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Abstract— Exploring high-dimensional data is challenging.  As the number of dimensions in datasets increases, the harder it 
becomes to discover patterns and develop insights.  Dimension reduction algorithms, such as multidimensional scaling, support 
data explorations by reducing datasets to two dimensions for visualization.  Because these algorithms rely on underlying 
parameterizations, they may be tweaked to assess the data from multiple perspectives.  Alas, tweaking can be difficult for users 
without a strong knowledge base of the underlying algorithms.  In this paper, we present principles for developing interactive visual 
analytic systems that enable users to tweak model parameters directly or indirectly so that they may explore highdimensional data. 
To exemplify our principles, we introduce an application that implements interactive weighted multidimensional scaling (WMDS). 
Our application, Andromeda, allows for both parametric and object-level interaction to provide in-depth data exploration. In this 
paper, we describe the types of tasks and insights that users may gain with Andromeda. Also, the final version of Andromeda is the 
result of sequential improvements made to multiple designs that were critiqued by users. With each critique we uncovered design 
principles of effective, interactive, visual analytic tools. These design principles focus on three main areas: (1) layout, (2) 
semantically visualizing parameters, and (3) designing the communication between the interface and the algorithm. 
Index Terms—Dimensionality reduction, object-level interaction, visual analytics, interface design

 

1 INTRODUCTION 
With the amount of analyzable data growing rapidly, we must 

continue to develop tools to strengthen our ability to learn all that we 
can from data. Statistical mathematical models enable us to simplify 
and formalize our understanding of data. The goal of visual analytics 
is to design usable methods for interacting with these models to 
improve user data exploration techniques. For example, dimension 
reduction algorithms, such as Weighted Multidimensional Scaling 
(WMDS), project high-dimensional data onto low-dimensional (e.g. 
two-dimensional), space. The purpose of the algorithms is to 
summarize high-dimensional information in a form that is accessible 
to users, such as a two-dimensional graph. The visual analytics 
community may further improve the utility of these models by 
enhancing them with information visualization and developing tools 
that allow for visual interaction with the mathematical models. We in 
the visual analytics community may further improve the utility of 

these models by developing tools that allow for visual interaction 
with the mathematical models. In previous work, parametric and 
observation level interaction (OLI) with data visualizations has been 
defined and shown helpful for data exploration [1]–[3]. Both forms 
of interaction enable users to adjust display-generating models 
directly and/or indirectly.  However, there are constraints to these 
interactions and points to consider while developing software with 
parametric and OLI capabilities that have not been formalized. In 
this paper, we present principles to develop technically sound and 
useful visual analytic software to exploit parametric interaction and 
OLI.  We exemplify these principles in a tool we developed called 
Andromeda. 

In Section 3, we describe Andromeda in detail.  It is a visual 
analytics tool that spatializes high dimensional data in two 
dimensions using an algorithm called Weighted Multidimensional 

Fig. 1. Andromeda interface exploring an animal dataset: (a) the object view visualizing low-dimensional data points, (b) the 
parametric view displaying all dimension weights, (c) the slider tool to animate between transitions, (d) the button to update the 
layout, and (e) the radius highlighting near and possibly important data points. 



Scaling (WMDS) [4], [5].  In the spatialization, distance reflects 
relative similarity; e.g., two points close to each other in the 
spatialization are more similar to each other in the high-dimensional 
space than two points far from each other. To set the spatial 
coordinates of the observations, WMDS relies on one parameter for 
each variable in the dataset.  We refer to the parameters as variable 
weights because variables with large weights are considered heavily 
in the spatialization and those with low weights are not.  Thus, one 
can deepen their interpretation of a visualization in Andromeda by 
considering both distance and weights; e.g., two points close to each 
in a spatialization are more similar to each other in the variables with 
large weights than two points far from each other.  Andromeda 
enables users to adjust spatializations using either parametric 
interaction or OLI. 

Parametric interaction is available in several tools [6]–[8] where 
users may specify underlying model parameters by adjusting dials 
and/or sliders. Although it has been shown useful, parametric 
interaction can challenge users without a strong knowledge of the 
underlying model. Thus, in previous work, we invented a new way to 
interact with mathematical models called OLI [1], [2]. With OLI, an 
automated procedure transforms user interactions with data 
visualizations (visual feedback) to parametric feedback which in turn 
adjusts an entire visual space. For example, in Andromeda, users 
may change the distance between observations by relocating them so 
that an automated procedure may adjust the parameters (i.e., variable 
weights) in response. 

To design useful, efficient, and analytically accurate tools that 
enable parametric interaction and OLI requires intimate knowledge 
of both mathematical models and how users process information. 
Thus, in this paper, we develop 16 principles that visual analysts 
should consider when developing these tools. We categorize these 
principles as layout, parametric, and algorithmic. Layout principles 
refer to the design of how to represent the data. Parametric principles 
deal with how to visualize and interact with parameters that do not 
necessarily have intrinsic meaning. For example, most parameters 
have domain constraints within models and algorithms. Users should 
not be able to specify values for parameters outside their domains. 
Algorithmic principles define the considerations for connecting the 
visualization to the mathematical model. The effort spent iterating 
through multiple designs of Andromeda resulted in the 
aforementioned design principles for interactive visual analytics 
tools. Our contributions are as follows: 

• design principles for interactive visual analytics tools to 
explore high-dimensional data; 

• an interface design, Andromeda, that encompasses all design 
principles. 

