
Designing for Interactive Dimension Reduction Visual Analytics
Tools to Explore High-Dimensional Data

Jessica Zeitz Self, Xinran Hu, Leanna House, Scotland Leman, Chris North

Abstract— Exploring high-dimensional data is challenging. As the number of dimensions in datasets increases, the harder it
becomes to discover patterns and develop insights. Dimension reduction algorithms, such as multidimensional scaling, support
data explorations by reducing datasets to two dimensions for visualization. Because these algorithms rely on underlying
parameterizations, they may be tweaked to assess the data from multiple perspectives. Alas, tweaking can be difficult for users
without a strong knowledge base of the underlying algorithms. In this paper, we present principles for developing interactive visual
analytic systems that enable users to tweak model parameters directly or indirectly so that they may explore highdimensional data.
To exemplify our principles, we introduce an application that implements interactive weighted multidimensional scaling (WMDS).
Our application, Andromeda, allows for both parametric and object-level interaction to provide in-depth data exploration. In this
paper, we describe the types of tasks and insights that users may gain with Andromeda. Also, the final version of Andromeda is the
result of sequential improvements made to multiple designs that were critiqued by users. With each critique we uncovered design
principles of effective, interactive, visual analytic tools. These design principles focus on three main areas: (1) layout, (2)
semantically visualizing parameters, and (3) designing the communication between the interface and the algorithm.
Index Terms—Dimensionality reduction, object-level interaction, visual analytics, interface design

1 INTRODUCTION
With the amount of analyzable data growing rapidly, we must

continue to develop tools to strengthen our ability to learn all that we
can from data. Statistical mathematical models enable us to simplify
and formalize our understanding of data. The goal of visual analytics
is to design usable methods for interacting with these models to
improve user data exploration techniques. For example, dimension
reduction algorithms, such as Weighted Multidimensional Scaling
(WMDS), project high-dimensional data onto low-dimensional (e.g.
two-dimensional), space. The purpose of the algorithms is to
summarize high-dimensional information in a form that is accessible
to users, such as a two-dimensional graph. The visual analytics
community may further improve the utility of these models by
enhancing them with information visualization and developing tools
that allow for visual interaction with the mathematical models. We in
the visual analytics community may further improve the utility of

these models by developing tools that allow for visual interaction
with the mathematical models. In previous work, parametric and
observation level interaction (OLI) with data visualizations has been
defined and shown helpful for data exploration [1]–[3]. Both forms
of interaction enable users to adjust display-generating models
directly and/or indirectly. However, there are constraints to these
interactions and points to consider while developing software with
parametric and OLI capabilities that have not been formalized. In
this paper, we present principles to develop technically sound and
useful visual analytic software to exploit parametric interaction and
OLI. We exemplify these principles in a tool we developed called
Andromeda.

In Section 3, we describe Andromeda in detail. It is a visual
analytics tool that spatializes high dimensional data in two
dimensions using an algorithm called Weighted Multidimensional

Fig. 1. Andromeda interface exploring an animal dataset: (a) the object view visualizing low-dimensional data points, (b) the
parametric view displaying all dimension weights, (c) the slider tool to animate between transitions, (d) the button to update the
layout, and (e) the radius highlighting near and possibly important data points.

Scaling (WMDS) [4], [5]. In the spatialization, distance reflects
relative similarity; e.g., two points close to each other in the
spatialization are more similar to each other in the high-dimensional
space than two points far from each other. To set the spatial
coordinates of the observations, WMDS relies on one parameter for
each variable in the dataset. We refer to the parameters as variable
weights because variables with large weights are considered heavily
in the spatialization and those with low weights are not. Thus, one
can deepen their interpretation of a visualization in Andromeda by
considering both distance and weights; e.g., two points close to each
in a spatialization are more similar to each other in the variables with
large weights than two points far from each other. Andromeda
enables users to adjust spatializations using either parametric
interaction or OLI.

Parametric interaction is available in several tools [6]–[8] where
users may specify underlying model parameters by adjusting dials
and/or sliders. Although it has been shown useful, parametric
interaction can challenge users without a strong knowledge of the
underlying model. Thus, in previous work, we invented a new way to
interact with mathematical models called OLI [1], [2]. With OLI, an
automated procedure transforms user interactions with data
visualizations (visual feedback) to parametric feedback which in turn
adjusts an entire visual space. For example, in Andromeda, users
may change the distance between observations by relocating them so
that an automated procedure may adjust the parameters (i.e., variable
weights) in response.

To design useful, efficient, and analytically accurate tools that
enable parametric interaction and OLI requires intimate knowledge
of both mathematical models and how users process information.
Thus, in this paper, we develop 16 principles that visual analysts
should consider when developing these tools. We categorize these
principles as layout, parametric, and algorithmic. Layout principles
refer to the design of how to represent the data. Parametric principles
deal with how to visualize and interact with parameters that do not
necessarily have intrinsic meaning. For example, most parameters
have domain constraints within models and algorithms. Users should
not be able to specify values for parameters outside their domains.
Algorithmic principles define the considerations for connecting the
visualization to the mathematical model. The effort spent iterating
through multiple designs of Andromeda resulted in the
aforementioned design principles for interactive visual analytics
tools. Our contributions are as follows:

• design principles for interactive visual analytics tools to
explore high-dimensional data;

• an interface design, Andromeda, that encompasses all design
principles.

