

Learnability of Interactive Coordinated-View Visualizations

Sujatha Krishnamoorthy, Christopher North
Department of Computer Science, Virginia Tech, Blacksburg, VA 24060 USA

{sukrish2@vt.edu, north@cs.vt.edu}

Abstract
This paper examines the Human Computer

Interaction issue of learnability of interactive
coordinated-view visualizations. We take the case of
DataMaps, a Census data visualization tool intended for
a general audience with a huge percentage of novices.
Usability tests conducted on DataMaps revealed three
main kinds of problems that novices faced: they could
not make strategic selections of coordinated
visualizations according to a given task, they lacked
familiarity with the nature of the attributes, and there
were several misunderstandings of visual syntax and
interaction widget usage. We outline design features
which are desirable for novice-friendliness: Task based
organization of coordinated views to enable strategic
selection of views to suit the task, Data centric approach
to familiarize novices with data, Self disclosure of visual
syntax features and interaction mechanisms by the
interface. The design should be such that they can
smoothly transition from being a novice to expert. We
examine how these principles may be applied to
DataMaps to re-design it for “novice-friendliness”.

1. Introduction

The learnability of interactive, coordinated-view
visualizations is an important issue in several scenarios.
Consider a visualization interface in a museum or a
website, available to a varied audience. Several users
might be accessing the visualization tool only for a one-
time exploratory session. A visitor in a museum might
want to interact with the display for a while. Novice-
friendliness is crucial in such cases and we are justified
in researching learnability issues in visualizations.

We define a novice user as someone who does not

have experience with using interactive multiple-view
visualizations. However, we do need to assume a “lowest
common denominator profile” for novice users to design
the interface with respect to that profile. We assume that
a user, although novice, necessarily possesses:

• General familiarity with the notion of using
visual representations of information (as

opposed to textual paragraphs). For example,
they would be familiar with visual
representations encountered in day-to-day life,
such as pie charts and bar graphs and weather
information on maps as seen in weather news
broadcasts.

• General familiarity with W-I-M-P interfaces
(Windows Icons Menus Pointer interface)
where the user must rely on icons, buttons, and
dialog boxes for executing operations.

We focused our studies on a particular visualization

tool called DataMaps, supported by US Census Bureau.
We expect that a typical user browsing the Census
website would be familiar with WIMP interfaces. An
informal survey revealed that bar-charts and pie-charts
are the most commonly encountered and easily
understood visualizations for those who have no prior
exposure to interactive information visualizations. It also
showed us that it is acceptable to assume basic
familiarity with the notion of using visual representations
in novices.

In sections 2, 3 and 4 of this document, we provide a

description of DataMaps, the usability test conducted on
it and the qualitative results obtained, respectively. In
sections 5 we theorize about learnability issues and in
section 6, we outline design principles which enhance
learnability. In section 7, we show how the design
principles may be applied to re-design DataMaps for
novice friendliness.

 2. Background on DataMaps

DataMaps [2] is a front-end tool for visualization
and analysis of census data on the United States. Data
has been collected for approximately 8000 attributes.
“Attributes” are items such as “total population”
“percentage white population” “percentage black
population” and so on. These attributes are grouped
together by categories such as “Age”, “Agriculture”,
“Banking”,” Crime” etc. See figure 1.

DataMaps has a map view, a histogram view, a
table, and a scatter-plot view. The histogram shows a
frequency distribution (the number of regions occurring
in predetermined class intervals). Several histograms are
simultaneously visible. The map view employs color
gradation to show attribute values as a function of
geographic areas. Darker regions imply lower numerical
values. Only one map is viewable at a time. The scatter
plots aids in assessing the relationship between two
attributes. Only one scatter-plot is present. The table is
activated on clicking on a region on the map; it loads
data values for that state and presents the textual figures
in tabulated format. The coordination mechanisms are
described below:

