotheses
as discussed in the text.

Table 4. Correctness Score by Question and Interaction Type

Question Both OLI PI

Q3 (Surface, retrieve) 1.00 1.00 1.00
Q4 (P, extremum) 0.70 0.60 0.90
Q5 (PL, filter) 0.65 0.95 0.75
Qé6a (P1, distribution) 0.65 0.60 0.50
Q6b (P, correlate) 0.65 0.60 0.65
Q7a (OLI, cluster) 0.85 0.85 0.85
Q7b (OLL cluster) 0.65 0.65 0.60
Q8 (Both, domain) 0.85 0.55 0.90

time for the hypothesized interaction type for the tasks Q4-Q7b where we correctly predicted the
interaction type. Next, we discuss each task individually.

5.1.1 Surface-Level Interaction Question. As Q3 (“How likely is it for the gorilla to live in the
jungle?”) falls under the retrieve value task category, it can be addressed simply by viewing the data
via surface-level interactions, and we hypothesized that participants would answer the question in
this fashion. All 30 participants, regardless of the interaction type, answered this question correctly.
As expected, many participants answered this question quickly, although it took some time for
participants to find the Gorilla observation in the projection, suggesting the need for a search
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Fig. 7. The average number of seconds it took to answer each question based on type of interaction given.
Each bar represents the average across all 10 participants for each interaction type. These times take into
account only time spent interacting with the Andromeda, and do not consider the time that participants spent
reading the questions and writing responses. Error bars represent one standard deviation. We hypothesized
that the times would be shorter for interaction types that match the targeted interaction type annotated
below each task. While there is some indication of this effect in Q5 and one significant result was found in
Q4, overall results are not significant due to high variance and small samples.

feature. In contrast to our interaction hypothesis, 7 of the 10 participants in the Both group used PI
to answer this question, while the other 3 participants simply viewed the data through surface-level
interactions. Some participants thought that if they used PI to increase the weight of the Jungle
attribute, it might be easier for them to find the Gorilla or to view its relative position among the
other animals on the Jungle attribute. However, it is possible that this extra step actually slowed
down the PI participants for this task.

5.1.2  Parametric Interaction Questions. Four of the eight questions were hypothesized to be
associated with parametric interaction; i.e., we expected participants who used parametric interac-
tion for questions Q4, Q5, Q6a, and Q6b to be able to arrive at the correct answer faster and more
accurately.

Q4 (find extremum) asked, “What animal is most timid?” This task is clearly attribute-centric
since it mentions a specific attribute name, likely putting participants in an attribute-oriented
mindset at the start of the task. Participants with PI used the tool as we expected: to find the most
timid animal, participants increased the weight of the Timid attribute and updated the visualization.
Participants could find the Timid attribute quickly because the attributes are initially sorted in
alphabetic order. Then, the participants used the new projection to find the cluster of timid animals
(as in Fig. 8a). The participants then searched the cluster for the most timid animal. To illustrate
an alternate approach, one participant in the OLI group clustered some points based on their
domain knowledge of “timidness” and updated the layout (as in Fig. 8b). The participant refined
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Fig. 8. Two methods of answering Q4 to locate the most timid animal. (a) This participant used PI to increase
the weight of the Timid attribute. Then, the participant hovered over the points to find the cluster of animals
whose raw data values for Timid were high. These animals were to the left of the projection. The Deer had
the highest value for Timid making it the most timid animal. (b) This participant used OLI to group animals
he knew to be timid from his domain knowledge, and by viewing the raw data of the timid attribute, localized

many of the timid animals.
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the resulting clusters by removing some timid animals from the non-timid cluster and then settled
on the correct answer. Though it is possible to answer this question using OLIL, PI is a better match,
which led us to hypothesize that PI would be more efficient to use. Of the 10 participants with
both interactions available, 9 used PI to answer the question, supporting this hypothesis. Evidently,
these participants understood the interactions supported by the tool and the appropriate context
in which to use them. Participants in the PI group were also able to answer this question more
accurately (9 of 10 fully correct) than those in the OLI group (6 of 10 fully correct) and those in the
Both group (7 of 10 fully correct). Additionally, this task has the strongest timing results; an unequal
variance, two sample t-test concludes that our PI group is faster than our OLI group (t = —1.9585,
df =10, p = 0.0393).

Q5 (filter) asked participants to list “What animals are quadrupedal and slow?” Here, 9 of the
10 participants in the Both group chose to use PI to answer this question (1 participant from
the Both group did not answer this question), matching our hypothesis on the interaction type,
though only 5 of these 10 provided a fully correct answer. Interestingly, we found that the OLI
group outperformed both the PI and Both groups with respect to correctness, with 9 fully correct
answers and 1 partially correct answer. Based on video analysis, it appears that some of the PI
participants were confused by the fact that they needed to consider animals that were high on
the Quadrupedal attribute but low on the Speed attribute, and mistakenly answered with animals
that were quadrupedal and fast. Since the OLI participants were more focused on the animals,
they used their own knowledge about animals to initially focus more accurately on appropriate
matches. However, OLI participants did more manual searching for potential matches. Two of the
OLI participants struggled with this question, and were outliers with very long performance time.