2 RELATED WORK
Visual analytics tools aid users in exploring data. However, the

tools are only useful if the design makes sense to the user, correctly
portrays the underlying model correctly, and allows the user to
conduct analyses efficiently. Much research exists to guide designers
in the creation of interfaces for information visualization [9]–[12].
The visual analytics field specifically focuses on the design of
interactive visualizations that provide an intuitive space that fosters
insight creation and data understanding [13]. High-dimensional data
is particularly difficult for users to comprehend because humans
have trouble thinking about a large number of dimensions
simultaneously. As discussed earlier, dimension reduction models
reduce the data so that it is more manageable. Other non-traditional
methods have been developed to support high-dimensional data
exploration [14]–[16]. These techniques have yet to be incorporated
into an interactive visual analytics tool.

IN-SPIRE’s Galaxy View displays text documents as data points
in topical clusters in a two-dimensional space where proximity
implies relatedness [8]. Star Coordinates plots objects in high-
dimensional space and then projects this space onto two-dimensions
[17]. However, within both of these tools, only surface-level

interactions are possible. In IN-SPIRE, the user can explore the data
by selecting groups of points. The selection is cross-referenced with
other types of visualizations and graphs for the user to gain more
insight. Star Coordinates allows users to rotate and scale the
projection. These surface-level interactions are useful, however, the
user has no control over the parameters that are used to process the
data.

Models have underlying parameters that can be adjusted to
control how the data are reduced. Many tools exist to allow users to
not only visualize high-dimensional data, but also adjust the
parameters of the model to visualize the data from multiple
perspectives. Systems such as STREAMIT [18] and Dust & Magnet
[19] allow parametric interaction where the user inputs feedback to
update the model and in turn the model updates the visualization.
STREAMIT uses a force-directed layout to visualize streaming text
documents based on keyword similarity. Users can modify the
numeric parameters (i.e. importance of keywords) to update the
visualization. Dust & Magnet displays the parameters (i.e. dimension
weights) as “magnets” within the object visualization. Users can
directly interact with the magnets to modify their importance. This
direct manipulation can be more intuitive for a user than increasing
or decreasing a numerical value. However, both approaches still
solely provide parametric interaction which limit the depth and
effectiveness of data exploration.

Dis-Function incorporates OLI for the user to adjust the data
points projected by WMDS [6]. As in Andromeda, adjusting points
in the visualization recalculates the parameters (i.e. weight
dimensions) as feedback to the user. However, these tools define the
inverse model differently which we will discuss later. Despite
providing OLI, Dis-Function does not provide parametric interaction
which could enhance the user experience. The goal of Dis-Function
differs from that of Andromeda. Dis-Function focuses on learning a
distance function that represents the users understanding of a dataset,
whereas Andromeda provides an exploratory space to gain insights
about a dataset.

3 USER INTERFACE DESIGN
Andromeda is an interactive visual analytics tool designed to aid

users in the analysis of high-dimensional data. It provides a way for
users to interact with the input and output of weighted
multidimensional scaling (WMDS). Andromeda supports both OLI
and parametric interaction. The algorithmic pipelines of OLI and
parametric interaction are shown in Fig. 2a and Fig. 2b respectively.
The interface is implemented using Java Swing and WMDS uses the
MDSJ Java Library [21]. Andromeda is composed of two main
sections: the object view (Fig. 1a) and the parameter view (Fig. 1b).
Examples throughout this paper use a modified version of an animal

Fig. 2. Algorithmic pipeline (a) for parametric interaction and (b) for
OLI or visual to parametric interaction.

dataset provided by Lampert et al. which contains 30 animal objects
and 31 dimensions [22]; i.e. that data include 30 31-dimensional data
points.

The object view. The resulting object layout calculated by
WMDS is displayed in the object view. Each point represents one
row of the high-dimensional data. This view has two modes toggled
between by the control modifier key. Without the modifier key, users
can explore and view the data points. A user can hover over (blue
point) and select points (maroon points) to view the corresponding
raw data. We use color to link selected points to the parameter view
where the raw data is displayed. With the modifier key, the user
enters move mode that encompasses object-level interaction. The
user can manipulate points on the screen to provide input to the
algorithm. When a point is moved, it is encoded with a green ring
and a line from its original location to its new location (see Dolphin,
Squirrel, and Chihuahua in Fig. 1a). Points that are selected, but not
moved are considered highlighted. These points are encircled with a
green ring, but do not have a line since they were not moved (see
Elephant, Blue Whale, Skunk and others in Fig. 1a). The green
outline matches the outline of the “Update Layout” button as a visual
cue that all outlined points are important to the algorithm (Fig. 1d).
Algorithmically, moved points represent explicit user input and
highlighted points represent implicit user input as discussed in
Section 4.3.

After points have been moved, the user can click the “Update
Layout” button to recalculate the layout based on the new coordinate
locations of the moved points. An optimization algorithm is run to
find a weight vector that best represents the new coordinates of only
the moved points. WMDS is then run to update the coordinates of all
points given the new weight vector. Within the object view, the
points animate to the new locations to give the user a visual
representation of the movement of the points. The user can repeat
this visualization by engaging with the slider (Fig. 1c). The slider
allows the user to manually trace all points between the previous and
current locations.