2 RELATED WORK 
Visual analytics tools aid users in exploring data. However, the 

tools are only useful if the design makes sense to the user, correctly 
portrays the underlying model correctly, and allows the user to 
conduct analyses efficiently. Much research exists to guide designers 
in the creation of interfaces for information visualization [9]–[12]. 
The visual analytics field specifically focuses on the design of 
interactive visualizations that provide an intuitive space that fosters 
insight creation and data understanding [13]. High-dimensional data 
is particularly difficult for users to comprehend because humans 
have trouble thinking about a large number of dimensions 
simultaneously. As discussed earlier, dimension reduction models 
reduce the data so that it is more manageable. Other non-traditional 
methods have been developed to support high-dimensional data 
exploration [14]–[16]. These techniques have yet to be incorporated 
into an interactive visual analytics tool. 

IN-SPIRE’s Galaxy View displays text documents as data points 
in topical clusters in a two-dimensional space where proximity 
implies relatedness [8]. Star Coordinates plots objects in high-
dimensional space and then projects this space onto two-dimensions 
[17]. However, within both of these tools, only surface-level 

interactions are possible. In IN-SPIRE, the user can explore the data 
by selecting groups of points. The selection is cross-referenced with 
other types of visualizations and graphs for the user to gain more 
insight. Star Coordinates allows users to rotate and scale the 
projection. These surface-level interactions are useful, however, the 
user has no control over the parameters that are used to process the 
data. 

Models have underlying parameters that can be adjusted to 
control how the data are reduced. Many tools exist to allow users to 
not only visualize high-dimensional data, but also adjust the 
parameters of the model to visualize the data from multiple 
perspectives. Systems such as STREAMIT [18] and Dust & Magnet 
[19] allow parametric interaction where the user inputs feedback to 
update the model and in turn the model updates the visualization. 
STREAMIT uses a force-directed layout to visualize streaming text 
documents based on keyword similarity. Users can modify the 
numeric parameters (i.e. importance of keywords) to update the 
visualization. Dust & Magnet displays the parameters (i.e. dimension 
weights) as “magnets” within the object visualization. Users can 
directly interact with the magnets to modify their importance. This 
direct manipulation can be more intuitive for a user than increasing 
or decreasing a numerical value. However, both approaches still 
solely provide parametric interaction which limit the depth and 
effectiveness of data exploration. 

Dis-Function incorporates OLI for the user to adjust the data 
points projected by WMDS [6]. As in Andromeda, adjusting points 
in the visualization recalculates the parameters (i.e. weight 
dimensions) as feedback to the user. However, these tools define the 
inverse model differently which we will discuss later. Despite 
providing OLI, Dis-Function does not provide parametric interaction 
which could enhance the user experience. The goal of Dis-Function 
differs from that of Andromeda. Dis-Function focuses on learning a 
distance function that represents the users understanding of a dataset, 
whereas Andromeda provides an exploratory space to gain insights 
about a dataset. 

 

3 USER INTERFACE DESIGN 
Andromeda is an interactive visual analytics tool designed to aid 

users in the analysis of high-dimensional data. It provides a way for 
users to interact with the input and output of weighted 
multidimensional scaling (WMDS). Andromeda supports both OLI 
and parametric interaction. The algorithmic pipelines of OLI and 
parametric interaction are shown in Fig. 2a and Fig. 2b respectively. 
The interface is implemented using Java Swing and WMDS uses the 
MDSJ Java Library [21]. Andromeda is composed of two main 
sections: the object view (Fig. 1a) and the parameter view (Fig. 1b). 
Examples throughout this paper use a modified version of an animal 

Fig. 2. Algorithmic pipeline (a) for parametric interaction and (b) for 
OLI or visual to parametric interaction. 



dataset provided by Lampert et al. which contains 30 animal objects 
and 31 dimensions [22]; i.e. that data include 30 31-dimensional data 
points. 

The object view. The resulting object layout calculated by 
WMDS is displayed in the object view. Each point represents one 
row of the high-dimensional data. This view has two modes toggled 
between by the control modifier key. Without the modifier key, users 
can explore and view the data points. A user can hover over (blue 
point) and select points (maroon points) to view the corresponding 
raw data. We use color to link selected points to the parameter view 
where the raw data is displayed. With the modifier key, the user 
enters move mode that encompasses object-level interaction. The 
user can manipulate points on the screen to provide input to the 
algorithm. When a point is moved, it is encoded with a green ring 
and a line from its original location to its new location (see Dolphin, 
Squirrel, and Chihuahua in Fig. 1a). Points that are selected, but not 
moved are considered highlighted. These points are encircled with a 
green ring, but do not have a line since they were not moved (see 
Elephant, Blue Whale, Skunk and others in Fig. 1a). The green 
outline matches the outline of the “Update Layout” button as a visual 
cue that all outlined points are important to the algorithm (Fig. 1d). 
Algorithmically, moved points represent explicit user input and 
highlighted points represent implicit user input as discussed in 
Section 4.3. 

