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Abstract

Typical data visualizations result from linear pipelines that start by characterizing data using a model or algorithm to reduce
the dimension and summarize structure, and end by displaying the data in a reduced dimensional form. Sensemaking may
take place at the end of the pipeline when users have an opportunity to observe, digest, and internalize any information
displayed. However, some visualizations mask meaningful data structures when model or algorithm constraints (e.g.,
parameter specifications) contradict information in the data. Yet, due to the linearity of the pipeline, users do not have a
natural means to adjust the displays. In this paper, we present a framework for creating dynamic data displays that rely on
both mechanistic data summaries and expert judgement. The key is that we develop both the theory and methods of a new
human-data interaction to which we refer as ‘‘ Visual to Parametric Interaction’’ (V2PI). With V2PI, the pipeline becomes bi-
directional in that users are embedded in the pipeline; users learn from visualizations and the visualizations adjust to expert
judgement. We demonstrate the utility of V2PI and a bi-directional pipeline with two examples.
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Introduction

Organizing and understanding large datasets are complex tasks

for many scientists, engineers, and intelligence analysts. To aid

them in such sensemaking endeavors, tools have been developed to

visualize high-dimensional data. These tools rely on mathematical

models or algorithms that collapse high-dimensional data matrices

to much smaller visual spaces (i.e., spaces of only two or three

dimensions). For example, common visualizations of high-dimen-

sional text data extend upon a geography metaphor and use

algorithms to display such data in two-dimensional maps [1]. One

problem is that visualizations can mislead users, just as any data

summary might, by over-simplifying features or structures in high-

dimensional datasets. Therefore, low-dimensional versions of high-

dimensional data have the potential to be misleading. When this

happens, users currently have limited options to correct the

problem.

Namely, displays of data in two or three dimensions result

typically from a linear visualization pipeline shown in Figure 1,

where data D are summarized by a mathematical model or

algorithm M(h) first and subsequently mapped to a visual display

V . A display is controlled solely by the algorithm that generated it

and adheres to predefined mathematical objectives, constraints, or

parameters denoted by h. When these constraints contradict

expert judgment, they warp or miss useful data features and

visualizations can lose interpretability. For examples, consider

visualization methods Principal Component Analysis (PCA) [2]

and Multidimensional Scaling (MDS) [3]. PCA is a common

analytical approach that projects datasets to two dimensions (in the

case of visualization) in the directions with the highest variance.

PCA loses its utility when meaningful features in the data do not

correspond with variance. Similarly, MDS is an analytical

approach that solves for low-dimensional (e.g., two-dimensional)

coordinates of data points by minimizing the difference between

pairwise distances of observations in high- and low-dimensional

spaces. When the the chosen distance function lacks relevance to

the application, MDS can produce visualizations that are hard to

interpret.

As defined by the current pipeline (Figure 1), users do not have

an intuitive or natural means to correct visual inaccuracies-beyond

the option of starting the pipeline over. For example, users can

transform the data or adjust the display-generating model (e.g.,

tweak model parameters h) to re-implement the pipeline and

create new visualizations. This means that users, who may not

have the appropriate mathematical training, must have a deep

enough understanding of the display-generating models to change

them or the data in a way that will result in useful visualizations.

When users cannot parameterize their expert judgements, the

pipeline is broken and sensemaking stalls.

In the field of Visual Analytics (VA), the disconnect between

static displays of data and usability has been studied extensively

and has motivated research in human-computer interaction [4–7].

It has been shown that when users interact with visualizations,

users learn more from the data than when they do not, even when

the model is arguably poor. In the Methods Section, we define

common forms of interaction that are readily available in many

VA tools: surface-level and parametric interaction. VA tools that

enable surface-level interactions allow users to edit displays

independent of the underlying models or algorithms; e.g., high-

lighting or filtering observations. Whereas, when users interact

parametrically, they manually change influential parameters in the

display-generating models or algorithms. For example, iPCA [8]
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and XGvis [9] are VA tools that allow users to adjust dials or

sliders that either augment or out-right change influential

parameters in PCA or MDS, respectively.

Despite the extensive development of human-computer inter-

actions and VA tools, sensemaking of complex data is still limited.

The pitfall of current forms of interactions is that users are still

constrained by the linear pipeline and placed at either the

beginning or end. For example, surface-level interactions take

place at the end of the pipeline by users who are trying to salvage

information from a potentiality misleading view of the data.

Whereas, parametric interactions take place at the beginning of

the pipeline by users who are forced to make model adjustments.

Although parameter-controlling dials and sliders are easy to

manipulate, users must still understand the mathematical models

or algorithms to explore data efficiently. Without understanding

the mathematics, users have two options a) hope (not know) that

their parametric adjustments will convey their expert judgments

appropriately or b) evaluate data visualizations given every possible

combination of the parametric settings. For one parameter (e.g.,

one dial), option b) is do-able, even when the parameter is

continuous. However, given two or more continuous parameters,

we think that option b) will quickly overwhelm users by the infinite

number of parameter combinations.

In this paper, we discuss a new form of human-computer

interaction to which we refer as ‘‘Visual to Parametric Interaction’’

(V2PI). We recognized that when users make certain surface-level

changes to displays, the users are communicating that the display-

generating algorithm is not working properly. V2PI s interpret

quantitatively what is communicated by the users to make

parametric model changes (and, subsequently, new visualizations).

In Endert et al. [10], we provide specific examples of V2PI. Here,

we not only apply V2PI, but also define V2PI explicitly, highlight

the framework to develop a V2PI, discuss advantages and

disadvantages of V2PI, and explain fundamental changes in the

process to visualize and explore data when V2PI is possible. V2PI

transforms data visualizations from being static to dynamic in that

V2PI enables information to flow fluidly between display-

generating algorithms and users. Users learn from visualizations

and the visualizations adjust to expert judgement. Thus, with

V2PI, the visualization pipeline becomes bi-directional in that

users are not simply at the starting nor receiving end of the

pipeline, but are embedded in the visualization scheme formally.