Table 1. Andromeda Interactions

Feature Encoding Description
Increase/decrease
dimension weight

Hand cursor
over handle

Drag handle to the right
(increase) or to the left
(decrease)

View Mode
Hover over point Blue in color Hover cursor over point to

view raw data for hovered
point on weight lines

Select point(s) Maroon in
color

Click single point or draw a
box around multiple points to
view raw data for selected
point(s) on weight lines

View raw data Tooltip over
dimension
handle

Hover cursor over dimension
line to view raw data for
selected points

Edit/Mode Mode (Must use Ctrl modifier key)
Drag point Green outline

around point
and green
line from
previous
location

Ctrl key + drag a point with
the mouse

Highlight point(s) Green outline
around point

Ctrl key + click a single point
or draw a box around
multiple points

The parameter view. This view displays the weighted

dimensions (Fig. 1b). Due to the algorithm only handling continuous
numerical data, the interface shows categorical or informational
dimensions as static text for viewing only. Each numerical

dimension is represented by an interactive line that serves as a visual
representation of the relative weight compared to all other dimension
lines. The user can drag the circular handle at the end of a line to
adjust the weight of that dimension. Since all weights must sum to 1,
the interface automatically modifies all other dimensions when one
dimension is increased or decreased. Modifying dimensions causes
dynamic updates to the layout. Each time a user increases or
decreases a dimension, WMDS recalculates the object layout based
on this new weight vector in real time.

The parameter view also displays the raw data values of the high-
dimensional data. All raw data values are normalized to fit a constant
scale across all dimensions. This scale is used to plot the raw data
onto the weight lines. When a point is selected in the object view, the
corresponding raw data values are drawn onto each dimension line as
a colored dot. For example, the maximum raw data value for a
specific dimension will be placed on the far right of the line. A lower
raw data value will appear closer to the left of the line. In Fig. 1, the
selected maroon data points in the object view are animals that do
not fly (third dimension line from the top), therefore the raw data
points appear toward the left of the line. As a dimension weight is
increased, the plotted raw data dots are stretched to fill the line. The
raw data is not changing, however the relative distances between the
values are changing based on the emphasis placed on that particular
dimension.

4 BENEFITS OF THE DESIGN
Throughout development, we had users informally assess the

design of our system. We applied Andromeda in an education setting
with a graduate level visual analytics course and a graduate level
information visualization course during separate semesters. Each
course used a different iteration of the system so that we could learn
from the students’ analyses. That involved collecting data about the
students to attain two datasets with information for them to explore.
Example survey questions included car mileage, number of apps on
your phone, number of restaurants visited in town, and on a scale
from 0 to 100 how extroverted would you consider yourself. Each
class explored its respective dataset using Andromeda and developed
insights about each other. An example sequence of user interactions
is show in Fig. 3. We had the users reflect on their processes and
explain any challenges they encountered with the system. We
analyzed the insights and processes from each class to see if users
did what we expected. If not, we developed new interactions and
design choices that encouraged more efficient usage and addressed
the challenges. The discoveries from the visual analytics course led
to interface modifications for the next interface design, which was
given to the information visualization course to repeat the process.

We hypothesized that OLI increases usability in the following
three ways:

(1) Users are more likely to understand the objects themselves
and how to manipulate them rather than the parameters and how to
adjust those. The objects in the dataset will presumably be familiar
entities to the user, but the particular dimensions describing the
objects may be different from the dimensions the users have in their
head. User domain knowledge may include additional dimensions
about the objects that do not appear in the dataset. The user may also
have meta-dimensions that they may or may not be able to describe
using the dataset dimensions. For example, in the animal data, a user
may be interested in a dimension he refers to as cat-like. He may not
be able to explain it, but he has a preconceived notion in his head
about whether an animal fits this meta-dimension. The user can
perform OLI and the system will calculate dimensions within the
dataset that define cat-like. Similarly, users have preexisting notions
of groupings, but may not have a meta-dimension to describe the
grouping. Again, OLI offers the ability to instinctively group similar
objects and have the mathematical model find supporting
dimensions.

(2) OLI provides the ability to pose what-if questions as a separate type of hypothesis testing. Users know and understand
preexisting relationships between objects. For example, a user can
pose that she thinks certain objects are similar. OLI can discover
whether there is data to support this claim. Another question might
focus on forcing a outlier into a cluster. With parametric interaction,
this would require many trial and error iterations until the system
converged on an appropriate parameterization. With OLI, the user
can drag the outlier into the cluster and let the mathematical model
do the work.

(3) With OLI, users have the opportunity to manipulate the data
on the object level. We claim an object level view is a more
meaningful space to interact than a view consisting of a list of
parameters. As the data grows, it is easier to manipulate lots of
objects instead of adjusting lots of parameters. We can imagine
quickly and fluidly manipulating many objects at one time. In order
to provide this for parameters, we would have to considerably
modify our parameter view design choices.

The above hypotheses were validated through our assignments
given to the courses. The rest of this section discusses the tasks
performed by the students through the use of Andromeda.

Our final design encouraged users to perform new tasks creating
analytical gains of the system.

Injecting domain knowledge. Users inject domain knowledge
into their explorations. For example, users clustered their peers into
an international group and a non-international groups and
international was not a dimension.

Single dimension trends across all objects. Users described
single dimension trends across all data points by selecting all data
points in the object view to view the raw data values in the parameter
view (Fig. 1b).

Comparison of clusters. Users also compared clusters and
explained what dimensions would need to change to make one
cluster like the other. For example, one user stated that introverts
could be like extroverts if they ate at restaurants more often, spent
more money and had more Facebook friends.

Filling in data gaps. Another new task was hypothesizing about
missing data. The dataset included people who did not want to
provide their gender. One user adjusted the data points in the object
view to guess the gender of peers who did not provide it. OLI
completely afforded this task. The user was then able to also state
what dimensions characterize males and females.

Solving a subjective question. A unique task led a user to find
his perfect roommate out of his peers. He used parametric interaction
to increase the weight of two dimensions (typical bedtime and
preferred outdoor temperature). He continued to increase certain
dimensions and noted the clusters forming close to his data point. He
was progressively decreasing the number of potential roommates.

Finding relationships between dimensions. Users can find out
if different dimensions are related to each other. For example, people
who liked to cook, may not eat in restaurants as much.

