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ABSTRACT 
 
The most common approach to support analysis of graphs with 
associated time series data include: overlay of data on graph 
vertices for one timepoint at a time by manipulating a visual 
property (e.g. color) of the vertex, along with sliders or some 
such mechanism to animate the graph for other timepoints. 
Alternatively, data from all the timepoints can be overlaid 
simultaneously by embedding small charts into graph vertices. 
These graph visualizations may also be linked to other 
visualizations (e.g., parallel co-ordinates) using brushing and 
linking. This paper describes a study performed to evaluate and 
rank graph+timeseries visualization options based on users’ 
performance time and accuracy of responses on predefined 
tasks. The results suggest that overlaying data on graph vertices 
one timepoint at a time may lead to more accurate performance 
for tasks involving analysis of a graph at a single timepoint, and 
comparisons between graph vertices for two distinct timepoints. 
Overlaying data simultaneously for all the timepoints on graph 
vertices may lead to more accurate and faster performance for 
tasks involving searching for outlier vertices displaying different 
behavior than the rest of the graph vertices for all timepoints. 
Single views have advantage over multiple views on tasks that 
require topological information. Also, the number of attributes 
displayed on nodes has a non trivial influence on accuracy of 
responses, whereas the number of visualizations affect the 
performance time. 
 
CR Categories: H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – Evaluation/Methodology 
 
Keywords: Graph visualization, data overlay, timeseries data 
analysis, usability experiments. 
 
1 INTRODUCTION 
Graphs are used to represent entities and relationships between 
them, in several fields such as bioinformatics and computer 
networks. Multidimensional data is often associated with graph 
vertices, representing various attributes of the entities. The entity 
represented by a vertex and the interactions represented by the 
edges are dependent on the domain for which a graph is created. 
It is often necessary to analyze the multidimensional data in the 
context of the graph. For example, data may be collected for the 
graph vertices for multiple time points, which is then analyzed 
to infer how each vertex is changing with respect to other 
vertices that have direct or indirect influence on it.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1: An example of linking timeseries data to graphs. 
 
 In bioinformatics, graphs are often used to show how bio-
molecules (genes and proteins) interact with each other, called 
pathways. Data from high throughput experiments such as gene 
expression microarrays [6] measure quantity levels of the 
molecules, and are often analyzed in context of biological 
graphs. Usually, data is collected for several experimental 
treatments. An example data set could be expression values for a 
viral infection over time. The biological graphs represent 
complex biological phenomenon and provide a biological 
context to otherwise numerical data analysis [21]. In a separate 
evaluation study, it was found that the lack of graph context 
severely hampered scientists’ ability to derive biologically 
meaningful insight from microarray data [22]. Figure 1 shows 
overlay of time series data (as an example of multidimensional 
data) on a graph. Each vertex in the graph corresponds to a tuple 
row in the dataset, and each experiment treatment is an attribute 
column.  
 Some common tasks for analyzing multidimensional data 
in graph context for bioinformatics are: What are the values of a 
specific graph vertex in a particular experimental treatment? 
How do different graph vertices change over different 
conditions? Which vertex displays a particular pattern of 
behavior across different experimental treatments? How does 
the behavior of a particular graph vertex affect other vertices 
connected directly or indirectly to it? 
 A wide variety of graph visualizations have been created to 
support analysis of multidimensional data in graph context [4, 
10, 12, 15, 16]. For this discussion we are focused on graph 
visualizations that use node-link representations for vertices and 
edges. These visualizations use different approaches to overlay 
data on graphs. Often the graph visualizations are linked to other 
additional visualizations such as parallel co-ordinates and heat 
maps. The goal of this paper is to present a design space for 
overlaying multidimensional data on graphs, and to 
comparatively evaluate instances of visualizations within the 
design space on the common data analysis tasks to provide 
guidance to designers on the tradeoffs within the primary design 
dimensions. 
 

 
 
 

 
 
 
 