After points have been moved, the user can click the “Update 
Layout” button to recalculate the layout based on the new coordinate 
locations of the moved points. An optimization algorithm is run to 
find a weight vector that best represents the new coordinates of only 
the moved points. WMDS is then run to update the coordinates of all 
points given the new weight vector. Within the object view, the 
points animate to the new locations to give the user a visual 
representation of the movement of the points. The user can repeat 
this visualization by engaging with the slider (Fig. 1c). The slider 
allows the user to manually trace all points between the previous and 
current locations. 

Table 1. Andromeda Interactions 

Feature Encoding Description 
Increase/decrease 
dimension weight 

Hand cursor 
over handle 

Drag handle to the right 
(increase) or to the left 
(decrease) 

View Mode 
Hover over point Blue in color Hover cursor over point to 

view raw data for hovered 
point on weight lines 

Select point(s) Maroon in 
color 

Click single point or draw a 
box around multiple points to 
view raw data for selected 
point(s) on weight lines 

View raw data Tooltip over 
dimension 
handle 

Hover cursor over dimension 
line to view raw data for 
selected points 

Edit/Mode Mode (Must use Ctrl modifier key) 
Drag point Green outline 

around point 
and green 
line from 
previous 
location 

Ctrl key + drag a point with 
the mouse 

Highlight point(s) Green outline 
around point 

Ctrl key + click a single point 
or draw a box around 
multiple points 

 
The parameter view. This view displays the weighted 

dimensions (Fig. 1b). Due to the algorithm only handling continuous 
numerical data, the interface shows categorical or informational 
dimensions as static text for viewing only. Each numerical 

dimension is represented by an interactive line that serves as a visual 
representation of the relative weight compared to all other dimension 
lines. The user can drag the circular handle at the end of a line to 
adjust the weight of that dimension. Since all weights must sum to 1, 
the interface automatically modifies all other dimensions when one 
dimension is increased or decreased. Modifying dimensions causes 
dynamic updates to the layout. Each time a user increases or 
decreases a dimension, WMDS recalculates the object layout based 
on this new weight vector in real time. 

The parameter view also displays the raw data values of the high-
dimensional data. All raw data values are normalized to fit a constant 
scale across all dimensions. This scale is used to plot the raw data 
onto the weight lines. When a point is selected in the object view, the 
corresponding raw data values are drawn onto each dimension line as 
a colored dot. For example, the maximum raw data value for a 
specific dimension will be placed on the far right of the line. A lower 
raw data value will appear closer to the left of the line. In Fig. 1, the 
selected maroon data points in the object view are animals that do 
not fly (third dimension line from the top), therefore the raw data 
points appear toward the left of the line. As a dimension weight is 
increased, the plotted raw data dots are stretched to fill the line. The 
raw data is not changing, however the relative distances between the 
values are changing based on the emphasis placed on that particular 
dimension. 

4 BENEFITS OF THE DESIGN 
Throughout development, we had users informally assess the 

design of our system. We applied Andromeda in an education setting 
with a graduate level visual analytics course and a graduate level 
information visualization course during separate semesters. Each 
course used a different iteration of the system so that we could learn 
from the students’ analyses. That involved collecting data about the 
students to attain two datasets with information for them to explore. 
Example survey questions included car mileage, number of apps on 
your phone, number of restaurants visited in town, and on a scale 
from 0 to 100 how extroverted would you consider yourself. Each 
class explored its respective dataset using Andromeda and developed 
insights about each other. An example sequence of user interactions 
is show in Fig. 3. We had the users reflect on their processes and 
explain any challenges they encountered with the system. We 
analyzed the insights and processes from each class to see if users 
did what we expected. If not, we developed new interactions and 
design choices that encouraged more efficient usage and addressed 
the challenges. The discoveries from the visual analytics course led 
to interface modifications for the next interface design, which was 
given to the information visualization course to repeat the process. 

We hypothesized that OLI increases usability in the following 
three ways: 

(1) Users are more likely to understand the objects themselves 
and how to manipulate them rather than the parameters and how to 
adjust those. The objects in the dataset will presumably be familiar 
entities to the user, but the particular dimensions describing the 
objects may be different from the dimensions the users have in their 
head. User domain knowledge may include additional dimensions 
about the objects that do not appear in the dataset. The user may also 
have meta-dimensions that they may or may not be able to describe 
using the dataset dimensions. For example, in the animal data, a user 
may be interested in a dimension he refers to as cat-like. He may not 
be able to explain it, but he has a preconceived notion in his head 
about whether an animal fits this meta-dimension. The user can 
perform OLI and the system will calculate dimensions within the 
dataset that define cat-like. Similarly, users have preexisting notions 
of groupings, but may not have a meta-dimension to describe the 
grouping. Again, OLI offers the ability to instinctively group similar 
objects and have the mathematical model find supporting 
dimensions. 



(2) OLI provides the ability to pose what-if questions as a separate type of hypothesis testing. Users know and understand 
preexisting relationships between objects. For example, a user can 
pose that she thinks certain objects are similar. OLI can discover 
whether there is data to support this claim. Another question might 
focus on forcing a outlier into a cluster. With parametric interaction, 
this would require many trial and error iterations until the system 
converged on an appropriate parameterization. With OLI, the user 
can drag the outlier into the cluster and let the mathematical model 
do the work. 