Qo6a (characterize distribution) asked the participants to describe the distribution of the Agility
attribute. This is also an attribute-centric task, and 8 of the 10 participants in the Both group
appropriately used PI to answer this question, while 2 participants performed only surface-level
interactions. Most PI participants increased the weight of the Agility characteristic to generate an
almost 1-dimensional projection of agility (small weights on the other dimensions provide some
jitter in the plot). Then they could use this plot to estimate the approximate density distribution of
observations over agility. Some participants simply used surface-level interaction to select all the
data points and viewed the resulting density of points on the Agility attribute slider, though the
small size of the slider made it difficult to decipher.

Similarly, Q6b (correlate) asked the participants to list other attributes strongly related to agility.
We expected participants to use PI to increase the weight of other attributes along with Agility
to create a series of 2D plots. However, many participants resorted to surface-level interaction
for this task by selecting agile animals (based on the previous task) and then simply viewing their
distributions displayed on all the weight sliders. Thus, because this task was a follow-up to the
previous task (Q6a), the participants in the Both condition had already performed PI to increase
the weight of Agility. Otherwise, it is likely that they would have begun this task by performing PI
on Agility. We believe this is the primary reason that the expected interaction type did not match
our hypothesis for this task.

5.1.3 Observation-Level Interaction Questions. We hypothesized that OLI would be the best
match for questions Q7a and Q7b since these questions centered on observations in the dataset. Q7
(cluster) asked participants to (a) “Find animals that are like the elephant and blue whale, but not
like the tiger and wolf” and (b) “Find animals that are similar to the tiger and wolf, but dissimilar to
the elephant and blue whale” Question Q7b was a follow-up mirror of question Q7a to encourage
participants to think about multiple clusters, not just one cluster. Because the participants could
build on their previous solution, the task performance time for Q7b was much faster than Q7a. In
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confirmation of our hypothesis, 7 of the 10 participants in the Both condition chose to strictly use
OLI to answer the questions Q7a and Q7b (Fig. 6) when given the choice of interaction types.
The following examples illustrate particularly insightful answers given by OLI participants:

Q7a: “The Humpback Whale, Rhino, Buffalo, Cow, Ox, Moose, Giant Panda, Sheep and
Walrus are similar to the elephant and the blue whale but not to the tiger and the wolf.
The tiger and the wolf are active, agile predators while the others are big, inactive and
slow herbivores.”

Q7b: “Fox, Bobcat, Lion, Leopard. Some of the characteristics that distinguish the two
groups are: Active, agile, meat teeth, hunter, stalker”

To answer Q7a and Q7b, most OLI participants exploited the ability to manipulate observations to
construct the two required clusters and then discover other similar animals placed by the algorithm
in each of the two newly formed clusters as shown in Fig. 5. PI participants took a more indirect
route. Typically, they first selected the elephant and blue whale points to view the raw data. As they
viewed the data, they identified attributes where the elephant and blue whale were similar (such as
Hairless and Speed), and then increased the weight of these attributes using PI. Interestingly, this
cognitive process closely mimics that of the WMDS! algorithm in which attributes that define or
distinguish between clusters of points gain a higher weight. This finding confirms that the OLI
process can serve to support participants’ cognitive processes, by reducing cognitive load and
interactive burden in completing such tasks. It also confirms the general strategy applied in the
design of the OLI optimization algorithm.

5.1.4 Both-Interaction Questions. Q8 (domain knowledge) asked participants to “characterize
and compare vegetarians, carnivores, and omnivores.” Since the data did not contain information
specifically about diet, participants had to exploit their domain knowledge to connect the existing
data to diet in order to answer this question. We hypothesized that this task could enable both
types of interactions effectively. We expected that some participants would apply their domain
knowledge about individual animal’s diets to organize the observations, and then learn about the
relevant highly-weighted attributes. One of the Both participants did strictly use OLI in this way.
Conversely, five of the Both participants instead applied their domain knowledge directly to the
attributes. In this case, these participants scanned through the list of attributes and used PI to
increase the weight of attributes they believed from prior knowledge were important for explaining
diet. However, it seemed that participants tended to have more knowledge about the attributes
than the animals in our experiment, or at least they found it easier to guess about the dietary
relationships of the attributes than the animals. Because some of the OLI participants did not know
the diet of specific animals, it was difficult for them to make progress with only OLI interaction
available, and their guesses resulted in more incorrect answers.

Most interestingly, four of the Both participants applied their domain knowledge in both ways,
using both types of interactions together in an iterative way to refine their final solution. They
produced thorough, well-formed answers, such as:

“Vegetarians have more chew teeth, have varying degrees of activeness, and are on the
lower side of agility. They have less claws, and have less meat teeth. They do not live
in the ocean. Carnivores have more meat teeth and omnivores have a middle range of
meat teeth”

Q8 is the task where participants in the Both condition most effectively applied both types
of interactions in a coordinated way. It is interesting that, when given the opportunity to apply
their own domain knowledge, having both types of interaction enabled participants to apply their
knowledge in a flexible manner, exploiting knowledge about both observations and attributes.
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5.2 Insights: Questions 9-10

Questions 9 and 10 asked participants to list a number of insights, to give them an opportunity
for free-form, open-ended exploration. Using the insight-based evaluation method, we analyze
characteristics of each listed insight [Saraiya et al. 2005]. Across all 30 participants, there were
a total of 93 insights listed. Each insight was examined by a single evaluator to determine the
cardinality, dimensionality, and task diversity for that insight (each of these is described in more
detail in the following subsections). We analyze the insights according to these three properties,
plus the inclusion of domain knowledge and total time to acquire (as seen in Table 5).