To be clear, VA tools that enable V2PI and rely on the bi-

directional visualization pipeline foster data exploration. V2PI

does not guarantee the discovery of all or any particular feature in

the data. As a data exploration tool, V2PI merges two learning

technologies: 1) statistical/data mining methods and 2) interactive

visualization techniques. The first technology focuses on mathe-

matical/algorithmic representations of data, whereas the second

provides cognitive representations of data. While V2PI maintains

the rigor of mathematical/algorithmic technologies, users only

operate within visual layouts of data. Hence, again, the

methodology we develop from the merger is one for data

exploration. In our examples (Results Section) we reiterate the

exploratory nature of our methods, but for explanatory reasons we

offer a ‘‘ground-truth’’ to exemplify how visualizations adjust and

what we can learn using V2PI.

The remainder of the paper has four main sections: Methods,

Results, Discussion, and Conclusion. In the Methods Section, we

provide background about visual analytic interactions and

introduce V2PI. We define V2PI, develop the bi-directional

visualization pipeline, and explain required steps to construct

V2PI VA tools. In the Results Section, we apply V2PI in two case

studies. For each case study, we describe the data at hand, a

reasonable method for visualizing it, potential feature-masking

constraints of the methods, and implement V2PI to relax those

constraints. We reflect on the case studies in the Discussion Section

to acknowledge both the benefits and limitations of V2PI. In the

Conclusion Section, we summarize our current and future work.

Methods

2.1 Background: Visual Analytic Interactions
The process of using data to update domain specific knowledge

is referred to as sensemaking [11,12] and has been represented in

the form of a sensemaking process [13,14]. In this process, analysts

(i.e., experts, users, applied researchers, etc.) begin with a

knowledge base that they hope to either expand or adjust given

the data. The information discernible in data is often unclear to

analysts. Thus, learning from data may take place over time or a

series iterations during which analysts explore the data and

assimilate what they observe with their knowledge bases. Such

explorations/assimilations may take place each time analysts

interact with data.

In fact, Pike et al. [7] states, ‘‘interaction is the insight,’’ and

according to Thomas and Cook [12], Visual Analytics (VA) ‘‘is the

science of analytical reasoning facilitated by interactive visual

interfaces.’’ In VA, various types of interactions have been studied,

and Pike et al. [7] categorize them into two main groups: lower-

and higher- level interactions. The primary difference between

these groups pertains to the goal of the users when they interact

with the data. With lower-level interactions, users aim to

summarize ‘‘low-level structure’’ in the data including maxima,

minima, simple patterns, and linear trends. Examples of such

interactions include filtering, sorting, and other specific formal

queries. Any interactions that are not considered lower-level are

higher-level. The purpose of higher-level interactions is to

‘‘understand’’ the data by uncovering features based on abstract

or complex (e.g., nonlinear) data characterizations.

In this section, we refine the interaction groups further as surface-

level and parametric to motivate the development of V2PI. We

explain each the interactions within the context of Figure 2.

Figure 2 was created by a VA tool called IN-SPIRE [15] and

displays a ‘‘Galaxy View’’ of text data that were collected for an

intelligence analysis. In this spatialization, the data points, i.e.,

documents, are represented by dots and clustered algorithmically

by IN-SPIRE. The aim for IN-SPIRE is to assist users in grouping

similar documents together and displaying them in an accessible

fashion.

2.1.1 Surface-Level Interactions. Surface-level interactions

are performed purely within the visual domain and are contained

in the lower-level class of interactions. Data rotations, reflections,

and translations, highlighting or editing observations, and

zooming into a portion of the visual space are each examples of

surface-level interactions. These interactions, while capable of

enhancing the understanding of complex data structures, do not

necessarily relate coherently to mathematical data structures.

Figure 1. Standard visualization pipeline. Data D feeds into a
mathematical model M that relies also on parameters h, and produces
a visualization V . The users U make sense of the visualization to the
best other their abilities. To correct any visual inaccuracies, users must
either change M , D, or h.
doi:10.1371/journal.pone.0050474.g001

V2PI
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Within the context of Figure 2, surface-level interactions may

include opening, closing, highlighting, and filtering documents or

repositioning clusters. For example, users may wish to drag the

cluster labeled by, ‘‘rain, snow, storm,’’ to the bottom right of the

screen because they feel that the cluster is unimportant. This

adjustment is independent of the underlying algorithm and

committed purely for organizational purposes.

2.1.2 Parametric Interactions. Parametric interactions are

performed directly on the mathematical models that control

visualizations. iPCA and XGvis are VA tools that permit

parametric interactions; iPCA allows users to interact directly

with the principle eigenspace of the data, and XGvis enables users

to change either the analytical metric scaling method (measure for

distance between observations) or the local optimization scheme

used to solve for lower dimensional versions of high-dimensional

observations. If IN-SPIRE had the capability for a user to specify,

say, the number of clusters in Figure 2, it would be an example of a

tool that also permits parametric interactions. Table 1 provides a

non-exhaustive list of other parametric interactions.

Regardless of whether users apply parametric or surface-level

interaction, they are often trying to match the visualization to their

personal mental maps of the data. A user is more likely to make

sense of the data when the data appear in an expected form.

However, editorial changes to visualizations dismiss their math-

ematically driven interpretations, and, parametric changes may

not produce ideal visualizations for users. Mental maps of data

may not comply to rigid, parametric characterizations of the data.

This means that regardless of how many times parameters are

adjusted, it is possible that suitable images of data may never be

obtained by users. What users need is an interaction that balances

surface-level and parametric adjustments to displays of data. For

this reason, we develop Visual to Parametric Interactions (V2PI)

2.2 Visual to Parametric Interactions (V2PI)
Surface-level interactions are intuitive to implement, but may

lack analytical interpretation because they are independent of the

mathematical underpinnings of visualizations. Parametric interac-

tions maintain the integrity of mathematical data characteriza-

tions, but can be difficult for analysts to understand. To combine

the ease of surface-level interactions and the mathematical rigor of

parametric interactions, we introduce Visual to Parametric

Interaction (V2PI). In this section, we define Visual to Parametric

Interaction (V2PI), show how it fits in a bi-directional visualization

pipeline, and refine technical points about V2PI. Subsequently, in

the Results and Discussion Sections respectively, we apply and

summarize V2PI in case studies.