(3) With OLI, users have the opportunity to manipulate the data 
on the object level. We claim an object level view is a more 
meaningful space to interact than a view consisting of a list of 
parameters. As the data grows, it is easier to manipulate lots of 
objects instead of adjusting lots of parameters. We can imagine 
quickly and fluidly manipulating many objects at one time. In order 
to provide this for parameters, we would have to considerably 
modify our parameter view design choices. 

The above hypotheses were validated through our assignments 
given to the courses. The rest of this section discusses the tasks 
performed by the students through the use of Andromeda. 

Our final design encouraged users to perform new tasks creating 
analytical gains of the system. 

Injecting domain knowledge. Users inject domain knowledge 
into their explorations. For example, users clustered their peers into 
an international group and a non-international groups and 
international was not a dimension. 

Single dimension trends across all objects. Users described 
single dimension trends across all data points by selecting all data 
points in the object view to view the raw data values in the parameter 
view (Fig. 1b). 

Comparison of clusters. Users also compared clusters and 
explained what dimensions would need to change to make one 
cluster like the other. For example, one user stated that introverts 
could be like extroverts if they ate at restaurants more often, spent 
more money and had more Facebook friends. 

Filling in data gaps. Another new task was hypothesizing about 
missing data. The dataset included people who did not want to 
provide their gender. One user adjusted the data points in the object 
view to guess the gender of peers who did not provide it. OLI 
completely afforded this task. The user was then able to also state 
what dimensions characterize males and females. 

Solving a subjective question. A unique task led a user to find 
his perfect roommate out of his peers. He used parametric interaction 
to increase the weight of two dimensions (typical bedtime and 
preferred outdoor temperature). He continued to increase certain 
dimensions and noted the clusters forming close to his data point. He 
was progressively decreasing the number of potential roommates. 

Finding relationships between dimensions. Users can find out 
if different dimensions are related to each other. For example, people 
who liked to cook, may not eat in restaurants as much. 

Forcing outliers into clusters. Users forced outliers into clusters 
in order to discover what dimensions must be emphasized to include 
those outliers in clusters. 

Extremes in the dataset. Users state which two or three data 
points are most similar or different, and group dimensions based on 
categories (e.g. number of US states visited and number of countries 
visited grouped to describe how well travelled people are). 

The above new tasks would not have been possible without the 
combination of OLI and parametric interaction into one tool. 
Throughout our interface iterations, we have seen that Andromeda 
continues to allow the discovery of trivial insights through simple 
tasks, but also provides the opportunity for users to develop more 
complex insights through creative tasks. The use of OLI together 
with parametric interaction within an interface design delivers a 
well-equipped tool for visual analyses. Throughout the design 
iterations, we noted the types of tasks users were able to accomplish. 
Many tasks were consistently performed with all iterative interface 
designs. These tasks were simple and typically resulted in simple 
insights. 

Fig. 3. This is a sequence of interactions in Andromeda. (1) Initial view 
with moved points. (2)-(4) Updated layout with different clusters 
selected. (5)-(6) Update layout after decreasing vegetation dimension. 



5 DESIGN PRINCIPLES 
We established design principles that are necessary to consider 

when developing an interactive high-dimensional data visual 
analytics tool. These principles resulted from thorough evaluations of 
multiple iteratively-developed interfaces. User challenges and 
misunderstandings gave rise to new design choices that better 
articulated the appropriate usage of the tool and the comprehension 
of the underlying model. We grouped the design principles into three 
categories: layout visualization, parameter visualization and 
algorithm communication.  

5.1 Projection Visualization 
The layout visualization provides a space to visualize and 

manipulate the data points. The design principles in this section 
focus on the interactions and encodings necessary to utilize this 
space efficiently. 

(1) The projection visualization should utilize object-level 
interaction. Since OLI is familiar for users [1], manipulating the 
model output to exploit OLI provides an intuitive space for 
exploration. OLI [1] provides an intuitive interactive workspace for 
exploring complex high-dimensional data with the aid of powerful 
parameterized statistical models. WMDS and those alike provide a 
perfect opportunity to utilize OLI since it reduces data points in high-
dimensional space to low-dimensional space. In our case, 
Andromeda displays the data in two-dimensional Euclidean space, 
which is easier for users to understand. It follows naturally that users 
may adjust these data points and receive feedback based on their new 
relative pairwise distances. 

All of our interface designs provide object-level interaction. It 
allows the model to be hidden and instead relies on a familiar 
metaphor, near is similar. Users can drag the points around the 
screen to form clusters, force outliers or create other patterns. Points 
that get dragged closer are considered more similar and points that 
get dragged apart are deemed different. Operating on this metaphor 
is more familiar to users than modifying parameters that are specific 

to the model [23]. Users can easily manipulate data points that 
represent all dimensions. It also gives users another angle at which to 
approach a hypothesis when analyzing a dataset. The focus is on the 
data points instead of the dimensions. Users can form clusters and 
hypothesize about the similarities and differences among the 
included data points. In our tool, object-level interaction is possible 
because the WMDS model can be inverted to calculate a new weight 
vector that best represents the new point locations to which points 
were dragged. This inversion is discussed further in Section 4.3. 