Forcing outliers into clusters. Users forced outliers into clusters
in order to discover what dimensions must be emphasized to include
those outliers in clusters.

Extremes in the dataset. Users state which two or three data
points are most similar or different, and group dimensions based on
categories (e.g. number of US states visited and number of countries
visited grouped to describe how well travelled people are).

The above new tasks would not have been possible without the
combination of OLI and parametric interaction into one tool.
Throughout our interface iterations, we have seen that Andromeda
continues to allow the discovery of trivial insights through simple
tasks, but also provides the opportunity for users to develop more
complex insights through creative tasks. The use of OLI together
with parametric interaction within an interface design delivers a
well-equipped tool for visual analyses. Throughout the design
iterations, we noted the types of tasks users were able to accomplish.
Many tasks were consistently performed with all iterative interface
designs. These tasks were simple and typically resulted in simple
insights.

Fig. 3. This is a sequence of interactions in Andromeda. (1) Initial view
with moved points. (2)-(4) Updated layout with different clusters
selected. (5)-(6) Update layout after decreasing vegetation dimension.

5 DESIGN PRINCIPLES
We established design principles that are necessary to consider

when developing an interactive high-dimensional data visual
analytics tool. These principles resulted from thorough evaluations of
multiple iteratively-developed interfaces. User challenges and
misunderstandings gave rise to new design choices that better
articulated the appropriate usage of the tool and the comprehension
of the underlying model. We grouped the design principles into three
categories: layout visualization, parameter visualization and
algorithm communication.

5.1 Projection Visualization
The layout visualization provides a space to visualize and

manipulate the data points. The design principles in this section
focus on the interactions and encodings necessary to utilize this
space efficiently.

(1) The projection visualization should utilize object-level
interaction. Since OLI is familiar for users [1], manipulating the
model output to exploit OLI provides an intuitive space for
exploration. OLI [1] provides an intuitive interactive workspace for
exploring complex high-dimensional data with the aid of powerful
parameterized statistical models. WMDS and those alike provide a
perfect opportunity to utilize OLI since it reduces data points in high-
dimensional space to low-dimensional space. In our case,
Andromeda displays the data in two-dimensional Euclidean space,
which is easier for users to understand. It follows naturally that users
may adjust these data points and receive feedback based on their new
relative pairwise distances.

All of our interface designs provide object-level interaction. It
allows the model to be hidden and instead relies on a familiar
metaphor, near is similar. Users can drag the points around the
screen to form clusters, force outliers or create other patterns. Points
that get dragged closer are considered more similar and points that
get dragged apart are deemed different. Operating on this metaphor
is more familiar to users than modifying parameters that are specific

to the model [23]. Users can easily manipulate data points that
represent all dimensions. It also gives users another angle at which to
approach a hypothesis when analyzing a dataset. The focus is on the
data points instead of the dimensions. Users can form clusters and
hypothesize about the similarities and differences among the
included data points. In our tool, object-level interaction is possible
because the WMDS model can be inverted to calculate a new weight
vector that best represents the new point locations to which points
were dragged. This inversion is discussed further in Section 4.3.

(2) The interface should distinguish between view mode and
edit/move mode. Visualization tools that implement mathematical
models should support two modes: view mode and edit/move mode.
View mode should allow the user to explore the data. Clicking
should invoke brushing and linking between all views [10]. In
Andromeda, clicking a point in view mode displays the raw data
associated with that point in the parameter view. The user is able to
explore the data points and dimensions to make insights about the
patterns within the current layout. Edit/move mode is entered with
the use of a modifier key. The user can manipulate points within the
object layout in this mode. By moving points, the user is conveying
input to the algorithm. This is an important concept for the user to
understand since the optimization algorithm is designed to
recalculate based on only the user moved points. Viewing the data
and updating the algorithm are two distinct tasks. Having to
physically press a modifier key enforces the separate modes. It is
important to distinguish between the two to help the user understand
the input she is providing to the algorithm.

(3) User input to the model should be visually denoted within
the visualization. As mentioned in the previous design principle, it
is essential for users to understand the input they are providing to the
algorithm. Our first iteration did not distinguish between view and
edit/move mode. Only user moved points visually differed from
other points with a yellow outline and straight line from the previous
location. Users would manipulate points on the screen to represent
their internal understanding of the similarities and differences. For
example, one user wanted to figure out in what way two outliers
were similar to a cluster. She dragged the two outliers closer to the
cluster and then clicked the button for the algorithm to recalculate. In
the resulting layout, the outliers returned to their original location
still removed from the cluster (Fig. 5). Next she tried to drag all data
points in the cluster closer to the outliers, which again resulted in the
same layout with the cluster returning to its original location. Both
results occurred because the algorithm considers only user moved
points when recalculating the weight vector. Therefore, since she did
not highlight any points in the cluster as well as move the outliers

Fig. 5. These screenshots are of the first Andromeda iteration. The top
displays where a user tried to force two outliers into the cluster. The
bottoms shows how the user tried to force the two outliers by dragging
all members of the cluster to the outliers. The current visualizations on
the right side of each screenshot show that the result is not what the
user expected since the two outliers are still outliers.

Fig. 4. This screenshot displays the stress lines in the second
Andromeda iteration. Darker lines depict higher stress between the
distances in low-dimensional and high-dimensional space.

closer to the cluster, the algorithm only considered the two outliers
as important and not the fact that she was moving the outliers in
relation to the cluster.