2.2.1 Definition. V2PI is the act of making surface-level

interactions that are interpreted by software quantitatively to make

parametric model changes (and, subsequently, new visualizations).

For example, one interpretation of the clustering structure in

Figure 2 is that observations within clusters are more correlated

than observations between clusters. Suppose a user chose to

Figure 2. A ‘‘galaxy view’’ of text data created by the IN-SPIRE suite of data visualizations. In-SPIRE uses complex mathematical models in
order to discern structure (e.g., clusters) in high-dimensional data.
doi:10.1371/journal.pone.0050474.g002

Table 1. A non-exhaustive list of parametric interactions.

Visualization Parametric Interactions

Data in clusters A user defines a cluster by specifying the required shape, minimum distance from other clusters, or minimum
number of elements.

Data network A user adjusts the number of nodes and/or edges.

Classification tree diagram A user adjusts the probabilities that branches split.

doi:10.1371/journal.pone.0050474.t001

V2PI

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e50474



commit a surface-level interaction by merging two neighboring

clusters together. This interactions suggests that the algorithm (as

parameterized) underlying the IN-SPIRE visualization under

estimates the correlation between a subset (those selected) or all

observations. If IN-SPIRE had V2PI capabilities, IN-SPIRE

would quantify and parametrize the merger to adjust all or a

subset of pairwise correlation measurements. In turn, IN-SPIRE

would use the adjusted correlation measurements to create a new

display with different clusters and ready for further V2PI.

The novelty of V2PI is that developers of VA tools with V2PI

functionality must learn users’ intent from surface-level interac-

tions and develop a strategy to automate mathematical adjust-

ments to display-generating models accordingly. Thus, developers

must know, in advance, how to interpret, process, and parametrize

various surface-level interactions. Table 2 provides a non-

comprehensive list of surface-level interactions with possible

parametric interpretations. Alas, not every surface-level interaction

will have a meaningful parametric interpretation and, for those

that do, the process to parameterize the surface-level interaction is

model specific. We discuss the process in the Section 2.2.3,

Parameterizing Feedback, and provide examples in the Results

Section.

The primary advantage of V2PI is that displays of data that

were once static become dynamic. They can respond indefinitely

to surface-level interactions (with the parametric interpretations) to

account for expert judgment and potentially reveal additional

information in the data. Thus, as users learn more, new

visualizations can update accordingly; and, as visualizations

update, users can learn more. With V2PI, is a bi-directional flow

of information in the visual domain of the data between display-

generating models and users. In the next section, we develop the

concept of a bi-directional visualization pipeline in detail and

further explain V2PI.

2.2.2 V2PI and the Bi-directional Pipeline. By construc-

tion, visualizations that result after a user’s V2PI are dynamic and

represent both the high-dimensional data according to the model

or algorithm and expert judgement. Users learn from the

visualizations and the visualizations adjust to user feedback, as

defined by the parametric interpretation of some surface-level

interactions. By interpreting the interactions in a parametric form,

a) the models or algorithms work as defined originally, but now

rely on both the data and user feedback; and b) the models create

new visualizations that are subsequently available for additional

feedback.

To see this, consider Figure 3, a bi-directional version of the

original visualization pipeline. This version is similar to Figure 1,

except users may now receive and distribute information in the

visualization iteratively. Specifically, Steps 1 and 2 of the bi-

directional pipeline are similar to the original in that a

mathematical model M that relies on data D and parameters h
constructs a visualization V that users U assess for sensemaking.

Now, with V2PI, users have the opportunity to commit either

standard (surface-level or parametric) interactions or offer

feedback about the model via the visualization. If users choose

V2PI, they make surface-level adjustments to visualization V to

create V
0

(the original V with adjustments). We distinguish

standard surface-level interactions from those associated with

V2PI by referring to the latter as cognitive feedback, Fc. That is, in

Step 3 of the bi-directional pipeline, users communicate their Fc

by creating visualization V
0
. In Step 4, the cognitive feedback is

parameterized to update h for M(D,h) accordingly; we refer to the

parameterized version of Fc as parametric feedback Fp. This step is

represented by a dashed line because, in practice, users are

protected from the parameterization of Fc. VA developers of

visualization tools with V2PI capabilities must have the compu-

tational and mathematical machinery in place to parametrize

cognitive feedback. Given Fp and the updated h, the pipeline steps

may repeat.

Steps 1–4 may iterate until any of the following occurs: users are

satisfied with the display; the data have been explored thoroughly;

or the sensemaking process is complete. For this reason, the bi-

directional pipeline is similar in spirit to typical depictions of

sensemaking and human-computer interaction, including those

developed by Norman, Abowd and Beale, and Keim et al.

[5,16,17]. Such depictions outline actions that need to be taken by

the user and/or the system (e.g., data analysis, computer,

visualization, etc.) to enable sensemaking of data. The bi-

directional pipeline, however, is more detailed than these

depictions. For example, Keim et al. [5] present an iterative

‘‘Visual Analytics Process’’ that considers the potential for users to

obtain insight from visualizations and commit interactions ‘‘to

Table 2. A non-exhaustive list of V2PI.

Visualization Surface-Level Interaction
A Parametric
Interpretation

Data in clusters Move two points from different clusters to the same cluster Up weight the current
clustering role of the
dimensions in which
the observations are
similar

Two-dimensional map or
spatialization of data

Change the relative locations of points Down weight the
dimensions that
dictate the current
map

Data network across nodes/data
points

Delete a connection between nodes Decrease the current
correlation between
the nodes

Classification tree diagram Delete a classification braUnch Reduce the current
marginal probability of
belong to the
corresponding class

V2PI requires parametric interpretations of surface-level interactions.
doi:10.1371/journal.pone.0050474.t002

V2PI
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refine parameters in the analysis process and steer visualization.’’