(2) The interface should distinguish between view mode and 
edit/move mode. Visualization tools that implement mathematical 
models should support two modes: view mode and edit/move mode. 
View mode should allow the user to explore the data. Clicking 
should invoke brushing and linking between all views [10]. In 
Andromeda, clicking a point in view mode displays the raw data 
associated with that point in the parameter view. The user is able to 
explore the data points and dimensions to make insights about the 
patterns within the current layout. Edit/move mode is entered with 
the use of a modifier key. The user can manipulate points within the 
object layout in this mode. By moving points, the user is conveying 
input to the algorithm. This is an important concept for the user to 
understand since the optimization algorithm is designed to 
recalculate based on only the user moved points. Viewing the data 
and updating the algorithm are two distinct tasks. Having to 
physically press a modifier key enforces the separate modes. It is 
important to distinguish between the two to help the user understand 
the input she is providing to the algorithm. 

(3) User input to the model should be visually denoted within 
the visualization. As mentioned in the previous design principle, it 
is essential for users to understand the input they are providing to the 
algorithm. Our first iteration did not distinguish between view and 
edit/move mode. Only user moved points visually differed from 
other points with a yellow outline and straight line from the previous 
location. Users would manipulate points on the screen to represent 
their internal understanding of the similarities and differences. For 
example, one user wanted to figure out in what way two outliers 
were similar to a cluster. She dragged the two outliers closer to the 
cluster and then clicked the button for the algorithm to recalculate. In 
the resulting layout, the outliers returned to their original location 
still removed from the cluster (Fig. 5). Next she tried to drag all data 
points in the cluster closer to the outliers, which again resulted in the 
same layout with the cluster returning to its original location. Both 
results occurred because the algorithm considers only user moved 
points when recalculating the weight vector. Therefore, since she did 
not highlight any points in the cluster as well as move the outliers 

Fig. 5. These screenshots are of the first Andromeda iteration. The top 
displays where a user tried to force two outliers into the cluster. The 
bottoms shows how the user tried to force the two outliers by dragging 
all members of the cluster to the outliers. The current visualizations on 
the right side of each screenshot show that the result is not what the 
user expected since the two outliers are still outliers. 

Fig. 4. This screenshot displays the stress lines in the second 
Andromeda iteration. Darker lines depict higher stress between the 
distances in low-dimensional and high-dimensional space. 



closer to the cluster, the algorithm only considered the two outliers 
as important and not the fact that she was moving the outliers in 
relation to the cluster. 

To help elicit more input from the user, our final design 
automatically highlights surrounding points around the current 
location of the user moved point. As the user is moving the point, 
radial points are highlighted to demonstrate to the user the 
significance of highlighting reference points. For example, in Fig. 1e 
the system automatically highlighted Blue Whale and Elephant in 
response to the user dragging Dolphin closer. The system also 
highlighted Chimpanzee since the user dragged Dolphin away. We 
designed the interaction to not only help the results of the algorithm, 
but also teach the users how to specify the best input to receive 
insightful output. 

In Andromeda, the user decides when to update the layout and 
initiate algorithm input. After the user is satisfied with the adjusted 
layout by OLI, she clicks the “Update Layout” button. We had much 
discussion about the existence of the update button versus dynamic 
interaction where the layout would recalculate after each data point 
user movement. Dynamic feedback would provide a fluid transition 
between layout updates and free the user from deciding when the 
algorithm should recalculate. However, the optimization algorithm 
for WMDS inverse does not provide appropriate feedback when less 
than three low-dimensional data points are adjusted. Andromeda 
could account for this and wait until the user has manipulated three 
points, but what if the user was planning to create a cluster 
containing ten data points? The layout would update after three 
interactions and the user’s thought process might be interrupted. 
Since WMDS works most efficiently when many points are moved 
and the interface cannot predict the user’s future interactions, we 
concluded it is best to let the user be responsible for when the layout 
should be updated. 

(4) Any reasonable output from the model should be 
appropriately visualized in the interface as additional feedback to the 
user. The visual algorithmic feedback to the user is just as important 
as the input from the user. In order for the user to give feedback for 
the next iteration and continue the exploratory cycle efficiently, it 
helps to understand the algorithmic feedback. In Andromeda, 
algorithmic feedback includes: (1) a new layout, (2) the weighted 
dimensions applied to the real high-dimensional distance, and (3) a 
stress factor(s). Stress in WMDS represents a quantitative measure of 
the discrepancy between actual pairwise distances in the high-
dimensional space and those plotted in the low-dimensional space.  It 
may reported for each pair of observations, a subset of pairs, or as a 
global metric (summing the stress for all pairs). 

High stress denotes that the distance in low-dimensional space 
does not match the distance in high-dimensional space. After our 
first iteration of Andromeda we thought that users could motivate 
some interactions based on pairwise stress factors. Thus, in the 
second iteration, we designed stress lines to display upon request. 
That is, when a user clicked on a projected data point in the object 
view, the system would draw gradient lines from the clicked data 
point to all other data points (see Fig. 4) to represent stress. Darker 
lines represented higher stress meaning the two points in low-
dimensional space wanted to be either closer together or farther 
apart. However, users did not find the stress lines helpful since they 
did not depict whether the points were too close or too far compared 
to the distances in high-dimensional space. A more useful distance 
comparison to display in the object view might be to visualize the 
real high-dimensional pairwise distances in reference to a single 
point instead of the stress. 