To help elicit more input from the user, our final design
automatically highlights surrounding points around the current
location of the user moved point. As the user is moving the point,
radial points are highlighted to demonstrate to the user the
significance of highlighting reference points. For example, in Fig. 1e
the system automatically highlighted Blue Whale and Elephant in
response to the user dragging Dolphin closer. The system also
highlighted Chimpanzee since the user dragged Dolphin away. We
designed the interaction to not only help the results of the algorithm,
but also teach the users how to specify the best input to receive
insightful output.

In Andromeda, the user decides when to update the layout and
initiate algorithm input. After the user is satisfied with the adjusted
layout by OLI, she clicks the “Update Layout” button. We had much
discussion about the existence of the update button versus dynamic
interaction where the layout would recalculate after each data point
user movement. Dynamic feedback would provide a fluid transition
between layout updates and free the user from deciding when the
algorithm should recalculate. However, the optimization algorithm
for WMDS inverse does not provide appropriate feedback when less
than three low-dimensional data points are adjusted. Andromeda
could account for this and wait until the user has manipulated three
points, but what if the user was planning to create a cluster
containing ten data points? The layout would update after three
interactions and the user’s thought process might be interrupted.
Since WMDS works most efficiently when many points are moved
and the interface cannot predict the user’s future interactions, we
concluded it is best to let the user be responsible for when the layout
should be updated.

(4) Any reasonable output from the model should be
appropriately visualized in the interface as additional feedback to the
user. The visual algorithmic feedback to the user is just as important
as the input from the user. In order for the user to give feedback for
the next iteration and continue the exploratory cycle efficiently, it
helps to understand the algorithmic feedback. In Andromeda,
algorithmic feedback includes: (1) a new layout, (2) the weighted
dimensions applied to the real high-dimensional distance, and (3) a
stress factor(s). Stress in WMDS represents a quantitative measure of
the discrepancy between actual pairwise distances in the high-
dimensional space and those plotted in the low-dimensional space. It
may reported for each pair of observations, a subset of pairs, or as a
global metric (summing the stress for all pairs).

High stress denotes that the distance in low-dimensional space
does not match the distance in high-dimensional space. After our
first iteration of Andromeda we thought that users could motivate
some interactions based on pairwise stress factors. Thus, in the
second iteration, we designed stress lines to display upon request.
That is, when a user clicked on a projected data point in the object
view, the system would draw gradient lines from the clicked data
point to all other data points (see Fig. 4) to represent stress. Darker
lines represented higher stress meaning the two points in low-
dimensional space wanted to be either closer together or farther
apart. However, users did not find the stress lines helpful since they
did not depict whether the points were too close or too far compared
to the distances in high-dimensional space. A more useful distance
comparison to display in the object view might be to visualize the
real high-dimensional pairwise distances in reference to a single
point instead of the stress.

The optimization we use iterates through many layouts to
maximize the stress. This calculation can take a long time depending
on the number of objects and dimensions in the data. Future visual
feedback might include a preview of the layout as the calculations
are occurring. Another possibility might be to recalculate the layout
using less strict constraints on the model just to give the user an idea
of how the layout will change given the adjustments. The user could
then decide whether to continue with the stricter model. All design

choices should provide the user with feedback that represents all
aspects of the mathematical model. This provides the opportunity for
the user to better understand the data from many different angles.

(5) The interface should provide the user with visual feedback
in between model updates. In our first iteration, the interface
consisted of two object layouts: previous and current. The previous
object view displayed the data point layout from the previous
algorithm calculation. The current object view displayed the most
recent data point layout. This allowed users to compare the state of
the layout between algorithm updates. The comparison was useful,
but visually comparing the two layouts side by side, even with
brushing and linking, was challenging. It also decreased screen real
estate needed for exploring and manipulating data points. For the
second iteration, we designed a slider that animated all points
between their previous and current locations in a single view. This
interaction allowed users to manually trace the points’ paths while
maximizing data exploration space. However, despite the new
design, the comparison is misleading since all distances are relative.
Because scale does not persist across iterations of WMDS, the
distance between two points in one layout cannot be compared to the
distance between the same two points in a future layout. This
requires that we transpose the WMDS coordinates to fit into the size
of the visualization window after each update. Despite the confusion,
we decided this comparison was more helpful than harmful for users.
Since our final design does not include a permanent display of the
previous layout, but solely provides an animation, we concluded it
was beneficial for the user to visualize the transition between states.

(6) An interactive visual analytics tool that visualizes iterative
updated layouts should transition between these layouts smoothly. In
our first iteration, when a user moved points and then updated the
layout, the recalculation would occur and the low-dimensional data
points would abruptly relocate. As discussed in the previous
principle, the user was able to use the slider to visualize the transition
between the layouts. It became obvious that this transition needed to
occur automatically so that the user saw the animation directly after
the update calculation. In the final design of Andromeda, the low-
dimensional data points animate from their current location to their
updated location directly after a layout recalculation as a smooth
transition to the new visualization. As discussed in Section 3, user
adjusted points are encoded with a green outline. The green outline is
displayed throughout the animation so that users can track the
projected data points of interest to the updated locations. As this
animation is happening, the slider handle animates along its track.
This coordination teaches the user how to use the slider after the
transition animation is complete. The animation provides a smooth
transition as well as a functionality depiction.

(7) Interactive visual analytics tools should retain object
persistence between model visualization updates. Each time the
model recalculates, the objects relocate to a new coordinate position
in the low-dimensional space. Because the WMDS model we employ
is a projection of the high-dimensional space, the same weight vector

Fig. 6. Andromeda’s first design displayed the parametric weights as a
bar chart, shown in (a), with each dimension as a bar. Raw data
values were statically displayed as seen in (b).

could produce multiple data point layouts. Even a small weight
modification could produce a completely new projection or one that
is rotated when compared to the original layout. According to the
model, all projected layouts are correct despite rotation. However, to
a user, a rotation portrays a very different layout even though the
relative distances between points might match the relative distance of
the original layout. To combat this confusion, it is necessary to create
object persistence between layout updates. Andromeda’s
implementation for persistence is discussed in Section 4.3.