Table 5. Insight Summary Statistics

Insight Average Average Insights 1.1smg Average ’ljlme
Group . . . .. Domain to Acquire
Count | Dimensionality | Cardinality .
Knowledge (minutes)
Both 28 2.04 0.89 15 (54%) 11.43
OLI 30 2.13 1.40 7 (23%) 10.38
PI 35 1.86 1.03 17 (49%) 8.32

5.2.1 Dimensionality and Cardinality. The goal of OLI and PI are to explore large high-dimensional
datasets and enable insights that are more complex in terms of dimensionality and cardinality. The
hope is that such interactions can enable analysts to generate insights that are high in each of these
characteristics. We hypothesized that PI will support increased dimensionality and that OLI will
support increased cardinality of insights. Thus, we classify each insight based on its dimensionality
and cardinality.

Dimensionality refers to the number of attributes specifically mentioned within an insight. The
number of attributes per insight ranged from 0 attributes (0D) to 10 attributes (10D). Also, a few
insights generically referred to “many” attributes, but we score these as 0D in the quantitative anal-
ysis of dimensionality because they lack specificity. The left side of Fig. 9 shows the dimensionality
of the insights by interaction group. Interestingly, in contrast to our hypothesis, OLI participants
produced many high-dimensional (higher than 3D) insights, with 23% of their insights being high-
dimensional. For PI participants, 14% of their insights were high-dimensional. Participants in the
Both group produced the most evenly distributed dimensionality insights, with at least 14% in each
level of dimensionality.

Cardinality refers to the number of observations specifically mentioned within an insight. An
insight has cardinality if it specifically references one or more observations in the dataset. The right
side of Fig. 9 shows the cardinality of the insights by group. Cardinality ranged from 0 to 6. Most
importantly, OLI participants made numerous insights containing a cardinality of 2 observations
(50% of their insights). This is because they frequently investigated pairs of animals by dragging
them together.

Also in contrast to dimensionality, there were many (over 50%) insights that generically referred
to “many” animals or referenced groups of animals. But, again, unless they specifically mention
some animals, we scored them as 0 cardinality for the analysis. Participants often meaningfully
labeled these clusters within the insight. For example, one participant referred to “grazer animals”
in this insight:

“Grazer animals are quadrupedal and have chew teeth; they are generally inactive and
more timid than not. Also, many of them are from the new world”
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Fig. 9. Dimensionality describes the number of attributes explicitly mentioned in each insight, while Cardi-
nality refers to the number of observations explicitly mentioned in each insight. Here, we show the frequency
of both Dimensionality and Cardinality measures with respect to the participants’ group. Our hypothesis
that Pl supports increased dimensionality of insights is not well supported, as OLI-generated insights with
three or more dimensions are more frequent than Pl-generated insights with three or more dimensions. Our
hypothesis that higher cardinality will be seen more in OLI-generated insights than in Pl-generated insights
is also difficult to justify from the results. Insights with a cardinality of two were much more commonly
generated by OLI, but insights with a cardinality of three or more were approximately similar between Pl and
OLI participants.

This insight has generically high cardinality since it references many animals, specifically the
“grazer” animals (but we scored it as 0 cardinality in Figs. 9 and 10). It also has high dimensionality
because it explicitly includes 5 attributes from the dataset. This is a good example of a highly
complex insight because of its dimensionality and cardinality. In many similar cases, participants
did not specifically mention one or more animals, but instead referred to either a group of animals
or all of the animals. This especially occurred with the participants in the Both group, resulting in
their low cardinality of insights.

Interestingly, with regards to dimensionality, we did not see this phenomenon of discussing all
the attributes or a group of attributes collectively. In other words, when participants mentioned a
group of attributes, they tended to list out the attributes by name. Considering dimensionality and
cardinality together, only one insight had both dimensionality and cardinality greater than 3, as
shown in Fig. 10.

5.2.2 Task Diversity. To analyze the task diversity of the insights, we categorized each insight
according to the low-level tasks [Amar et al. 2005] that they contained, as shown in Fig. 11. Each
insight could contain multiple low-level tasks. While the insights stemmed from a diversity of
tasks, some tasks were better supported by specific interaction types. As hypothesized, OLI usage
produced many cluster task insights. Indeed, cluster tasks focus on the observations, which lends
itself to OLI Likewise, participants who had PI or Both produced many correlate task insights, but
not when using OLI alone.