The optimization we use iterates through many layouts to 
maximize the stress. This calculation can take a long time depending 
on the number of objects and dimensions in the data. Future visual 
feedback might include a preview of the layout as the calculations 
are occurring. Another possibility might be to recalculate the layout 
using less strict constraints on the model just to give the user an idea 
of how the layout will change given the adjustments. The user could 
then decide whether to continue with the stricter model. All design 

choices should provide the user with feedback that represents all 
aspects of the mathematical model. This provides the opportunity for 
the user to better understand the data from many different angles. 

(5) The interface should provide the user with visual feedback 
in between model updates. In our first iteration, the interface 
consisted of two object layouts: previous and current. The previous 
object view displayed the data point layout from the previous 
algorithm calculation. The current object view displayed the most 
recent data point layout. This allowed users to compare the state of 
the layout between algorithm updates. The comparison was useful, 
but visually comparing the two layouts side by side, even with 
brushing and linking, was challenging. It also decreased screen real 
estate needed for exploring and manipulating data points. For the 
second iteration, we designed a slider that animated all points 
between their previous and current locations in a single view. This 
interaction allowed users to manually trace the points’ paths while 
maximizing data exploration space. However, despite the new 
design, the comparison is misleading since all distances are relative. 
Because scale does not persist across iterations of WMDS, the 
distance between two points in one layout cannot be compared to the 
distance between the same two points in a future layout. This 
requires that we transpose the WMDS coordinates to fit into the size 
of the visualization window after each update. Despite the confusion, 
we decided this comparison was more helpful than harmful for users. 
Since our final design does not include a permanent display of the 
previous layout, but solely provides an animation, we concluded it 
was beneficial for the user to visualize the transition between states. 

(6) An interactive visual analytics tool that visualizes iterative 
updated layouts should transition between these layouts smoothly. In 
our first iteration, when a user moved points and then updated the 
layout, the recalculation would occur and the low-dimensional data 
points would abruptly relocate. As discussed in the previous 
principle, the user was able to use the slider to visualize the transition 
between the layouts. It became obvious that this transition needed to 
occur automatically so that the user saw the animation directly after 
the update calculation. In the final design of Andromeda, the low-
dimensional data points animate from their current location to their 
updated location directly after a layout recalculation as a smooth 
transition to the new visualization. As discussed in Section 3, user 
adjusted points are encoded with a green outline. The green outline is 
displayed throughout the animation so that users can track the 
projected data points of interest to the updated locations. As this 
animation is happening, the slider handle animates along its track. 
This coordination teaches the user how to use the slider after the 
transition animation is complete. The animation provides a smooth 
transition as well as a functionality depiction. 

(7) Interactive visual analytics tools should retain object 
persistence between model visualization updates. Each time the 
model recalculates, the objects relocate to a new coordinate position 
in the low-dimensional space. Because the WMDS model we employ 
is a projection of the high-dimensional space, the same weight vector 

Fig. 6. Andromeda’s first design displayed the parametric weights as a 
bar chart, shown in (a), with each dimension as a bar. Raw data 
values were statically displayed as seen in (b). 



could produce multiple data point layouts. Even a small weight 
modification could produce a completely new projection or one that 
is rotated when compared to the original layout. According to the 
model, all projected layouts are correct despite rotation. However, to 
a user, a rotation portrays a very different layout even though the 
relative distances between points might match the relative distance of 
the original layout. To combat this confusion, it is necessary to create 
object persistence between layout updates. Andromeda’s 
implementation for persistence is discussed in Section 4.3. 

5.2 Parametric Visualization 
In Andromeda, the parameters are the weights placed on all 

dimensions. We visualize each weight using a horizontal line with a 
handle at the end for adjusting the value of that weight. Our first 
iteration displayed the weights using a bar chart running along the 
bottom of the interface (Fig. 6a). Each weight value was represented 
as an interactive vertical bar within the bar chart and raw data values 
were displayed as static text as shown in Fig. 6b. By substituting the 
bars for lines and merging the lines and the raw data view, we gained 
more space for the layout visualization. It also more strongly 
connected the dimensions to the raw data for more efficient data 
exploration. The following principles govern the parametric 
visualization of the model. 

(1) It is important to design an abstract way for the users to 
instinctively adjust the parameters without having to be experts about 
the model. Parametric interaction allows users to adjust the 
underlying parameters that define the model. Andromeda allows 
users to increase and decrease the dimension weights by dragging 
handles. In WMDS, the actual numerical value of each dimension is 
not necessarily useful because how the weights relate to one another 
is more telling. For example, if a user increases one dimension to be 
more highly weighted than a second dimension, she is saying that the 
first dimension is more important than the second. Exactly by how 
much does not matter as much as the relative differences between the 
dimension weights. Therefore, the semantic interaction of weight 
lines is more intuitive than typing in numerical values. Providing a 
visual representation of the numerical parameters may not make 
sense for all mathematical models, but designing an appropriate 
parametric interaction that decouples the interaction from the 
complexity of the parameters allows the user to focus on the data and 
not the model. 