5.2 Parametric Visualization
In Andromeda, the parameters are the weights placed on all

dimensions. We visualize each weight using a horizontal line with a
handle at the end for adjusting the value of that weight. Our first
iteration displayed the weights using a bar chart running along the
bottom of the interface (Fig. 6a). Each weight value was represented
as an interactive vertical bar within the bar chart and raw data values
were displayed as static text as shown in Fig. 6b. By substituting the
bars for lines and merging the lines and the raw data view, we gained
more space for the layout visualization. It also more strongly
connected the dimensions to the raw data for more efficient data
exploration. The following principles govern the parametric
visualization of the model.

(1) It is important to design an abstract way for the users to
instinctively adjust the parameters without having to be experts about
the model. Parametric interaction allows users to adjust the
underlying parameters that define the model. Andromeda allows
users to increase and decrease the dimension weights by dragging
handles. In WMDS, the actual numerical value of each dimension is
not necessarily useful because how the weights relate to one another
is more telling. For example, if a user increases one dimension to be
more highly weighted than a second dimension, she is saying that the
first dimension is more important than the second. Exactly by how
much does not matter as much as the relative differences between the
dimension weights. Therefore, the semantic interaction of weight
lines is more intuitive than typing in numerical values. Providing a
visual representation of the numerical parameters may not make
sense for all mathematical models, but designing an appropriate
parametric interaction that decouples the interaction from the
complexity of the parameters allows the user to focus on the data and
not the model.

(2) Interactions must adhere to the model constraints. It is
important to design tool interactions that are in keeping with the
model constraints. Parameters must be contained within a feasible
range of the parameter space. Dimension weights define the
parameters of WMDS. WMDS requires that all weights sum to 1.
Because of this constraint, the parametric interaction of increasing a
weight requires the decrease of all other weights. As a visual cue,
Andromeda dynamically decreases all other weights as a user
increases a single weight. The model constraint is visually expressed
to the user.

WMDS is also constrained by the real high-dimensional distances
between the data points. However, these distances are altered when a
weight is emphasized over other weights. Similarities and differences
of the data points are enhanced when a weight is increased. We
overlay the raw data values on the weight lines to show the relative
distances between data points as the weights are adjusted. For
example, in Fig. 7a the squirrel and skunk seem to have about the

same level of fierceness. However, when fierceness is emphasized in
Fig. 7b (i.e. the fierce dimension weight is increased) either by
parametric interaction or by OLI, the skunk appears relatively more
fierce than the squirrel. Since the user increased the importance of
the fierce dimension, the degree to which the animals differ will
become more pronounced. Overlaying the raw data onto the weight
lines requires the lines to be at least a certain length so that we do not
lose the ability to inspect the raw data values. Therefore, Andromeda
places an arbitrary vertical gray line to denote zero weight for each
dimension. For example, if we were to decrease the fierce dimension
weight in Fig. 7 all the way to the left past the gray line, then we
would not longer have a line on which to see the raw data values for
the squirrel and skunk. Users must remember that the weight line
does not disappear when the value is close to zero; the handle is
merely close to the gray line.

The type of model parameters should guide how they are
displayed within the interface. In Andromeda, we display each
weight parameter as a horizontal line. The number of lines displayed
in the parameter view depends on the number of dimensions in the
data and the physical screen space limits the number of weight lines
that can be visualized. The parameter view is scrollable to allow an
infinite number of visualized dimensions. However, to support fluid
interactions and visualization updates, Andromeda sorts the
dimension weights based on value from highest to lowest. This limits
the amount of time the user has to spend scrolling through
dimensions. It also places the feasibly most important weights in the
user’s immediate view. Also, more dimensions means lower overall
weights since all weight values must sum to 1.

(3) Smooth transitions of the parameters should occur in
parallel with transitions in the object view. Earlier we discussed
the importance of smooth transitions between updates to the low-
dimensional data point projection. Smooth transitions are also
necessary for updating the parametric feedback. For example, as a
single weight is adjusted, Andromeda dynamically increases or
decreases all other weights to fulfil the model constraint that all
weights must sum to 1. The real time animation indicates the change
of all the weights to the user and eliminates a jumpy update on
mouse release. If the parametric feedback is connected to the object-
level feedback, then the transitions should happen in parallel.
Andromeda’s visualization of the weights displays a line for each
dimension. After a recalculation, the weight lines grow and shrink in
parallel with the animation of the data points in the object view. The
user can visually track which dimension weights are increasing and
which are decreasing. The animation is repeated when the user
engages the slider.

(4) The interface should support dynamic parametric
interaction. Interactions with parameters should happen in real time.
While a user is performing an analysis, it is inefficient and interrupts
cognitive processes for him to wait for the model updates. Dynamic
interaction allows for a more fluid exploratory process because there
is not lull. By implementing dynamic interaction, we also eliminate
the need for a button that updates the layout with the new
parameters. Andromeda’s first iteration required the user to adjust
the weights of interest and then click a button. This button was also
used to update the object view which brought up challenges. Since
Andromeda encompasses two separate algorithms for OLI and
parametric interaction, if a user adjusted a parameter, the system
disabled the object view until the parameters were updated.
Disabling part of the visualization only causes confusion because the
user has to pause the analysis to figure out why he cannot perform
the interaction he had planned.