5.2.3 Domain Knowledge. Many participants across all three groups exploited domain knowledge
within their insights (see “Insights using Domain Knowledge” in Table 5). The following insight,
provided by a participant in the Both group, is an example of a well-formed and complex insight
(with how complexity of insights was determined explained in a following subsection) in which
the participant exploited their domain knowledge:
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Dimensionality vs. Cardinality of Insights

6 ®
5 ®
4 ® @ @

= Both

. Q) o o o o o o

Cardinality

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Dimensionality

Fig. 10. A bubble plot showing the dimensionality and cardinality of each of the insights, where the bubble
area represents the frequency of each (dimensionality, cardinality) pair, and each pie chart reflects the count
of insights at that (dimensionality, cardinality) pair for the three groups. Many of the insights provided
by participants had low dimensionality and low cardinality, though some exceptions provided either high
dimensionality or high cardinality. One insight provided both high dimensionality and high cardinality. Many
OLI group insights had a dimensionality of 2, as these interactions typically compare two observations.
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Fig. 11. Distribution of insights across low-level tasks shown as the percentage of insights that contained at
least one of the tasks. For example, OLI usage concentrated on cluster task insights but not correlations.
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“I selected all of the animals that could be house pets (dogs, rabbits, cats, etc.) to see
if there are characteristics that make these animals desirable to be pets compared to
the other animals. I expect fierce to have a weak relationship, and domestic to have
a strong relationship. I was correct in my assumptions. Other related characteristics
include Timid, Ground, and Active. Active is an interesting one because these animals
are grouped together in the middle showing desirable activity levels in pets — not too
active that they need constant attention, but not so lazy they don’t ever get up.”

The participant used her domain knowledge to group animals she knew to be good pets. This
produced an insight that has high general cardinality (generic groups, such as dogs and cats) and
high dimensionality (5 attributes), making it a valuable complex insight. Her goal was to classify
this group in terms of characteristics. She even included hypotheses that she was later able to
confirm within the tool. Toward the end of the insight, she gives an explanation as to why the
raw data backs up her claim that mid-range activity is best for pets. The participant used multiple
low-level tasks (e.g. cluster, correlate), and gave a compelling argument for the insight. This same
participant went on to explore what characteristics might best explain animals that do not make
good pets. A second insight states:

“From the same layout I used to find desirable pet characteristics I can compare animals
that may not make good pets. Bobcats, wolves, lions, tigers, weasels, and skunks are
the farthest removed from the typical pet animals so I selected them. This new group
exhibits opposite tendencies to the last in fierceness and timidness. Their speed is very
high, and for the most part they are hunters”

Again, she correlates multiple attributes and references a list of animals, creating an insight with
both high dimensionality and cardinality. Her domain knowledge spun off into excellent insight.

5.2.4 Time to Acquire. Participants in the Both condition spent 3 more minutes analyzing the
data than those participants with PI-Andromeda (see “Average Time to Acquire” in Table 5 for
average duration). Overall, PI was the most efficient at producing insight at a rate of 2.4 minutes per
insight, versus 4.1 minutes per insight for Both. Perhaps this was due to the increased familiarity
with this type of interaction.

Participants in the Both group took advantage of both types of interactions, OLI and PI, through-
out their exploration. On the positive side, these participants switched between the two interaction
types multiple times either for a new insight or to approach one insight from different angles. On
the negative side, this approach appeared to slow them down. Based on video analysis, it seems
that these participants felt compelled to make use of both kinds of interactions so as to be thorough
in their analysis, and therefore took longer. It is not surprising that OLI participants took longer to
explore, because the OLI usage requires more interactive steps to operate (selecting and moving
data points, invoking and waiting for the algorithm to update the projection), whereas PI operates
in real-time as analysts drag the weight sliders.

5.2.5 External Evaluation. To understand the value and validity of the insights gained by the
participants, we recruited a group of 26 graduate students (none of whom participated in the usability
study) to read, rate, and comment on the insights for evaluation. Each insight was evaluated by at
least 3 unique students, with an average of 5 unique students evaluating each insight.

The insights were rated based on complexity and interestingness. Complexity is a measure
of how much data is involved in the insight, which provides a quantitative measure of the insight
itself. To decide on complexity, raters might consider the involvement of all or large amounts of
the data in a synergistic way, the uncertainty of the entire insight or a small part of the insight,
or the domain knowledge included and connected to the data and the insight itself. Raters chose
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Fig. 12. The average scores provided by raters for the complexity and interestingness of the insights created
by each of the three groups. Error bars represent one standard deviation. The differences between groups are
not statistically significant.

complexity on a scale from simple (1) to complex (7). Raters also rated each insight on a scale
from uninteresting (1) to very interesting (7). Interestingness brings in subjectivity and provides a
qualitative measure of the value of the insight. It can be based on the impact it might make on the
domain and the meaningfulness of the insight. Lastly, we asked the raters to explain what factors
they considered and their reasoning behind the ratings for each insight. The average complexity
and interestingness scores across all three groups are shown in Fig. 12.

While we did not find significant differences for complexity or interestingness across the interac-
tion types, we did find that complexity and interestingness are quite correlated with each other
(Pearson r = 0.807). This suggests that a more complex insight will also be more interesting than a
less complex insight, and further suggests that interestingness could be measured by complexity and
vice versa. Unfortunately, complexity ratings did not directly correlate with our more automated
metrics of dimensionality and cardinality (individually or their sum), as shown in Fig. 13.