• The histograms are present together with a
Dynamic Query (DQ) slider widget. Moving the
sliders in the dynamic query widget filters out
value ranges, and the corresponding states in the
map are de-selected (darkened out), as shown in
figure 1. (de-selection on DQ slider -> de-
selection on map, unidirectional)

• Clicking on a region on the map loads the table
with figures for that state. Refer figure
1.Georgia and Florida are selected in map and
tabulated in table view. (selection on the map ->
loading in the table, unidirectional)

• Clicking on the map also highlights the

corresponding dot on the scatter plot, and
clicking on the scatter plot highlights the region

on the map. The two dots for Georgia and
Florida are seen highlighted on the plot, in
figure 1. (selection on map <-> selection on
scatter plot, bidirectional)

When the application is opened, five attributes are

selected by default. Five corresponding histograms show
the frequency distributions for these attributes. If the user
needs to visualize attributes other than these five, he/she
has to click the “more variables” button . A tree-view of
the 8000 attributes (as seen in Figure 1) would appear on
a separate window and allow the user to select new
attributes to view.

3. Usability tests on DataMaps

The Census department conducted usability studies
on DataMaps. Novice users were given 10 tasks and
asked to think aloud while trying to complete each task.
They were asked to “play around with the interface” as a
pre-task session and describe their first impressions. The
sessions were video-taped and screen-captured. All of
users were quick to remark that they would click on a
state to view information about it, within only a few
seconds of playing with the Data-maps interface. Table
1 lists the actual tasks that the novice users were required
to do.

Figure 1 Tree View and Data Map windows

S.N Question
1 What was the population of California in 1997?
2 Compare the 1994 income level of people in 2

states not next to each other. Which had greater
per capita income?

3 Of the western states, which state had the lowest
unemployment rate in 1996?

4 Name the states where 20% to 22% of the
population in 1990 had high school degrees.

5 Which two counties in Nevada had the highest
population percent change from 1990 to 1997?

6 How many families in Minnesota lived below
the poverty line in 1989?

7 You are thinking of moving to a new state. You
want to live in a state that has low poverty level,
high income level, and low unemployment rate.
Which state or states best fit these criteria?

8 You are interested in graphing the relation
between high school graduation and one’s
personal income across the states. How would
you do it?

9 a Which county in the USA had the highest
population in 1997?

9 b You would like the map to show number of
persons below poverty level for each county.
How would you do that?

10 You no longer want to play around with one data
item. How will you remove it from your view?

Table 1 Task set in DataMaps usability test

4. Usability problems identified

4.1 Inefficient strategies

When faced with a question such as “which county
in the USA had the highest population in 1997”, they
tried to click each state on the map and read off
corresponding values for each region from the table. In
order to locate the maximum they tried to follow a
laborious, algorithmic procedure. It required excessive
scrolling of the table and mental book-keeping; and they
gave up. Simply selecting the given attribute to color the
map would have helped locate the maximum valued
region by color tone, but they did not follow this method.

4.2 Understanding interaction widget
mechanisms

The users had not seen Dynamic Query sliders
before. The sliders resemble buttons; they have been
marked with arrows in figure 2. The users clicked on
each one, but they couldn’t guess that they must be
dragged in order to be used, not just clicked. Dragging
selects a sub range and filters out (deselects) states not in
that sub-range. This operates similar to Dynamic Queries
in Home Finder visualization [6].

Figure 2 Dynamic Query widget

4.3 Understanding visual syntax

The users thought the histograms were bar graphs.
They had trouble interpreting the visual syntax. In a
histogram, the height of the bar stands for number of
occurrences, but they wrongly interpreted that a bar
stands for a particular state and that the height of the bar
represents the attribute value for that state. The y-axis of
the histogram was left unlabelled to save space and
accommodate more histograms as seen in figure 2. If
labeling were clear, this problem would have been
eliminated.

4.4 Locating starting points of action sequences

 Two of the users had trouble finding out how to
visualize information for new attributes, not already
visible in the interface. Locating the “more variables”
button which opens the tree view of attributes was a
problem (see figure 1). This would have been eliminated
if the tree view had been present persistently on a
separate frame.