Modifications to the implementation of the WMDS parameter
model hastened the calculation to real time speed. The final design
eliminated the button for parameter updates because the real time
speed supported dynamic interaction.

5.3 Algorithmic
Analytic tools with OLI capabilities have automated procedures

in place to update display-generating parameters in response to

Fig. 7. (a) and (b) show the difference in raw data point placement on
the weight line after the fierce dimension is increased. The two
objects’ relative distance in reference to fierceness has increased
since that dimension was emphasized.

specific user interactions with visualizations. These procedures rely
intimately on the models or algorithms chosen to generate the data
visualizations. Some algorithms are more conducive for OLI than
others. Principles of good algorithms are highlighted below.

(1) The algorithm should be invertible. Typical visual analytic

algorithms rely on parameters to reduce data dimensionality for
visualization purposes. Ideally, visualizations are functions of these
parameters so that when visual adjustments are made, an inverted
form of the function may solve for new parameter specifications.

For example, Andromeda relies on the algorithm called WMDS.
In this algorithm, there are parameters ω=[ω1,ω2,...,ωp]ʹ′ that reflect
the importance in a visualization of each variable in the p-
dimensional data space. We refer these parameters ω as weights.
Low-dimensional (e.g., two-dimensional) coordinates r of high-
dimensional data points d are determined based on minimizing a
stress function with respect to r given ω ,

𝑟 = min

!!,…!!
|𝑑𝑖𝑠𝑡! 𝑟! , 𝑟! − 𝑑𝑖𝑠𝑡! 𝜔,𝑑! ,𝑑! |

!

!!!

!

!!!

 , (1)

where, n represents the number of data points; distL(ri, rj)

represents a distance measure between low-dimensional points ri and
rj; and distH(ω , di, dj) represents a distance measure between high-
dimensional points di and dj. To be clear, ri, rj are low-dimensional
representations of di, dj. In Andromeda, distL() is Euclidean distance
and distH() is weighted Euclidean distance,

𝑑𝑖𝑠𝑡! 𝜔,𝑑! ,𝑑! = 𝜔!(𝑑!" − 𝑑!")!
!

!!!

 .
When users either change the coordinates of some data points or

highlight points to consider for an updated visualization, Andromeda
inverts the optimization in Equation (1). That is, Andromeda solves
for ω given moved or selected coordinates r*,

𝜔 = min

!!,…!!
|𝑑𝑖𝑠𝑡! 𝑟!∗, 𝑟!∗ − 𝑑𝑖𝑠𝑡! 𝜔,𝑑! ,𝑑! |

!

!!!

!

!!!

 .

As a result, there is a clear, quantitative, and parametric

interpretation of moving low dimensional coordinates in
visualizations.

(2) The inverted algorithm should emphasize explicit user
input. When interacting with a screen full of objects, users tend to
concentrate on a small number of objects. These explicit interactions
contain more information about user semantics than the other objects
on the screen [24]. Some early OLI systems opt for considering all
objects in the projection with equal weights [6]. This approach may
distort the interpretation by introducing too much noise. OLI
systems, on the other hand, always allocate more attention toward
objects with which users have specifically interacted. This approach:
(1) increases the likelihood of correctly identifying the semantics and
(2) reduces the computational burden because it lessens the number
of objects the model considers.

(3) The inverted algorithm should consider implicit user
input. Objects that are not directly manipulated by the user may still
express user semantics. For example, a user may decide to move
some objects toward a reference point (say Object A) in order to
express similarity. Object A will be unmoved during the interaction,
but object A is still of high value in understating the user semantics.
Identifying these implicit objects is a tricky task. Two approaches
should be considered: (1) provide appropriate tools to assist users in
being more explicit about their semantics (i.e. highlighting in V2PI-
MDS) and (2) nominate objects in a close vicinity of an explicitly
interacted object and allow the users to confirm or overrule these
suggestions (i.e. Andromeda).

 (4) The algorithm should be fast. To enable users to explore
data in parallel with how they are thinking about the data, the
selected display-generating algorithm must be computationally
expedient. That is, both the standard algorithm and its inverted form
should operate in real time, or as close to real time as possible. When
we first started developing Andromeda we explored several
optimization schemes and opted to invoke a general purpose gradient
descent algorithm [25]. In our case, the inverted form of WMDS is

much slower than its standard form; i.e., solving for ω given r* is
slower than solving for r given ω . Developing a speedy optimizer in
both directions is an active research area, however, recent advances
have led us to a Quadratic Programming solution to an approximated
objective function, which greatly reduces computation times.

 (5) The algorithm should be deterministic. Crucial to OLI is
that users may create multiple visualizations in a sequence that
parallels their sense making process. Thus, random perturbations in
visualizations may confuse users; changes to visualizations should
reflect added information provided by user interactions. If no
information is added by a user, an “updated” visualization should not
change. Thus, stochastic algorithms or optimization schemes that
may get stuck in varying locations due to function multi-modality
may not be appropriate for OLI software, unless added precautions
or steps are taken. For example, WMDS is invariant to scale,
rotation, and reflection. Thus, when solving for r given ω (Equation
(1)), it is possible to have reflected, rotated, or scaled versions of one
data visualization; e.g., if the Update Layout button is hit twice,
Andromeda may produce reflected versions of low-dimensional
coordinates. To overcome this problem, Andromeda takes an extra
processing step to align and scale coordinates after solving for r. As
a result new information in sequential visualizations is not masked
by arbitrary mathematical properties of WMDS.