The raters not only rated each insight, but also explained the factors used for the ratings. Overall,
highly rated insights tended to be assertions or high-level conclusions. These insights contained
unexpected results, subjectivity, and uncertainty. Insights that they thought represented more
high-dimensional conclusions were rated more highly. Raters preferred insights that were backed
with facts from the raw data and combined with outside domain knowledge. For example, the
previously mentioned insight about house pets received an average complexity score of 5.8 and an
average interestingness score of 6 (both out of 7). The raters gave such explanations as:

“This insight is very interesting as it confirms our hypothesis on pet animals as well
as throws new knowledge on domestic animals which might have [an] impact in the
domain. It is also complex in nature as it involves large amount of data and also good
number of characteristics and its inter-relationships”

“Complex because multiple categories are involved and compared. Interesting because
of the real-world applications.”

“Takes some domain knowledge of what types of pets there are. Formed hypothesis
and used the data to support it. Found interesting insight in activity level”

Insights that they considered “common knowledge” were assigned lower ratings. For example,
“Pigs are domestic” received a complexity score of 1 and an interestingness score of 1. They state
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Fig. 13. The scores provided by the raters for each of the insights, showing measures of complexity, interesting-
ness, and dimensionality+cardinality. Insights for the Both, OLI, and PI groups are separated into three charts,
sorted by interestingness from low to high. The correlation between complexity and interestingness can be
observed, as well as the lack of correlation between these measures and the combination of dimensionality
and cardinality.

“..it’s very simple (only one data point and only one feature)” and “it is common sense, thus
uninteresting.” Additionally, raters rated an insight low if it included incorrect knowledge. However,
students rated an insight high if it identified possibly incorrect raw data, stating that finding a
discrepancy in the data is important.

Even though these raters did not directly interact with Andromeda, they also considered the
perceived difficulty of the interaction steps when rating the insights. If an insight seemed to require
more complex interactions or multiple steps to get to, raters rated it more highly. An insight that is
merely the result of a retrieve value task (could be found straight from the data table) was rated low.

6 DISCUSSION

During this study, we sought to discover how the three different types of interaction (Both, OLI,
and PI) support high-dimensional data analyses of non-experts. First, our analysis showed that
the study participants were able to explore the high-dimensional data by using these interactions.
Our participants were unfamiliar with Andromeda before the study, yet were able to quickly learn
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to use these interactions. While performing their analyses, participants learned simple WMDS
concepts, which was enough to efficiently use the tool to answer questions and gain insights about
the data. Even though participants did not completely understand how the algorithm worked, it
did not hinder their exploratory analyses. We also found that many participants who lacked either
one of the two interaction types were still able to correctly answer questions that we thought were
specifically geared toward that missing interaction type, albeit with some additional difficulty.

Overall, participants tended to focus on the attributes when using PI, which supported the
following tasks:

e Attribute based filtering. Participants found observations that satisfied given criteria on
single or multiple attributes by using parametric interaction to increase the weight of the
criteria attributes (in a fashion analogous to dynamic queries [Shneiderman 1994]) and then
find the relevant cluster in the observation view.

¢ Finding distributions and relationships between attributes. By using parametric inter-
action, participants were able to describe single attribute trends across all points by highly
weighting one attribute. Participants also correlated different attributes. One participant
discovered that bulbous animals have a strong tendency to swim. Such discoveries are af-
forded by parametric interaction, in which the analyst can increase the weight of the desired
attributes and view the distribution of data in the observation view.

Participants focused on the observations with which they were more familiar when using OLI,
which supported the following tasks:

e Comparing observations and clusters. Participants compared observations and clusters
of observations to discover what attributes best explain each cluster. Participants frequently
pushed observations together or apart to identify their similarities or differences. Common
operations included creating a new cluster apart from all other observations, distinguishing
multiple new clusters of observations, or pushing existing clusters together. OLI lended
itself well to this task, allowing participants to directly cluster points to find distinguishing
attributes. This task was less fluid when using PI. A related task was forcing outliers into
or out of clusters to discover what attributes differentiate or relate the outliers.

Some tasks were best supported by the combination of OLI and PI:

e Using domain knowledge. Participants exploited their pre-existing knowledge of the data
attributes and observations to better connect with the data. For example, a participant wanted
to determine what characteristics might describe animals that humans have as pets. The
participant had meta-attributes she wanted to describe with the dataset attributes. She had
a preconceived notion in mind about whether an animal fits this meta-attribute of pet. She
clustered pets and non-pets to determine the defining characteristics and discover any other
animals that might be good pets based on model calculations.

With the knowledge of the distinct differences of PI and OLI and the affordances each offer, the
visual analytics and HCML communities can make informed decisions about the components they
want to include within a tool and tailor them to the particular purposes of the tool.

6.1 RQ1: Benchmark Tasks

To answer RQ1, we did not find strong effects of interaction on the correctness of the participants’
answers or their speed of performance. In general, the speed and correctness results only provide
supporting evidence for the main finding concerning the expected interaction type.

Most importantly, if given both PI and OLI, participants usually correctly chose the interaction
that we hypothesized to be most appropriate for the type of question, confirming our hypothesized
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matching of tasks and interaction types. As shown in Fig. 6, we found that questions based on
one or more attributes (Q4-Q6: filter, distribution, correlation) best utilized PI, whereas questions
asking specifically about observations (Q7: cluster) were best suited for OLL The one case where
participants most exploited both types of interactions in a single task was the domain knowledge
question (Q8), though participants tended to have more knowledge about attributes than observa-
tions. The seemingly refuting questions (Q3 retrieve value, and Q6b correlate) are understandable
given the task context as discussed in the results section , but hint at a possible deeper connection
between PI and surface-level interaction as discussed later.