Whereas, the bi-directional pipeline describes specifically how

users interact with displays of data and how the system interprets

these interactions to update the analytical process, when the

parametrization machinery (Step 4) is in place. Also, communi-

cation between the system and the users in the bi-directional

pipeline takes place explicitly in the data visual domain. In fact,

visualizations V and V
0

are connected in Figure 3 to emphasize

this point.

The process to parameterize cognitive feedback is model and

application specific. Unlike standard constraint-based user inter-

faces that are described in Myers et al. [18], new visualizations in

the bi-directional pipeline do not simply result from fixing

adjustments in V
0

and configuring what remains in the visualiza-

tion accordingly. Rather, we learn from V
0

how we might adjust

display-generating parameters that would impact the entire display

jointly. Careful thought is needed to interpret and quantify

cognitive feedback in a form that both captures the users’ intent

(reasons for injecting the cognitive feedback) and is compatible

with the model. In the next section, we highlight what needs to be

considered when parameterizing feedback and, in subsequent

sections, we provide examples within the context of case studies.

2.2.3 Parameterizing Feedback. In both the original and

bi-directional visualizations pipelines, the visualizations depend

upon a model M with inputs, data D and parameters h. If we

consider the data D to be given (e.g., we do not transform nor filter

the data), visualizations can only change when we alter specifica-

tions for h. Thus, in some sense, all visualizations rely on

potentially tunable parameters h. Within the context of V2PI, we

parameterize feedback that is communicated by V
0

to tune

specifications for h; i.e., we use Fp to adjust the model parameters

from an original setting, h~T , to a setting that accounts for

feedback, h~TF . In turn, new visualizations rely on the model M,

data D, and expert-adjusted parameter specifications h~TF . For

example, some models M rely on an optimization procedure to set

h~T and visualize data D. Based on Fp, we might adjust the

procedure which will subsequently result in calculating h~TF .

The challenge is formulating Fp from V
0

so that we can specify

TF . Our solution is two fold. First, we solve an inverse problem in

that we estimate a value for h that would result in either the

adjusted display V
0

or the adjusted observations within V
0
. This

solution is Fp, a parametric interpretation of Fc. Second, we take a

weighted average of T and Fp to set TF ,

TF ~rFpz(1{r)T , ð1Þ

where r[½0,1� and r reflects the weight users want to place on

their judgements relative to the current visualization, e.g., when

r~1, h is specified entirely by expert judgement in that TF ~Fp.

The choice to take a weighted average of T and TF is both flexible

and justifiable theoretically when h is assessed using Bayesian

methods [19]. If users are unclear about weight r, they may apply

parametric interaction to observe how their feedback impacts a

visualization by slowly transitioning r between 0 and 1.

We have mentioned several times that V2PI may occur in

sequence; i.e., the bi-directional pipeline may repeat several

iterations before a user feels satisfied with the data exploration.

With each injection of cognitive feedback, a parametric form is

derived and a new visualization is created. To convey this

mathematically, consider the ith execution of V2PI such that

TF ,i~riF i
pz(1{ri)TF ,i{1, ð2Þ

where TF ,i{1 represents the specification for h that created the

visualization which was adjusted for the ith iteration and TF ,0~T
(the original specification for h). There is no notion of convergence

when considering V2PI. Users choose to stop iterating when the

data visualizations make sense. In some cases this means that users

may stop when a particular structure in the data appears or, in

other cases, when users assess the data from multiple perspectives

(based on multiple implementations of V2PI) and simply feel

comfortable with the data exploration. For the sake of being clear

about V2PI, we exemplify it and the bi-directional pipeline in the

next section using case studies that fall into the former category.

Results

We provide two case studies that rely on either PCA or MDS to

demonstrate the development and use of V2PI. PCA and MDS

are similar (in fact, under some conditions, the same) in that each

produces a spatialization of data for which the relative pairwise

distances between observations has meaning; observations that

appear close or far apart in visualizations are similar and different,

respectively, in the high-dimensional data spaces. Thus, each case

study allows users to explore data and adjust the coordinates of

two or more observations (hence change the relative distances

between points) to communicate cognitive feedback in the bi-

directional visualization pipeline. However, PCA and MDS can

differ by the way they learn the low-dimensional relative distances

between observations. In turn, the methods we use to interpret and

parameterize the cognitive feedback in the visualizations are

different.

We begin each case study with a description of data and

theoretical details of the analytical procedures, PCA or MDS.

Then, we use the steps of the bi-directional pipeline to guide our

discussions. We develop V2PI based on the parameterization of

one form of cognitive feedback per example.

3.3 Case Study 1: PCA
3.3.1 Data. The bi-directional pipeline and V2PI fosters data

exploration and has the potential to reveal structure (when it exists)

in data spatializations, such as clusters. To begin an exploration,

experts often use what they know about the data. However, what

they ‘‘know,’’ may be incomplete or reflect mere conjectures. For

example, in genetic analyses, biologists might know the pathways

to which some genes belong, but not all; or, to assess voting

tendencies, political analysts might know the party affiliations of

some voters, but not all. For such cases, it is reasonable to take

semi-supervised analytical approaches to assess data and infer the

global data structures. In this section, we use simulated data to

emulate such scenarios.

Figure 3. The bi-directional visualization pipeline. Step 1) Create
visualization V based on a mathematical model or algorithm M that
depends on data D parameters h; Step 2) display the visualization for
users U to assess, Step 4) Users adjust the visualization to offer model
feedback; and Step 5) Update the model M (e.g., via the parameters h).
doi:10.1371/journal.pone.0050474.g003

V2PI
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We simulated a p~3 dimensional data set x that contains

n~300 observations and three clusters, as shown in Figure 4A.

Since we simulated the data, we have access to detailed

information concerning the cluster assignments of each observa-

tion. However, we only reveal the cluster assignments for 20 of the

300 observations; ten observations were selected at random from

clusters 1 and 2 each. To visualize these data we apply PCA and

highlight the selected observations in Figure 4B. Notice in

Figure 4B that observations from clusters 1 and 2 do not group.

Rather, they are mixed in a seemingly random scatter within the

remaining data. Based solely on the display, we cannot make

judgements about, say, the number of clusters, size of clusters, and

assignments of observations to clusters.