4.5 Difficulty breaking-up the question into
executable tasks

Consider question 6 from the table: “How many
families in Minnesota lived below the poverty line in
1989?” One could break down the question in several
ways. For example:

• “How many families” + “lived in Minnesota” +
 “below the poverty line” + “in 1989”
• “How many families” + “lived below poverty

line in 1989” + “in Minnesota”

The attribute that actually bears the answer to the
question, is: “Number of families below poverty line,
1989”. The value for this attribute should be checked
against the state “Minnesota”. Of the two types of break-
downs, if the latter were to be used, then the user has a
better chance of finding the required attribute, and
looking up Minnesota against it.

We need to make sure that the user’s mental model

matches the system model. One user tried to tackle the
question by first figuring out the value of “the poverty
line” in dollar amount and then counting the regions with
values below that. There was no piece of information
about “the poverty line” and his strategy failed. If the
attribute list were persistently present, it would have
been easy to see the required attribute: “Number of

families living below poverty line in 1989”. He would
have better understood how to break down the given
task.

5. Learnability issues

We break down the learnability issues that we
identified into the following broad categories:

• Strategy - Breaking down higher level goals
into an action plan with the best strategy.

• Data familiarity - Understanding the nature of
data attributes, data values, and meta-data
information.

• Representation and Interaction -
Understanding the visual syntax and interaction
mechanisms.

At first, we theorized that the novice users used the

inefficient strategy of relying on tabulated numeric
values for all problems, probably because they are more
familiar with tables and uncomfortable upon seeing other
visualizations. However, related literature led us to
consider another theory. Fu et al examine novice users’
learning behaviors in “Probing the Paradox of the Active
user: Asymmetrical Transfer May Produce Stable,
Suboptimal Performance” [4] and “Resolving the
paradox of the active user: stable suboptimal
performance in interactive tasks” [5]. They explain why
users persistently use inefficient methods for completing
tasks when the users know more efficient methods.

It may be that the users are simply resorting to the
first strategy they learned, to solve all problems. In the
test, the first question obviously leads the user to play
with maps. The users automatically became familiarized
with clicking regions on the map and viewing the
corresponding details on the table. “Click California,
read off value from table” was the strategy followed.

Now the map has four different kinds of
functionality in DataMaps:

• To act as a pointer to a table row (clicking on a
state loads the table with figures for that state)

• To act as a visualization of a single attribute
(color gradation shows attribute values as a
function of geographic areas)

• To act as an output to dynamic queries from
histograms (as described earlier)

• To act as a two-way selection with scatter-plot.
(described earlier)

Of these four roles that the map plays, the first task

made the user recognize the map as a pointer to a table.
So the first “strategy” that they learnt was: “Click on a
region in the map, and view corresponding values on the
table”. They “latched on” to the learnt strategy. So the
users kept on trying to answer all questions using the
same strategy. When they came to questions such as (9a)

which asked them to identify the region with maximum
value for a given attribute, they were frustrated, thinking
that they had to click on 50 states, one by one, and read
off values from the table to identify the state with the
maximum value.

Fu et al refer to the user’s inefficient but most often
used method for completing a task as a user’s “preferred
method” and the more efficient but less often used
method for completing a task as the “recommended
method.” They explain that users may find incremental
actions to be less of a cognitive load. Interaction with
modern user interfaces is usually done through
incremental steps. From their explanation, it might
appear that users are doing what brings them the least
amount of stress and smallest cognitive load; repeating
simple tasks many times. This offered an explanation as
to why users tried to use the same strategy of “click on
state, scroll through values on table” to solve all the
questions.

The users had difficulty breaking up the tasks and
tackling them because they weren’t seeing the data first.
They were not familiar with the nature of data attributes
before needing to use them. They were seeing the
questions first. The data attributes occur on yearly basis.
For example, “total population, 1997” “total population,
1998” etc. Such observations about the nature of the data
can be understood only by being continually exposed to
the tree view listing of data attributes.