These results also support both the “Match-Mismatch Hypothesis” of Gilmore and Green [1984]
and the “Cognitive Fit” theory of Vessey [1991]. In both cases, these refer to the idea that when
the notation or representation of the data emphasizes some aspect or type of information, a task
that requires that type of information can be more easily performed. Gilmore’s study focused on
the properties of programming notations, while Vessey’s study examined the uses of graphs and
tables in decision making. Despite these studies surveying very different domains, both came to the
same conclusion. Likewise, we hypothesized that tasks requiring the manipulation of dimension
weights to emphasize or deemphasize attributes could be more easily performed via PI, since PI
naturally afford the analyst with control over those attributes and weights. Similarly, tasks requiring
a perspective on the observations could be more easily performed via OLI, since OLI affords easy
comparison and manipulation of the observations.

6.2 RQ2: Insights

To answer RQ2 with the open-ended insight tasks, we found that the type of interaction used
affects the types of insights gained. OLI interaction tended to produce more observation-oriented
insights, such as clustering, and emphasized insights with cardinality of 2. Conversely, PI produced
more correlation and 2D insights than OLI Thus, given their differences in affordances, it might be
argued that when PI and OLI are taken together they can provide for a more diverse analysis in
terms of tasks types, dimensionality, and cardinality. However, this is not entirely clear since the
results of the Both condition did not necessarily reflect the simple combination of the OLI and PI
results. For example, the Both condition was more focused on 0 cardinality insights than either of
the PI or OLI conditions (though many of these were generically high-dimensional).

6.3 Learnability and Usability Issues

Following our initial evaluation of participants’ time and accuracy for the benchmark tasks, we
re-examined the videos of their interactions in an attempt to discern why there was such a high
variance in these results. In general, we found that there was a high variance in participants’ speed
of learning, desire for thoroughness of analysis, and familiarity with the data. When combined,
this translated into high variance in the performance results.

Although there was a training period, multidimensional data analysis is complex and the partici-
pants learned at very different speeds. Some participants were still learning how to use Andromeda
and its capabilities throughout the course of the study, trying alternative strategies to answer
various questions. Thus, the performance metrics did not necessarily measure only the optimal
strategies for each task, but also included some high-variance learning time. Based on participants’
verbal feedback, it appeared that they found OLI more difficult to learn than PI, perhaps because PI
is a more familiar concept. Clearly, there is more opportunity for future research on the learnability
of these interaction techniques.

One specific learnability problem we found was that many participants ignored the green
selections in OLI that indicate whether a data observation is to be considered in the OLI WMDS"!
algorithm’s computation of the updated projection. Andromeda automatically highlights points
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that the analyst moves, but also automatically highlights other nearby reference points. The
automatic highlighting of reference points sometimes hindered participants rather than helped. It
seemed that participants did not fully understand what the green highlighting meant, despite the
pre-study tutorial. This resulted in participants unintentionally highlighting other nearby points
when attempting to use OLI to answer a question. Thus, when they clicked the “Update Layout”
button, undesired points were considered by the WMDS™ algorithm, resulting in a projection
that did not reflect the participants’ intentions. The automatic highlighting was designed to solve
a problem found in previous usability studies in which analysts wanted to move points with
respect to reference points [Self et al. 2016]. However, because of the design of the OLI clustering
tasks in this study, the participants only wanted to consider the points specifically mentioned in
the tasks. New interaction designs are needed that encompass both of these types of OLI tasks,
such as the use of a second view for moved points or including explicit representations of cluster
boundaries [Wenskovitch and North 2017].

Yet, there is also evidence of the intuitiveness of the OLI and PI interactions. For example, during
the study we noted that some participants in the PI or OLI conditions asked if there was a way
to perform the other type of interaction without knowing that the interaction existed but was
disabled. One participant using PI-Andromeda actually tried to move the points with her mouse.
Some participants recognized these natural opportunities to explore the data in a different way and
wanted them.

6.4 Asymmetry of Interaction Design

Another potential problem we discovered in the design of Andromeda is asymmetry in the design
of the OLI, PI, and surface-level interactions that might cause learnability difficulties. These asym-
metries might be the result of design bias due to greater familiarity and history of PI, and they
indicate the need for more research on the design of effective OLI interactions and their integration
with PI and surface-level interactions.

An asymmetry in the surface-level interaction makes it more closely linked to PI than OLL
Surface-level interactions can select an observation to view its attribute values on the attribute
sliders. However, there is no corresponding interaction to select an attribute and view its values on
the observations. Thus, surface-level interaction can be used to easily find relevant attributes, but
not to easily find relevant observations. It would require tediously mousing over each observations
one at a time. This encourages possible swapping of PI and surface-level interactions for some
tasks, such as in Q3 (retrieve value) and Q6b (correlate). It also suggests opportunities for projecting
attribute values onto observation glyphs, such as encoding the size of observations’ dots based on
a selected attribute.

Another asymmetry is that OLI is inherently multi-object, while PI is not. That is, for OLI to
function, the analyst must manipulate multiple observations to express a set of desired distances.
This means that OLI requires more steps to operate, and its greater complexity might make it more
difficult to learn than PIL This suggests possible opportunities for more symmetric designs of OLI
and PI interactions, such as sorting attributes based on selected observations or, more generally,
projecting attributes into a weighted observation space.