2 LITERATURE REVIEW 
A large variety of tools that allow analysis of multidimensional 
data in context of graphs have been created. A survey of 
different graph visualization tools is presented in [9]. In 
bioinformatics, a variety of tools use different visualizations to 
support graph data analysis. GenMapp [5] and PathwayAssist 
[18] allow overlay of data on graphs using one attribute at a 
time. The nodes are colored on a user defined scale to represent 
their values in a particular attribute. Though data is overlaid one 
attribute at a time in GeneSpring [7], users can link graph 
visualization to other visualizations such as heat maps, parallel 
co-ordinate, etc., using brushing and linking. The tools that lay 
data one attribute at a time on graph vertices usually provide 
sliders or similar mechanisms to let users iterate over other 
attributes.    
 In another approach, more complex glyphs or miniature 
charts can be embedded in graph vertices. This enables the 
simultaneous display of values for multiple conditions on the 
vertex. For example, GScope [23] embeds heatmaps and line 
charts on graph vertices. The graph visualizations are linked to a 
parallel co-ordinate display in GScope. Cytoscape has explored 
the use of radial bars of different lengths around a node [13] to 
represent multiple attribute values simultaneously. Visual 
elements such as images or renderable geometry is used in 
MoireGraphs[11] to represent various physical entities (e.g., 
Protein structure, web page, etc). A new focus+context radial 
layout algorithm along with other interaction techniques assist in 
exploration of the graphs. 
 Besides bioinformatics, graph visualizations have been 
created for other domains too. SeeNet [1] uses static display for 
spatial information, animation and manipulates different visual 
properties of vertices and links to represent network data. 
GraphViz [17] allows users to represent structural information in 
large number of domains. A few visual properties of nodes can 
be manipulated to represent different attributes of the nodes. 
Munzner et al. [14] use arc height, grouping and thresholding to 
visualize topology and properties of Internet’s Multicasting 
Backbone (MBone).  
 A number of studies have been performed to evaluate 
different graph layout algorithms. E.g., a study to measure 
cognitive cost of graph aesthetics for the task of finding shortest 
paths in spring layout algorithm is described in [25]. An 
evaluation to access readability of two graph representations: 
matrix based and node-link based is described in [20]. The 
evaluation was based on seven generic tasks and provides 
recommendations regarding graph representation based on their 
size and density. A framework for defining and validating 
metrics to measure difference between two drawings of the same 
graph is presented in [8]. The paper also presents experimental 
analysis on several simple metrics. Several ideas to define 
similarity for comparisons between two graph drawings are 
presented in [2] and evaluated in a user study. A formal metrics 
based on seven common aesthetics criteria, applicable to any 
graph drawing of any size are presented in [3]. An analysis of 
graph drawings produced by some common layout algorithms 
(e.g., spring layout algorithm, DAG, etc.) based on the seven 
metric formulae is also presented to demonstrate the application 
of the metrics. A comparison of hyperbolic tree browser and 
conventional browser is described in [19]. The users finished 
their tasks faster with the hyperbolic tree browser in presence of 
strong information scent. 
 Thus, though a wide range of studies have been performed 
to analyze graph drawings and layouts, little work has been 
conducted to evaluate visualization of multidimensional data 
associated with graph vertices. The rise of bioinformatics 

pathways and gene expression analysis has brought this need to 
the forefront. 
 
3 DESIGN SPACE 
Based on literature review, the design space to visualize 
multidimensional data on graphs is summarized into the 
following two dimensions. 

Dimension 1 is based on graph vertex representation and 
the method to overlay multidimensional information on the 
vertices. The three common alternatives are: 
1. Animation (using Simple Glyphs): In this approach a 

visual property of vertex nodes is manipulated (usually 
color) to overlay a single data attribute (Figure 2). Cycling 
through several views for other attributes enables 
visualization of multidimensional data. Sliders or other 
controls are often used to directly navigate the animation 
loop. This design strategy focuses on the display of 1 data 
attribute at a time, using simple node glyphs, with 
interactive access to other attributes. 

 
 
 
 
 
 
Figure 2: An example of overlaying data one condition at a time 

using color encoding. 
 
2. Small Multiples (using Simple Glyphs): For this 

visualization design, layout multiple repeated views of the 
graph in miniature form, one view for each attribute [24]. 
Each view is a miniaturized version of the Animation 
design, but without the need to animate. This design 
strategy focuses on separating each data attribute into 
multiple views of the graph, still using simple node glyphs. 

 
 
 
 
 
 
 
Figure 3: An example of laying out multiple graph views in a grid 

of conditions or treatments in data. 
 
3. Nested Visualization (using Complex Glyphs): While 

colored graphs supports only one value per node, 
embedding small visualizations of multidimensional data 
attributes within each node enables the simultaneous 
display of values for all the attributes. E.g., Gscope [23] 
uses a heatmap and line graphs [Figure 4] to display 
attribute values of vertices. This design strategy focuses on 
simultaneously combining all data attributes into a single 
graph view, using complex node glyphs. 

 
 
 
 
 
 
 

Figure 4: An example of embedding multiple data attributes 
simultaneously within each node. 



  Dimension 2: determines if other linked multidimensional 
data views are used in addition to the graph visualization for 
data analysis. Each of the graph visualizations mentioned in 
Dimension 1 can be linked with other multidimensional 
visualizations of the data. For example, graph visualizations in 
GeneSpring [Figure 5] are linked with different types of data 
visualizations such as parallel co-ordinates, heat maps, etc.  By 
brushing-and-linking, users can select vertices in the graph to 
highlight the corresponding data in the multidimensional view, 
and vice versa. 
 
 
 
 
 
 
 
 
Figure 5: Pathway visualizations in GeneSpring™ [7] are linked 

to multidimensional visualizations such as timeseries charts. 
 