If we were willing to use the true classifications for the

remaining 290 observations, we could define the clusters as a

function of the dimensions in x by using fully supervised learning

strategies, such as a labeled version of PCA or linear discriminant

analysis [20,21]. However, we consider only what is known about

the 20 highlighted observations in Figure 4B and we take a visual

data exploration approach. In the sections that follow, we develop

both the mathematical and computational machinery to apply

Figure 4. V2PI with PCA. Figure A displays the simulated data in three dimensions. Observations in red, green, and blue denote groups 1, 2, and 3
respectively. Figure B displays the PCA projection of the simulated data with 20 observations (that were selected at random) highlighted. Again, red
and green points represent observations in groups 1 and 2 respectively. Figures C and D show updated displays after an adjustment to Figure B.
Figure C is the result of moving points marked by ‘z’ in Figure B apart and Figure D is the result of moving the points marked by ‘|’ in Figure B
together. Notice that both adjusted visualizations capture the clustering structure.
doi:10.1371/journal.pone.0050474.g004

V2PI
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V2PI and create new PCA visualizations. We start first by

explaining the technicalities of PCA.

3.3.2 Description of PCA. PCA is a deterministic, analytical

procedure that relies on an optimal linear projector to reduce the

dimension of a data set. Consider a center-shifted, p-dimensional

data set x that contains observations xi where i[f1,:::,ng; i.e.,

x~fx1,:::,xng and x is p|n. In our simulated example above,

p~3 and n~300. PCA relies on the solution for a q|p
transformation matrix W , where qvp, that maximizes the

variance of a low-dimensional version of x which we denote by z.

To solve for W , one option is to take the eigen-decomposition of

the sample variance (of x), S, such that S~ULVT , where U is

p|p and contains the eigenvectors of S, U~V , and L is a

diagonal matrix that includes the ordered eigenvalues of S (e.g.,

the element in the first column and row of L contains the largest

eigenvalue of S). Since the eigenvectors that correspond to the two

largest eigenvalues determine the two orthogonal directions that

explain the most amount of variance in x, W is assigned to equal

the first two columns of U ,

W~U

1 0

0 1

0p{2 0p{2

2
64

3
75,

where 0p{2 represents a (p{2)|1 vector of zeros. Given W ,

the calculation for z is straightforward,

z~W
0
x: ð3Þ

When q~2, a PCA visualization simply plots z (e.g., Figure 4B)

in a two-dimensional scatterplot. The axes of the plot are hard to

interpret, but, fortunately, it is only the configuration of the points

in the plot that matters. PCA spatializes observations so that the

relative distance between them reflects their relative similarity in

the dimensions most preserved. As defined by the current form of

PCA, these dimensions are those with the largest variances. Alas,

because of PCA’s strict variance criteria and explicit assignment of

W , the spatialization can mask structures in data that do not

correspond with variance. For example, the within-cluster

variance is larger than the between-cluster variance in the data

shown in Figure 4A. Thus, the clusters do not appear in z as

plotted in Figure 4B, and despite knowing the presence and/or

characteristics of the clusters, we cannot adjust W .

In the next section, we transform PCA from a deterministic,

dimension reduction algorithm to an expert guided projection

method via V2PI and the bi-directional pipeline. We explain

within the context of the data set described in Section 3.3.1. The

goal is to allow experts to explore data from different perspectives

using PCA methods so that the clusters may (or may not) be

revealed. The advantage is that the interpretation of each data

spatializations from the different perspectives is maintained (i.e.,

relative distances between observations reflect relative similarity),

but structures that do not depend on variance have the potential to

be discovered.

3.3.3 PCA with V2PI. We start by applying PCA for Steps 1

and 2 in Figure 3. We derive W in accordance with Equation (3)

and display z as we did in Figure 4B. For Step 3, experts

participate in the data analysis by assessing and injecting feedback

Fc about the projection. Since the configuration of points has

meaning in data spatializations, a natural surface-level interaction

Fc to parameterize is a reconfiguration of the points. Here, we

develop V2PI so that users may re-configure the location of two

observations; i.e., to create V
0
, users may either drag two

observations together or apart. The choice to drag observations

together or apart depends upon expert judgment. If an expert

believes two observations are similar in the high-dimensional

space, but they appear distant in the visualization, the expert may

drag the observations together. Whereas, if an expert believes two

observations are different in the high-dimensional space, but they

appear close together in the visualization, the expert may drag the

observations apart. For example, in Figure 4B, a user may choose

to drag two observations from cluster 1 (in red) together, two

observations from cluster 2 (in green) together, or one observation

from each cluster apart.

As a VA tool developer, we could have developed a more

complex version of V2PI; e.g., allow users to move many

observations. However, what we propose is still a viable form of

V2PI and helps to convey the relative simplicity for how to use

V2PI. Namely, experts need only have knowledge about the

relationship between two observations to re-assess data from a

different perspective. They do not need to have reliable judgments

concerning, say, the dimensions in the data that define clusters; the

number of clusters in the data set; nor the size of data clusters.

Also, the methods can be extended to allow cognitive feedback

with more than two observations. In fact, for the next case study,

we do just that based on MDS (an analytical method that can re-

produce PCA plots under some constraints); we allow users to

move several observations to communicate cognitive feedback.

To parameterize Fc Step 4 of the PCA bi-directional pipeline,

we must a) determine a user’s intent and b) represent it in a

quantitative form that is compatible with PCA. When users drag

observations together, the users are suggesting the need for a

display that up-weights the dimensions for which the observations

are similar and down-weights the dimensions for which they are

different; whereas, when users drag observations apart, the users

are suggesting the need for a display that up-weights the

dimensions for which the observations are different and down-

weights the dimensions for which they are same. For PCA, the

dimensions that have relatively large and small weights are those

with a high and low variances respectively-the transformation

matrix W results from deterministic procedure based on the

sample variance S. Thus, depending upon Fc, we re-weight the

elements of variance matrix S accordingly.