6.5 Future Work on Education

The final seven questions (Q11-Q17, see Appendix A.1) on the survey sought to examine whether
interactive exploration using OLI and PI supported the participants in learning basic WMDS
statistical concepts. 90% of the participants did not have any previous experience with WMDS
and no participants considered themselves experts. Because of this, any knowledge gained is from
using Andromeda. While we did not find major differences between the interaction conditions,
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the overall results indicate the potential value of these techniques for education about dimension
reduction that should be further investigated.

An important concept when using WMDS is to remember that no matter the projection, the raw
data is never changed. Because of this, all plots created using WMDS are valid. When directly asked
(Q17), over 90% of participants, regardless of the interaction type given, correctly explained that
there is no wrong projection, but rather the projection depends on the question being explored.

To understand WMDS, analysts must also understand the interplay between the attribute weights
and the point locations within the projection. For example, Q11 specifically asked participants to
predict how and why increasing the weight of the “smartness” attribute (PI) would impact the
relative locations of a specific set of points. 80% of participants using Both-Andromeda and 70% of
participants using PI-Andromeda correctly explained that the fox would be positioned far from the
ox, polar bear and cow, which would be clustered. Surprisingly, even though OLI participants had
not experienced the ability to directly modify the weights (PI), 60% of those participants correctly
answered this question. They understood enough about the effect of the reverse interaction (OLI) of
moving the specific points, which updates weights, to explain the hypothetical scenario of directly
modifying a weight.

Certain lower-level WMDS concepts proved more difficult for the participants to grasp. Over 90%
of participants across all three interaction types could not mathematically describe how Andromeda
maps observations to locations in the plot. However, most participants understood conceptually that
the placement depended on the amount of similarity between the more highly weighted attributes.
The difficulty lies in understanding that the algorithm is trying to minimize the stress between
the low-dimensional projected distances and high-dimensional distances of all pairwise points.
Without a more complete lesson than the video tutorial, the statistical algorithm behind Andromeda
is challenging to comprehend. Regardless, we argue that a more complete understanding is not
necessary to perform a useful analysis. The answers the participants provided to this question
proved they understood the high-level conceptual overview of the model and how the positions
of the low-dimensional points depended on the relative importance given to all attribute weights.
Using this knowledge, most participants understood how to analyze the data, get answers to the
questions, and gain novel insight.

This preliminary data suggests that interactive exploration using OLI and PI supports students
in learning the high-level concepts of dimension reduction. Indications from our results here, as
well as from related studies [Chen et al. 2016; Self et al. 2017], show that this is a promising open
research area for education.

6.6 Limitations

This study also had several limitations that, if addressed, could produce more detailed results. First,
we did not pre-screen for prior domain knowledge. For example, we noticed that some of the
international student participants were not very familiar with the English names of some of the
more unusual animals. This is a confound that may have caused them to focus on the attributes
rather than the observations for some of the tasks such Q8, which required the most domain
knowledge.

Second, we could have worded some of the tasks more specifically, such as asking for a specific
number of attributes or observations in the benchmark task questions, to make the scoring system
simpler and more definitive. Also, we noted that some statistical terms, such as “distribution,” may
not have been familiar to some of the participants, or they may have had difficulty describing the
distribution without multiple-choice prompts.

Third, while we attempted to carefully produce the introductory instructional video, it is possible
that the video may have biased the participants towards certain types of interactions or insights.
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7 CONCLUSIONS

In this paper, we examined the roles of OLI and PI in high-dimensional data analysis. Key findings
are:

e When performing benchmark tasks, our hypotheses about which interactions participants
would choose to accomplish certain tasks were mostly confirmed. The interaction type did
not have clear effects on task performance time and accuracy.

e The interaction type emphasizes insights on either the observations (OLI), including cluster
and 2-cardinality tasks, or the attributes (PI), including correlation and 2D tasks. Given both
types of interaction, analysts apply their domain knowledge to the analysis.

e The type of interaction did not affect the analysts’ high-level understanding of WMDS.

We stress the importance of understanding the distinct differences between PI and OLIL This
study particularly clarifies the distinction of OLI for interacting with dimension reduction models.
OLI is fundamentally different than PI given its observation-centric nature, and it supports analysis
from a different angle than that of PI. In particular, OLI emphasizes clustering and cardinality. By
understanding the differences, advantages, and drawbacks of PI, OLI, and their combination, the
visual analytics and HCML communities can better advance the use of dimension reduction models.

APPENDIX
A.1 Study Questions

In this appendix, we provide the questions asked to the participants for our study.

Participant Information:

(1) Please enter the provided participant number and the date.
e Participant #:
e Group #:
e Date:
e Age:
o School level (i.e. freshman, sophomore):
e Major:
(2) How familiar are you with Multidimensional Scaling?
e Never heard of it (1)
e Have heard about it, but have never used it (2)
e Learned about it in a class (3)
e [ am an expert (4)

Benchmark Tasks (see Section 5.1):

Use Andromeda to analyze and provided animal dataset and answer the following questions. The
dataset includes 49 animals and 75 characteristics describing the animals. For each characteristic,
100 means high and 0 means low. For example a grizzly bear is very furry, therefore furriness would
be close to 100, but a fish would be 0.