People are most familiar with the notion of data and
bring with them their prior knowledge, as novices, to the
visualization tool. Leveraging their existing knowledge
to promote learnability is possible by making the
interface data centric. Data attributes and their
relationships with each other and meta-data information
can be made prominent.

Upon mouse-move over the slider buttons, the
mouse pointer could have changed shape to indicate
“drag-ability”. This would have self-disclosed the
mechanism by which it was meant to be used, without
the need of help files. The y-axis on the histogram could
have been labeled prominently. Users may not be
familiar with histograms, although they may be familiar
with bar charts. Currently, the knowledge about how to
use widgets is imparted via help mechanisms, rather than
being embedded during task execution.

6. Design principles for learnability in
DataMaps

6.1 Data Centricity

 “What can I visualize with a map?” – is

visualization centric (the old design of DataMaps). Data
driven action sequences would “make sense” to the user.

“What is the data they have collected, and how can I
use them to get my queries answered?” is more natural,
and is the new design. As described in section 4.5,
prominently displaying the attribute list helps make the
mental model closer to the system. The process of
breaking-down a task into steps to perform the query is
easier when the attribute names are clearly visible. Meta-
data information should also be available upon demand.

6.2 Task based configurations of multiple views

Novices need to learn how to persistently use
efficient methods for performing tasks. According to T.
Bosser [1] these must be taught to the user initially, if
they are to be used persistently. Novices tend to stick to
initially learnt strategies. So overloading the same
visualization component with too many task capabilities
(e.g. the four roles of the map described earlier) might
result in the visualization being used only in one of the
roles which was initially learned. According to task-
based principle, a map component shall show color
gradation only when the task objective is to
geographically visualize attributes using a color
gradation. A map shall remain un-shaded while acting as
the output of a dynamic query made from sliders; it will
merely show de-selections. These two different roles are
kept separate in different configurations. Only one
configuration can be kept open at a time, so the
components will be used appropriately for the task at
hand. The system should explicitly describe the purpose
of each task-based configuration.

Task based organization may be criticized that it

limits what the user can do or that it “over-trains”
novices in certain task types and they may fail to use
visualizations to creatively discover insights. To offset

this drawback, the snap together [7] principle may be
accommodated as well. This is explained in section 7.

6.3 Self-disclosure

Help menus are a common but ineffective solution.
Users seldom read through them before starting to use an
interface. John Reiman finds that many users feel that
exploration or exploratory learning is an ideal way to
learn how to do tasks [8]. Exploratory learning is a
method of learning that allows users to figure out how to
perform tasks as they are doing them. DiGiano and
Eisenberg [3] describe self-disclosure as the process of
embedding context sensitive help into learning
opportunities. DiGiano and Eisenberg provide an
excellent example in [3] by describing a feature in
AutoCAD that bridges the gap between mouse driven
commands and text programming commands. It worked
like this: When a user performs a function with a mouse
a window in the AutoCAD program displayed the text
programming command equivalent of the mouse
command. We shall define self disclosing interactive
visualization as one which discloses elements of its
visual syntax and interaction mechanisms of its widgets,
during actual task execution, without requiring the user
to consult external manuals to comprehend it.

7. Re-design of DataMaps for learnability
using the above design principles

The basic re-design is discussed, without too many
implementation details. The DataMaps interface can be
divided into two major regions – data attribute explorer
region and the visualization region. The attribute list
shall be kept persistently visible on the tree view as
shown in figure 3.

Figure 3 DataMaps redesigned for learnability

A panel on top of the DataMaps application has a set
of buttons with icons on them as shown. Each button
represents a configuration or arrangement of coordinated
views that can be used to answer specific kinds of
queries. For example, we can have “maps only
configuration” to view one or more color scale maps,
“map and Dynamic query widget” configuration to view
regions satisfying input query conditions, “map plus
scatterplot” configuration and so on. On moving the
mouse over the buttons, tool tips appear, describing the
configuration.