To do so, we derive a distance matrix as Fp that is both

indicative of the observation adjustments and similar in nature to a

data variance matrix in that it is p|p and semi-definite. We

describe one procedure for deriving the distance matrix from Fc in

File S1. Given Fp, we take a weighted average as described in

Section 2.2.3 to calculate SF ,

SF ~rFpz(1{r)S:

For a new visualization, we re-apply the PCA machinery; i.e.,

we determine the transformation matrix W based on SF and re-

calculate z as defined by Equation (3).

We provide two adjusted PCA visualizations in Figure 4.

Figures 4C and 4D are based on the cognitive feedback that two

observations were dragged together and apart in step 3,

respectively. Notice that regardless of the action taken for Fc,

the adjusted figures display structure. In fact, from injecting

information about the relationship between two observations, we

learn from the updated view of the data that 1) the data include

three clusters and 2) the cluster-assignments of every observation.

V2PI
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3.4 Case Study 2: MDS
3.4.1 Data. In the previous case study, we used a simulated

example to show how V2PI works. Now, we consider a more

realistic dataset x that describes n~25 cities (Amherst, Ann Arbor,

Atlanta, Atlantic City, Blacksburg, Bloomington, Boston, Chapel

Hill, Charlotte, Chicago, Davis, Denver, Detroit, Fort Collins,

Helena, Houston, Knoxville, Los Angeles, Miami, New York City,

Reno, San Francisco, Seattle, Tucson, and Washington D.C.)

based on ten variables: Latitude, Longitude, Income (median), Age

(median), Population, Housing price (median), Population density,

Highschool (percent over 25 who have completed high, school),

Divorce rate (of those who have married), and Politics (percent

voting for Obama versus McCain in 2008, county-wide). To add

complexity to the data set, we append 20 noise variables; i.e.,

variables that were generated from Gaussian distributions with

means zero and variances comparable to that of either the latitude

or longitude variables.

To visualize these data and assess varying structures in the data,

we apply MDS as plotted in Figure 5A. To create this figure, all of

the variables in the data set were weighted equally. Thus, the

orientation we see of the data depends on both the real and noisy

variable equally. A better orientation would isolate the important

variables and down-weight those that are superfluous. For this

reason, we develop V2PI for MDS.

3.4.2 Description of MDS. In a classical MDS scheme

[3,22], the objective is to preserve pairwise distances between

observations in low-dimensional representations of high-dimen-

sional data. Using the same notation from the PCA example, we

have a standardized data set x~½x1,:::,xn�T with n observations

and xi[Rp (for i[f1,:::,ng). We aim to estimate a low-dimensional

version of x that we denote by z, where z~½z1,:::,zn�T , zi[Rq (for

i[f1,:::,ng), and qvp. For the sake of visualization, q~2 and, for

our above example, p~30. MDS solves for z by minimizing the

absolute difference between pairwise distances of observations in x
and z,

z~ min
z1,...,zn

X
ivjƒn

Ezi{zjE{d(xi ,xj)
�� ��, ð4Þ

where d(xi ,xj)~Exi{xjE, and Ea{bE is a predefined norm of

the distance between points a and b. The right hand side of

Equation (4) is typically referred to as a stress function, and the

resolved minimum is called the stress. The norms used in Equation

(4) will influence the MDS solution, if the distances themselves are

sensitive to the norm under which they are computed. A common

choice is the L2 norm so that

d(xi ,xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

d~1

(xid{xjd )2

vuut , ð5Þ

where xid and xjd represent the d th element in observations xi

and xj respectively. This choice is arbitrary and can be adjusted

easily to accommodate other norms.

Similar to PCA, MDS produces a spatialization of the data x
where relative distance between observations reflects their relative

similarity. In fact, in the L2 space, MDS will reproduce PCA

visualizations. However, the explicit specification of a distance

metric provides another means to parameterize feedback. For

example, in the L2 norm (Equation 5), all of the variables have

equal importance or weight, even though we know that 20

variables are noise. Based on expert feedback, it makes sense to

weight the variables in the distance metric so that only those that

Figure 5. MDS view of the the city-data and an example of cognitive feedback. Figure A displays an Initial MDS view of the data set that
describes 25 cities with 10 real variables and 20 noise variables. Figure B displays an example of cognitive feedback that arranges a set cities by
relative geographic locations.
doi:10.1371/journal.pone.0050474.g005
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are relevant influence the visualization. Next, we develop V2PI for

MDS by reparameterizing the distance metric.

3.4.3 MDS with V2PI. To include expert judgments in MDS

displays, we enable users to adjust (via cognitive feedback) a

version of MDS known as Weighted Multi-Dimensional Scaling

(WMDS) [23,24]. Just as MDS, WMDS minimizes the stress

function in Equation (4) to find a solution for z. However, WMDS

replaces d(:) (the L2 norm of two high-dimensional observations)

with a weighted norm dw(:),

dw(xi ,xj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

d~1

wd (xid{xjd )2

vuut ,

where w represents a pre-specified p{vector of dimension

weights, w~fw1,:::,wpg, and
Pp

d~1 wd~1. Given w, variables

with large weights have more relevance than those with low

weights in WMDS displays. Also, the MDS and WMDS solutions

for z are identical when wi~1=p for each i[f1,:::,pg.
Now, using the data from Section 3.4.1 and the bi-directional

pipeline (Figure 3) as a guide for our discussion, we develop V2PI

for MDS based on the WMDS machinery. We start by applying

WMDS with wi~1=p for Steps 1 and 2 of the bi-directional

pipeline. For Step 3, experts may reconfigure three or more

observations to reflect a conjecture about the data and commu-

nicate cognitive feedback Fc. For example, since the data describe

25 cities, it might be helpful to visualize how the cities distribute

geographically across the United States. However, we can see from

Figure 5A that the cities are geographically misplaced; e.g., no

matter how we rotate the display, Seattle, Miami, San Francisco

and Houston will not orient geographically. Thus, as cognitive

feedback Fc, we enable MDS users to rearrange the locations of

three or more cities to create V
0
. Figure 5B shows a possible

orientation of five cities, Seattle (Sea), Los Angeles (LA), Houston

(Hou), Miami (Mia), and New York City (NYC). Note that,

similar, to PCA, there are a variety of surface-level interactions

(which may eventually have a parametric interpretation) that users

could perform with MDS visualizations. For this paper, we

selected one.