(3) How likely is it for the gorilla to live in the jungle?

(4) What animal is most timid?

(5) What animals are quadrupedal and slow?

(6) (a) Describe the distribution of the agility characteristic. (b) Are any characteristics strongly
related to agility? How? Why?

ACM Transactions on Interactive Intelligent Systems, Vol. ?, No. ?, Article ?. Publication date: December 2017.



?:32 Zeitz Self, J. et al

(7) (a) The elephant and blue whale are similar to each other, but are dissimilar to the tiger and
wolf. What other animals are like the elephant and blue whale, but not like the tiger and
wolf? Why? (b) What animals are similar to the tiger and wolf, but dissimilar to the elephant
and blue whale? Why?

(8) Characterize and compare vegetarians, carnivores and omnivores.

Insights (see Section 5.2):

(9) Use Andromeda to explore and learn about the data. Write a list of 4 or more interesting
insights you gain from the data and justify each with appropriate rationale including evidence
to back up your claims.

(10) Write your reflections on how you conducted your analysis.

WMDS Concepts (see Section 6.5):

(11) (a) Without Andromeda, briefly explain how and why increasing the weight for smartness
would impact the relative locations of the following data points: ox, polar bear, fox, and cow.
(b) Using Andromeda, check your explanation. Did the answer surprise you?

(12) (a) Without Andromeda, briefly explain how and why moving data points polar bear, deer,
and hamster close together and zebra far from them would impact the weight of chewteeth.
(b) Using Andromeda, check your explanation. Did the answer surprise you?

(13) Within Andromeda’s data point view, what do the distances between points mean?

(14) Briefly describe how Andromeda maps data points to locations in the plot.

(15) Why does adjusting the weights change the plot?

(16) Why does adjusting the positions of the points in the plot change the weights?

(17) Since Andromeda can create multiple plots from the same high-dimensional dataset, which
plot is right? Please explain your answer.

Wrap Up:

(18) List any significant usability problems you encountered when using the Andromeda.

A.2 Glossary

In this appendix, we provide a concise list of terms used throughout this work.

(1) Andromeda - An interactive visual analytics tool designed to demonstrate and study how
interactivity aids analysts in the exploration of high-dimensional data.
(a) Observation View — One view of Andromeda, displaying the layout calculated by WMDS.
Each point in the view represents one observation of the high-dimensional data.

(i) View Mode — A mode of Andromeda’s Observation View, which allows analysts to
explore and view the observations in the WMDS projection. Supported interactions
include hovering over and selecting points view view the corresponding raw data.

(if) OLI Mode — Another mode of Andromeda’s Observation View, which allows analysts to
manipulate the observations, thereby creating a new set of low-dimensional coordinates.
Supported interactions include clicking and dragging observations. These moved points
are what are used by the WMDS™! inverse algorithm triggered by clicking the “Update
Layout” button above the observation view.

(b) Parameter View — A second view of Andromeda, displaying the weighted attributes in
the input dataset. Categorical data is displayed as static text, while numerical attributes are
displayed by attribute sliders that represent the relative weight of the associated attribute.
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(i) PI Mode - The interaction mode associated with Andromeda’s Parameter View, allowing
an analyst to drag the handle on the attribute sliders to the right to increase or left to
decrease the weight of that attribute.

(c) OLI-Andromeda — A version of Andromeda provided to study participants that only
allowed for observation-level interactions.

(d) PI-Andromeda - A version of Andromeda provided to study participants that only allowed
for parametric interactions.

(2) Attribute — A property or dimension of an item in a dataset. With respect to the animals
dataset used in this study, the attributes are the quantitative properties of the animals such
as color, diet, and habitat.

(3) Complexity — A measure of how much data is involved in an insight; used for evaluating
insights in Section 5.2.

(4) Interestingness — A more subjective evaluation of insights that is based on creativity and
synthesis, providing a qualitative measure to the insights described in Section 5.2.

(5) Observation — The items in a dataset. With respect to the animals dataset used in this study,
the observations are the animals themselves.

(6) Observation-Level Interaction (OLI) - An interaction technique allowing an analyst to
interact with individual points in a visual display through familiar and comfortable interac-
tions, requiring the model to interpret the semantic meaning of each interaction to adjust the
model parameters through the use of an inverted visualization algorithm.

(7) Parametric Interaction (PI) - An interaction technique allowing an analyst to directly
adjust the underlying parameters of an algorithm or model, thereby modifying the output of
that model.

(8) Stress Function - A function that measures the difference between the pairwise high-
dimensional distances between observations and the low-dimensional distances between
observations in the projection.

(9) Surface-Level Interaction — An interaction in a static projection that views the raw data,
links data between views, or scales or rotates the projection, and thus does not alter the
underlying model parameters.

(10) Weight Vector — The collection of weights that are associated with the attributes in the
dataset.

(11) Weighted Multidimensional Scaling (WMDS) - A frequently-used dimension reduction
algorithm that projects high-dimensional data onto low-dimensional space. The algorithm
computes pairwise distances between observations in high-dimensional space, and then
attempts to preserve those distances in the low-dimensional projection.
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