When DataMaps application is opened, a particular

configuration of visualization tools is shown, by default
as shown. A note explains what the configuration may be
used for. For example, the note in the “maps only”
configuration could say: “You can view colored maps for
up to 9 maps at a time. This feature is useful especially
for geographically comparing several different
attributes”. This note may be a separate window or a
frame in the overall DataMaps window.

If the chosen configuration is “maps only”, then

every time an attribute is selected to be visualized, a new
map is loaded into the visualization area. Each map
would act as a color-scale visualization of an attribute. If
the configuration chosen is “maps + DQ histograms”
then the map would only serve as an output of DQ
results. For example, “show states with population
ranging from x1 to x2 AND crime rate ranging from c1
to c2” would be executed with “maps + histogram”
configuration. The map would highlight states which
satisfy the query input from the dynamic query widget.
Only one configuration can be opened at a time. The
button of the current configuration is highlighted.

The last button on the panel is “custom

configuration…” It would take the user through a wizard
of steps. The user would be asked to choose the
visualizations and the type of coordinations between
them, similar to snap together visualization [7]. After
going through steps to construct configurations, the user
will know what he/she is doing, and why.

The individual visualization components are clearly

marked and labeled. Mouse-move-over events are
carefully traced out so that all necessary prompting
information is provided. For example, upon mouse-
move-over on the Dynamic Query slider widget, mouse
pointer changes to indicates that it is drag-able. The
interactive self-disclosure of visual syntax and
interaction mechanisms will help minimize the need for
help documents.

The novice user is supported from the novice stage

to the expert stage. The user is familiarized with the
notion of “specific configurations for specific tasks”. A
complete novice can simply explore all the available
configurations and read the corresponding explanatory

notes. As the novice becomes more comfortable, he/she
can go through the custom configuration wizard.

Conclusions and future work
We have used the results of empirical studies to generate
design guidelines for enhancing learnability of an
interactive visualization. Our next step is to implement
the new design and run studies to collect further
empirical data. We also wish to examine the applicability
of the three design principles (Data centricity, Task
based organization, and Self disclosure) to enhance the
learnability of other visualizations of relational data.

Acknowledgements

We would like to acknowledge the work of Umur
Yilmaz (graduated student, Dept of Computer Science,
Virginia Tech) in conducting experiments with a
persistently visible attribute tree view design. Positive
usability results from his work provided reason for us to
look at data centricity.

References

[1] T Bosser. Learning in man-computer interaction. Technical
report. Springer-Verlag New York, Inc. (1987).

[2] DataMaps for census visualization.
http://infovis.cs.vt.edu/census/Datamaps.htm Virginia Tech
Information Visualization Research group. 2004.

[3] DiGiano, Chris, Eisenberg, Mike. Self-disclosing design
tools: a gentle introduction to end-user programming.
Conference proceedings on Designing interactive systems.
p.189-197. (1995).

[4] Fu, W. Veksler, V.D. , Gray, W. D. Probing the paradox of
the active user : asymmetrical transfer may produce stable sub-
optimal performance (2004).

[5] Fu, W. , Gray, W. D. Resolving the paradox of the active
user: Stable suboptimal performance in interactive tasks.
Cognitive Science, 28(6). (2004).

[6] Jain, V. & Shneiderman, B. (1994). Data Structures for
Dynamic Queries: An Analytical and Experimental Evaluation.
Proceedings of the Workshop on Advanced Visual Interfaces.
NY: ACM, 1-11.

[7] C. North and B. Shneiderman. Snap-together visualization:
A user interface for coordinating visualizations of a relational
database. Proceedings of the 5th International Working
Conference on Advanced Visual Interfaces (AVI 2000),
Palermo, Italy, May 2000.

[8] Rieman, John. A field study of exploratory learning
strategies. ACM Transactions on Computer-Human Interaction
(TOCHI). v.3 n.3. p.189-218. (1996).