The reason cities to do not map geographically is that the

information in the variables, Latitude and Longitude, is masked by

the remaining variables (both real and noise). Thus, for Step 4 of

the bi-directional pipeline, we parameterize Fc in the form of a

weight vector that will up-weight the variables which seem to best

explain V
0
and down-weight those that do not. Let A represent the

set of k observations that were adjusted so that matrices xA and zA

include only the high-dimensional and adjusted low-dimensional

coordinates of the selected observations. To estimate new weights

Fp, we solve the inverse problem; we solve for the weights that

minimize the stress function based only data xA and zA. Explicitly,

Fp~w, where

Fp~ min
w1,...,wp

X
ivjƒK

Ezi
A{zj

AE{dw(xi
A,xj

A)
�� ��: ð6Þ

The solution Fp is found easily using a gradient search method

[25] with the constraint
Pp

d~1 wd~1. In our example, with

cognitive feedback displayed in Figure 5B, the solution Fp weights

Latitude and Longitude by 0.47 and 0.52, respectively. The total

weight of the remaining variables equals 0.01. Note, based on Fp,

users may learn the variables that define the structure they find to

be important. In this case, the users ‘‘learn’’ that the Latitude and

Longitude explain their arrangement the observations because

they have the largest weights. Although, we advocate the

suppression of parametric information to users, weights have

intuitive scales that are easy to interpret. That said, in an

extremely high dimensional examples, creative, additional VA

methods would be needed to provide this parametric information

to users.

To assess how the remaining data spatialize given cognitive and

parametric feedback, we technically apply a weighted average as

described in Section 2.2.3 so that

wF ~rFpz(1{r)w,

but we set r~1 for this application of V2PI. In the standard

MDS or WMDS procedures, the weight vector is pre-specified and

set independently of the data, thus we do the same with V2PI.

However, now, the weight vector is set according to user feedback.

Subsequently, new data visualizations are created with the WMDS

machinery and weight vector wF . Figure 6 includes a new

visualization of the data. Since Latitude and Longitude define the

geographic locations of cities and we want to demonstrate the

success of MDS with V2PI, we re-scaled and rotated the updated

low-dimensional coordinates so that we could overlay them on a

US map. On this map, we also include the true city coordinates.

The user-guided visualization approximates the true map fairly

well.

From our exploration of the data with V2PI and MDS, users a)

visualize how the cities in the data set distribute across the United

States from Figure 6 and b) learn from Fp that Latitude and

Longitude are the primary variables that explain the visual

differences between the cities; e.g., Seattle and Miami are the

furthest cities apart in Figure 6 because they differ the most in

Latitude and Longitude. The data exploration could stop here, if

users wanted. Or, users may reiterate the bi-directional visualiza-

tion pipeline and inject more cognitive feedback to asses the data

from another perspective. To show the latter is possible, we

continue with the data exploration using V2PI in the next section.

3.4.4 Continuation of MDS Data Exploration. Looking at

Figures 5 and 6, we see that the data set includes major cities and

college-towns. Suppose a user is unable to classify all of the

observations (only a small set) and the user wants to learn which

variables differentiate major cities from college towns. Figures 5A

and 6 (two MDS visualizations of the data), do not help the user.

Thus, the users apply V2PI again.

For cognitive feedback Fc, users move the cities about which the

classification is known into two separate groups. Specifically, three

college-towns, Blacksburg (BB), Davis (Dav), and Fort Collins (FC),

are placed away from two cities, New York City (NYC) and

Washington D.C. (WDC), to create V
0

(Figure 7A). As previously

shown, the methods are in place to learn weights Fp (the

parameterized form Fc), set wF to Fp, and create a new

visualization (Figure 7B). According to Fp, the selected observa-

tions differ most by Politics, Highschool, Age, and Population

Density with weights 0.62, 0.22, 0.05, and 0.03, respectively. Also,

based on proximity in Figure 7B, we see that Amherst (Amh), Ann

Arbor (AA), Bloomington (Blt), and Chapel Hill (CH), are more

similar to the selected college-towns (in the up-weighted variables)

than the cities; and conversely, Boston (Bos), Chicago (Chi),

Denver (Den), Detroit (Det), and San Francisco (SF), are more

similar to the cities than the college-towns.

V2PI
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Discussion

We applied V2PI using two common data visualization

methods. In each example, constraints in the mathematical

characterization of the data limited the utility of initial data

displays; i.e., Figures 4A and 5A did not reveal expected nor

meaningful structure. In turn, we included users in the visualiza-

tion pipeline via V2PI to guide the mathematics and obtain

Figure 6. A visualization of the city-data that was updated by a parametric version of the cognitive feedback plotted in Figure 5B.
The updated locations of the cities were stretched and rotated to overlay on a map of the United States. The symbols % and 0 mark true and
projected city coordinates by WMDS- V2PI. The estimated and true city coordinates are close.
doi:10.1371/journal.pone.0050474.g006

Figure 7. New cognitive feedback and updated view of city-data. Figure A plots another example of cognitive feedback that groups college
towns separately from large cities. Figure B plots an updated visualization of the data that accounted for the feedback in Figure A.
doi:10.1371/journal.pone.0050474.g007
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visualizations worth assessing. The case studies provided successful

examples and avoided some practical challenges that we discuss

here.

V2PI does not guarantee the display of obvious data structure;

V2PI only guarantees to portray user intent-as interpreted

parametrically within the constraints of the display-generating

model. For example, in the case studies, V2PI guaranteed new

spatializations that reflected the users’ judgements about the

observations’ pairwise relationships, as defined by PCA and MDS.

The improved depictions of the pairwise relationships were

estimated by one, updated linear projection (by either PCA or

MDS) of the data. Given different visualization methods, the

pairwise relationships might have updated differently. For

example, V2PI could be developed for other visualization

methods, including, Isomap, Generative Topographical Models,

and Mixture PCA [26–28]. Such approaches characterize data

spatially using non-linear methods and/or multiple visualizations.