6 CONCLUSION
We formulated design principles for visual analytics tools

encompassing multiple views and ways of interacting with
mathematical models for exploring high-dimensional data.
Specifically, the interactive layout visualization should display the
objects and encode both user input to the model and model outputs to
enhance the user’s understanding of the model and how to interact
with it. The interactive parameter view should be designed in a way
that keeps the integrity of the model intact. We described the
necessary principles to consider when designing the model itself as
well as how it relates to the interface. Designers should consider all
three categories of principles to fully understand the impact and
interconnectivity of design choices within an interface.

We discussed the benefits of OLI and the important role OLI
plays in a well-designed visual analytics interface for exploring high-
dimensional data. We stressed the importance of including both
parametric interaction and OLI. With both types of interaction, a user
is able to gain more complex insights and accomplish new types of
tasks.

In the future, we hope to see how these principles apply to other
dimension reduction models so that they too are accessible to users
without strong model knowledge.

ACKNOWLEDGMENTS
Omitted for blind review.

REFERENCES

[1] A. Endert, C. Han, D. Maiti, L. House, S. Leman, and C.
North, “Observation-level interaction with statistical models
for visual analytics,” in 2011 IEEE Conference on Visual
Analytics Science and Technology (VAST), 2011, pp. 121–
130.

[2] S. C. Leman, L. House, D. Maiti, A. Endert, and C. North,
“Visual to Parametric Interaction (V2PI),” PLoS One, vol. 8,
no. 3, p. e50474, Jan. 2013.

[3] L. House, S. Leman, and C. Han, “Bayesian Visual
Analytics: BaVA,” Stat. Anal. Data Min. ASA Data Sci. J.,
vol. 8, no. 1, pp. 1–13, 2015.

[4] J. B. Kruskal and M. Wish, “Multidimensional Scaling,”
Sage Univ. Pap. Ser. Quant. Appl. Soc. Sci., 1978.

[5] J. Kruskal, “Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis,” Psychometrika,
vol. 29, no. 1, pp. 1–27, 1964.

[6] E. Brown, J. Liu, C. Brodley, and R. Chang, “Dis-
Function: Learning Distance Functions Interactively,” IEEE
Conf. Vis. Anal. Sci. Technol., pp. 83–92, 2012.

[7] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and
R. Chang, “iPCA: An Interactive System for PCA-based
Visual Analytics,” Comput. Graph. Forum, vol. 28, pp. 767–
774, 2009.

[8] PNNL, “IN-SPIRE Visual Document Analysis.” 2010.

[9] J. S. Yi, Y. A. Kang, J. T. Stasko, and J. A. . Jacko,
“Toward a Deeper Understanding of the Role of Interaction in
Information Visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 13, no. 6, pp. 1224–1231, 2007.

[10] T. Munzner, Visualization Analysis and Design. CRC
Press, 2014.

[11] B. Schneiderman and C. Plaisant, Designing the User
Interface: Strategies for Effective Human-Computer
Interaction, 4th ed. Reading, MA: Pearson Addison Wesley,
2005.

[12] S. Card, J. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. Academic
Press, 1999.

[13] J. J. Thomas and K. a Cook, “Illuminating the path: The
research and development agenda for visual analytics,” IEEE
Comput. Soc., vol. 54, p. 184, 2005.

[14] M. Gleicher, “Explainers: expert explorations with
crafted projections.,” IEEE Trans. Vis. Comput. Graph., vol.
19, no. 12, pp. 2042–51, Dec. 2013.

[15] P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato,
and L. G. Nonato, “Local Affine Multidimensional
Projection,” IEEE Trans. Vis. Comput. Graph., vol. 17, no.
12, pp. 2563–2571, 2011.

[16] E. Portes, E. V. Brazil, L. G. Nonato, and M. C. Sousa,
“iLAMP  : Exploring High-Dimensional Spacing through
Backward Multidimensional Projection,” IEEE Conf. Vis.
Anal. Sci. Technol., pp. 53–62, 2012.

[17] E. Kandogan, “Star coordinates: A multi-dimensional
visualization technique with uniform treatment of
dimensions,” Proc. IEEE Inf. Vis. Symp. Late Break. Hot
Top., vol. 650, pp. 9–12, 2000.

[18] J. Alsakran, Y. Chen, Y. Zhao, J. Yang, and D. Luo,
“STREAMIT: Dynamic visualization and interactive
exploration of text streams,” IEEE Pacific Vis. Symp. 2011,
PacificVis 2011 - Proc., pp. 131–138, 2011.

[19] J. S. Yi, R. Melton, J. Stasko, and J. a Jacko, “Dust &
Magnet: multivariate information visualization using a
magnet metaphor,” Inf. Vis., vol. 00, no. April, pp. 239–256,
2005.

[20] I. Jolliffe, Principal Component Analysis, 2nd ed. John
Wiley and Sons, Ltd, 2002.

[21] A. Group, “MDSJ: Java Library for Multidimensional
Scaling (Version 0.2).” University of Konstanz, 2009.

[22] C. H. Lampert, H. Nickisch, S. Harmeling, and J.
Weidmann, “Animals with Attributes: A Dataset for Attribute
Based Classification,” 2009. [Online]. Available:
http://attributes.kyb.tuebingen.mpg.de/.

[23] A. Endert, P. Fiaux, and C. North, “Semantic Interaction
for Sensemaking: Inferring Analytical Rea-soning for Model
Steering,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12,
pp. 2288–2879, 2012.

[24] X. Hu, L. Bradel, D. Maiti, L. House, C. North, and S.
Leman, “Semantics of Directly Manipulating Spatializations,”
IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2052–
2059, 2013.

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing, 2nd ed. New York: Cambridge University Press,
1992.