(2) Interactions must adhere to the model constraints. It is 
important to design tool interactions that are in keeping with the 
model constraints. Parameters must be contained within a feasible 
range of the parameter space. Dimension weights define the 
parameters of WMDS. WMDS requires that all weights sum to 1. 
Because of this constraint, the parametric interaction of increasing a 
weight requires the decrease of all other weights. As a visual cue, 
Andromeda dynamically decreases all other weights as a user 
increases a single weight. The model constraint is visually expressed 
to the user. 

WMDS is also constrained by the real high-dimensional distances 
between the data points. However, these distances are altered when a 
weight is emphasized over other weights. Similarities and differences 
of the data points are enhanced when a weight is increased. We 
overlay the raw data values on the weight lines to show the relative 
distances between data points as the weights are adjusted. For 
example, in Fig. 7a the squirrel and skunk seem to have about the 

same level of fierceness. However, when fierceness is emphasized in 
Fig. 7b (i.e. the fierce dimension weight is increased) either by 
parametric interaction or by OLI, the skunk appears relatively more 
fierce than the squirrel. Since the user increased the importance of 
the fierce dimension, the degree to which the animals differ will 
become more pronounced. Overlaying the raw data onto the weight 
lines requires the lines to be at least a certain length so that we do not 
lose the ability to inspect the raw data values. Therefore, Andromeda 
places an arbitrary vertical gray line to denote zero weight for each 
dimension. For example, if we were to decrease the fierce dimension 
weight in Fig. 7 all the way to the left past the gray line, then we 
would not longer have a line on which to see the raw data values for 
the squirrel and skunk. Users must remember that the weight line 
does not disappear when the value is close to zero; the handle is 
merely close to the gray line. 

The type of model parameters should guide how they are 
displayed within the interface. In Andromeda, we display each 
weight parameter as a horizontal line. The number of lines displayed 
in the parameter view depends on the number of dimensions in the 
data and the physical screen space limits the number of weight lines 
that can be visualized. The parameter view is scrollable to allow an 
infinite number of visualized dimensions. However, to support fluid 
interactions and visualization updates, Andromeda sorts the 
dimension weights based on value from highest to lowest. This limits 
the amount of time the user has to spend scrolling through 
dimensions. It also places the feasibly most important weights in the 
user’s immediate view. Also, more dimensions means lower overall 
weights since all weight values must sum to 1. 

(3) Smooth transitions of the parameters should occur in 
parallel with transitions in the object view. Earlier we discussed 
the importance of smooth transitions between updates to the low-
dimensional data point projection. Smooth transitions are also 
necessary for updating the parametric feedback. For example, as a 
single weight is adjusted, Andromeda dynamically increases or 
decreases all other weights to fulfil the model constraint that all 
weights must sum to 1. The real time animation indicates the change 
of all the weights to the user and eliminates a jumpy update on 
mouse release. If the parametric feedback is connected to the object-
level feedback, then the transitions should happen in parallel. 
Andromeda’s visualization of the weights displays a line for each 
dimension. After a recalculation, the weight lines grow and shrink in 
parallel with the animation of the data points in the object view. The 
user can visually track which dimension weights are increasing and 
which are decreasing. The animation is repeated when the user 
engages the slider. 

(4) The interface should support dynamic parametric 
interaction. Interactions with parameters should happen in real time. 
While a user is performing an analysis, it is inefficient and interrupts 
cognitive processes for him to wait for the model updates. Dynamic 
interaction allows for a more fluid exploratory process because there 
is not lull. By implementing dynamic interaction, we also eliminate 
the need for a button that updates the layout with the new 
parameters. Andromeda’s first iteration required the user to adjust 
the weights of interest and then click a button. This button was also 
used to update the object view which brought up challenges. Since 
Andromeda encompasses two separate algorithms for OLI and 
parametric interaction, if a user adjusted a parameter, the system 
disabled the object view until the parameters were updated. 
Disabling part of the visualization only causes confusion because the 
user has to pause the analysis to figure out why he cannot perform 
the interaction he had planned. 

Modifications to the implementation of the WMDS parameter 
model hastened the calculation to real time speed. The final design 
eliminated the button for parameter updates because the real time 
speed supported dynamic interaction. 

5.3 Algorithmic 
Analytic tools with OLI capabilities have automated procedures 

in place to update display-generating parameters in response to 

Fig. 7. (a) and (b) show the difference in raw data point placement on 
the weight line after the fierce dimension is increased. The two 
objects’ relative distance in reference to fierceness has increased 
since that dimension was emphasized. 



specific user interactions with visualizations. These procedures rely 
intimately on the models or algorithms chosen to generate the data 
visualizations. Some algorithms are more conducive for OLI than 
others. Principles of good algorithms are highlighted below. 

 
(1) The algorithm should be invertible. Typical visual analytic 

algorithms rely on parameters to reduce data dimensionality for 
visualization purposes. Ideally, visualizations are functions of these 
parameters so that when visual adjustments are made, an inverted 
form of the function may solve for new parameter specifications. 