Had V2PI been in place with these methods, the updated displays

of data in Figures 4C, 4D, 6, and 7B might have configured the

observations differently.

It is important that an appropriate method is applied to assess

data visually. V2PI, in its current form, only enables parameter

adjustments within the chosen methods, not adjustments to the

methods themselves. VA tools that enable users to switch the

underlying analytical methods of visualization could be useful, as

the selection depends upon both characteristics of the data and the

analytical goal of the data exploration. In the case studies, there

was little to no difference between PCA or MDS to visualize the

datasets. We developed them to demonstrate differences in how

we can conceptualize and parameterize feedback. Had either

dataset within the case studies included outliers or non-linear

relationships between observations neither PCA nor MDS (based

on the L2 norm) would have been appropriate; non-linear

methods, such as Isomap [26] or Generative Topographical

Mapping [27] might be better. Also, there are several visualization

methods that do not use geographic metaphors to display

information. For example, cluster algorithms or network models

may plot dendograms or directed graphs to group and link one or

more observations together. Albeit, clusters were revealed in the

first, PCA case study, but PCA is not formally a cluster-discovering

algorithm; the cluster assignments were up to the user (which has

advantages and disadvantages). If a user wants to formally classify

observations, an appropriate analytical method should be applied

and V2PI can be developed accordingly.

Crucially, the selected analytical method determines both the

ways by which users can communicate cognitive feedback and

how it is parameterized. This was discussed in Section 2.2. In the

case studies, we presented only one form of cognitive feedback per

analytical method; users adjusted the locations of either two or

more observations. However, there are multiple forms of cognitive

feedback that are applicable to data spatializations, including

filtering, querying, and annotating, that can be parameterized.

Future work of this research includes the implementation of user

studies to learn the various forms in which it is natural for users to

convey cognitive feedback based on a variety of visualizations.

In such user studies, we would also assess how analysts learn to

use VA tools with V2PI and quantify what they gain from V2PI.

Different analytical methods and datasets may result in visualiza-

tions that vary in difficulty to interpret. Only once users

understand the meaning of the displays, can they effectively inject

feedback and make sense of data. Thus, V2PI is most advanta-

geous when users can learn how to interpret displays and interact

with them more efficiently than understand the display-generating

parameters. For example, in the first case study with PCA, it is

reasonable to argue that users can assess and compare the relative

differences between observations in visualizations with less effort

than interpret the meaning of variance matrices, eigenvalues, and

eigenvectors. Also, with V2PI, users can compare observations

with PCA from varying perspectives to discover multiple structures

or relationships in data easier than without V2PI. User studies that

evaluate how well analysts understand PCA visualizations and

compare what analysts learn using PCA with and without V2PI

would likely support this argument. We envision a study that asks

several questions about dataset(s) that analysts would be

challenged to answer using what they know and VA tools with

and without V2PI capabilities. The answers to the questions and

the time it takes to answer the questions would illuminate the ease

at which the analysts interpret the visualizations and the utility of

the V2PI.

As with any user study, the dataset(s) that analysts are requested

to assess is an important experimental-design element and may

impact study results for several reasons. For example, datasets

about which some users have prior knowledge and others do not

will confound study findings. To evaluate V2PI, the size of datasets

(in both the number of rows and columns) is also important to

consider. Large datasets may impact the interpretability of some

visualizations and computation time. In Figure 4, the dataset is

small enough so that the points (i.e., observations) are distinguish-

able; distance between many observations was clear enough to

inject feedback. Given millions of overlapping observations, this

might not be the case. Also, with V2PI, real-time visualization

updates enable users to explore data in parallel with them learning

or thinking about the data. Yet, V2PI, as any analytical method, is

limited by computational feasibility and efficiency. Thus, it is

important to select datasets for studies that meet the constraints of

the analytical method. Or, conversely, select/develop analytical

and updating methods that can scale with data size. Both PCA and

MDS (for certain distance metrics) are scalable.

Conclusion

In this paper, we discussed two fundamental concepts: the bi-

directional visualization pipeline and V2PI. When we combine the

two, we have a visualization scheme that enables experts to

explore data from multiple perspectives without understanding the

display-generating models. Since users do not need to understand

the mathematical underpinnings of visualizations, they are free to

build upon their knowledge base and merge their expertise with

the information in data instantly. That is, they may have an

opportunity to learn and interact with a dataset directly in its

visual domain-the domain in which experts host their expertise

and intuition.

An important feature of the bi-directional pipeline is that users

receive and distribute information, thus both expert judgement

and standard datasets are valid components of quantitative

analyses (that underlie data visualizations). The use of each

component is not particularly novel when analyses are constructed

within the Bayesian paradigm. Bayesian models combine prior

distributions that may represent subjective, expert-driven infor-

mation, with likelihoods to formulate inferences. However, the bi-

directional pipeline 1) does not require formal probabilistic

specifications to operate; 2) enables experts to communicate their

judgements via data visualizations; and 3) allows experts to inject

their judgements during multiple stages of data analyses. Experts

have multiple opportunities to recall, include, and reflect upon

their judgements in analyses by adjusting visualizations at each

iteration of the bi-directional pipeline.

V2PI
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We exemplified the use of the bi-directional visualization

pipeline and V2PI within two case studies. For each, a projection

method was used to spatialize data in two dimensions and we

described a unique approach to implement V2PI. The approaches

differed due to the subtle differences in the projection methods.

For visualizations that do not rely on linear projections, the bi-

directional visualization pipeline and V2PI may still apply.

However, V2PI has practical limitations that were discussed when

we reflect on the case studies, including the selection of

visualization methods that are appropriate for both the data and

expert, the necessary learning curve for using V2PI, and

computational feasibility. Each limitation is addressable with

careful thought and flexible VA tools.

That said, successful interactions with data via visualizations

rely upon the development of VA tools that support V2PI. The

best VA tools are intuitive and accessible to users with varying

levels of expertise. In this paper, we did not mention aesthetic

aspects of VA tools that need to be considered for human cognitive

purposes. Rather, we discussed the analytical mechanics needed in

tools that enable V2PI.
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