For example, Andromeda relies on the algorithm called WMDS. 
In this algorithm, there are parameters ω=[ω1,ω2,...,ωp]ʹ′ that reflect 
the importance in a visualization of each variable in the p-
dimensional data space. We refer these parameters ω  as weights. 
Low-dimensional (e.g., two-dimensional) coordinates r of high-
dimensional data points d are determined based on minimizing a 
stress function with respect to r given ω , 

 
𝑟 = min
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    ,        (1) 
 
where, n represents the number of data points; distL(ri, rj) 

represents a distance measure between low-dimensional points ri and 
rj; and distH(ω , di, dj) represents a distance measure between high-
dimensional points di and dj. To be clear, ri, rj are low-dimensional 
representations of di, dj. In Andromeda, distL() is Euclidean distance 
and distH() is weighted Euclidean distance, 

𝑑𝑖𝑠𝑡! 𝜔,𝑑! ,𝑑! = 𝜔!(𝑑!" − 𝑑!")!
!

!!!

     . 
When users either change the coordinates of some data points or 

highlight points to consider for an updated visualization, Andromeda 
inverts the optimization in Equation (1). That is, Andromeda solves 
for ω  given moved or selected coordinates r*, 

 
𝜔 = min
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     . 
 
As a result, there is a clear, quantitative, and parametric 

interpretation of moving low dimensional coordinates in 
visualizations. 

(2) The inverted algorithm should emphasize explicit user 
input. When interacting with a screen full of objects, users tend to 
concentrate on a small number of objects. These explicit interactions 
contain more information about user semantics than the other objects 
on the screen [24]. Some early OLI systems opt for considering all 
objects in the projection with equal weights [6]. This approach may 
distort the interpretation by introducing too much noise. OLI 
systems, on the other hand, always allocate more attention toward 
objects with which users have specifically interacted. This approach: 
(1) increases the likelihood of correctly identifying the semantics and 
(2) reduces the computational burden because it lessens the number 
of objects the model considers. 

(3) The inverted algorithm should consider implicit user 
input. Objects that are not directly manipulated by the user may still 
express user semantics. For example, a user may decide to move 
some objects toward a reference point (say Object A) in order to 
express similarity. Object A will be unmoved during the interaction, 
but object A is still of high value in understating the user semantics. 
Identifying these implicit objects is a tricky task. Two approaches 
should be considered: (1) provide appropriate tools to assist users in 
being more explicit about their semantics (i.e. highlighting in V2PI-
MDS) and (2) nominate objects in a close vicinity of an explicitly 
interacted object and allow the users to confirm or overrule these 
suggestions (i.e. Andromeda). 

 (4) The algorithm should be fast. To enable users to explore 
data in parallel with how they are thinking about the data, the 
selected display-generating algorithm must be computationally 
expedient. That is, both the standard algorithm and its inverted form 
should operate in real time, or as close to real time as possible. When 
we first started developing Andromeda we explored several 
optimization schemes and opted to invoke a general purpose gradient 
descent algorithm [25]. In our case, the inverted form of WMDS is 

much slower than its standard form; i.e., solving for ω  given r* is 
slower than solving for r given ω . Developing a speedy optimizer in 
both directions is an active research area, however, recent advances 
have led us to a Quadratic Programming solution to an approximated 
objective function, which greatly reduces computation times. 

  (5) The algorithm should be deterministic. Crucial to OLI is 
that users may create multiple visualizations in a sequence that 
parallels their sense making process. Thus, random perturbations in 
visualizations may confuse users; changes to visualizations should 
reflect added information provided by user interactions. If no 
information is added by a user, an “updated” visualization should not 
change. Thus, stochastic algorithms or optimization schemes that 
may get stuck in varying locations due to function multi-modality 
may not be appropriate for OLI software, unless added precautions 
or steps are taken. For example, WMDS is invariant to scale, 
rotation, and reflection. Thus, when solving for r given ω  (Equation 
(1)), it is possible to have reflected, rotated, or scaled versions of one 
data visualization; e.g., if the Update Layout button is hit twice, 
Andromeda may produce reflected versions of low-dimensional 
coordinates. To overcome this problem, Andromeda takes an extra 
processing step to align and scale coordinates after solving for r. As 
a result new information in sequential visualizations is not masked 
by arbitrary mathematical properties of WMDS. 

6 CONCLUSION 
We formulated design principles for visual analytics tools 

encompassing multiple views and ways of interacting with 
mathematical models for exploring high-dimensional data. 
Specifically, the interactive layout visualization should display the 
objects and encode both user input to the model and model outputs to 
enhance the user’s understanding of the model and how to interact 
with it. The interactive parameter view should be designed in a way 
that keeps the integrity of the model intact. We described the 
necessary principles to consider when designing the model itself as 
well as how it relates to the interface. Designers should consider all 
three categories of principles to fully understand the impact and 
interconnectivity of design choices within an interface. 

We discussed the benefits of OLI and the important role OLI 
plays in a well-designed visual analytics interface for exploring high-
dimensional data. We stressed the importance of including both 
parametric interaction and OLI. With both types of interaction, a user 
is able to gain more complex insights and accomplish new types of 
tasks. 

In the future, we hope to see how these principles apply to other 
dimension reduction models so that they too are accessible to users 
without strong model knowledge. 
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