Since our main focus is on visualizations used in the 
bioinformatics domain, we selected the option to overlay data 
using the simple glyph with animation and the nested 
visualization approach, as these are the two most widely used 
methods.  Most often in bioinformatics, green color is used to 
show down regulation or negative values, yellow to display 
values around zero and red for positive values. We preserved 
this standard color scale for the visualizations in the study. We 
linked the graph visualizations to parallel co-ordinate displays 
for multiple view visualizations. 
  
4 PILOT STUDY 
 
Common options were developed for overlaying all timeseries 
data attributes simultaneously on graph vertices (Figure 6). 
These were evaluated in a pilot study, to select the final version 
for the main experiment. The alternatives used line graph (A), 
color (B), and both color + line graph (C) to display values of 
node in different conditions. We used different intensities of 
green color to display negative values, yellow for values around 
zero, and different intensities of orange color for positive values.  
 
 
 
 
 
 
 
 
 (A) (B) (C) 
 

Figure 6: Nested visualization alternatives to overlay 
multidimensional timeseries data simultaneously on graph nodes. 
 
 Time series data for 10 time points was overlaid on a 50 
node directed graph for the study. The visualizations were 
evaluated between subjects. We had a total of 15 participants, 
five for each representation. The participants performed 
predefined tasks described in section 4, table 3. The tasks were 
in the form of multiple choice questions. Participants’ answers 
to each task, and the response times were measured. We ranked 
the visualizations based on the number of correct user responses 
and shortest time taken to answer.  

 We observed that participants using color and color + line 
graphs had more correct responses to the tasks. On an average, 
participants using just the line graphs had 5.8/11, color had 
6.8/11 and color + line graph had 7.2/11 correct answers. On 
performing ANOVA analysis on performance times we found 
that participants using color + line graph displays performed 
significantly faster (p<0.05) than participants using line graphs 
and color only. The average times for all the 11 tasks for the 
participants were, for line graph: 64.51 sec, color: 54.95 sec, and 
color + line graph 47.6 sec. Based on these results, we selected 
color + line graph for the main study. 
 
5 EXPERIMENT DESIGN 
The aim of this study is to evaluate alternate visualizations in the 
design space that support analysis of multidimensional data in 
context of a graph. A 2x2 between-subjects design examines 
these two independent variables: 
1 Two methods to overlay data on graph vertices:  single 

attribute (simple glyphs with animation), and multiple 
attributes (complex glyphs in nested visualization). 

2 Two choices for use of additional multidimensional view:  
single view (graph visualization only), vs. multiple views 
(graph visualization + linked parallel coordinates 
visualization). 

 
5.1 Visualization Tools 
We used four visualizations in the study. Table 1 lists design 
space and the interaction features for the visualization tools used 
in the experiment. Confirming to the general trend in 
bioinformatics, we used a color scale from yellow to green for 
displaying negative values, and yellow to red for displaying 
positive values. The tools were custom developed for this study 
to ensure consistency between conditions. For all the 
visualizations, moving the mouse over a node displayed 
numerical values corresponding to the color. For both the single 
attribute visualizations a slider was provided to let users iterate 
over all the attributes in the data.  

 
Table 1: Design space and interaction features for visualization 

tools in the experiment 
 

 Single View Multiple Views  
Single Attribute 
 
 

Slider 
Mouse over 

Slider  
Brushing 
Mouse over 

Multiple Attributes 
 

Mouse Over Brushing 
Mouse over 

 
1 Single Attribute + Single View (SS): This visualization 

overlaid values for one attribute on a node at a time. It was 
same as in Figure 7, but did not have parallel co-ordinates 
view linked to it.  

2 Single Attribute + Multiple Views (SM): This visualization 
is shown in Figure 7. It was similar to Single Attribute + 
Single View but was linked to a parallel co-ordinate view 
using brushing and linking.   

3 Multiple Attribute + Single View (MS):  This visualization 
overlays data from all the attributes on a node using both a 
heat map and a line graph. It was similar to visualization in 
Figure 8, but did not have a parallel co-ordinate view 
linked to it. 

4 Multiple Attribute + Multiple Views (MM): Figure 8 
shows this visualization. It was similar to Multiple 
Attributes + Single View but was linked to a parallel co-
ordinate visualization using brushing and linking 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Overlay of a single attribute on graph vertices by color, and using multiple views. The graph visualization is linked with parallel co-
ordinate visualization using brushing and linking.  A slider enables user to select which attribute to visually overlay on the graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Overlay of multiple attributes on graph vertices by heat maps and line charts, and using multiple views. The graph visualization is 
linked with parallel co-ordinate visualization using brushing and linking. 

 
5.2 Data 
A directed graph having 50 vertices and time series data with 10 
time point attributes was used. Some of the nodes in the graph 
were grouped together and named by displaying textual 
information next to them, as shown in Figures 7 and 8, as is 
common in bioinformatics pathways. The sizes of the graph and 
dataset are based on typical needs in bioinformatics.  The average 
size of graphs in the STKE library (www.stke.org) is under 50 
vertices. Table 2 summarizes the data used for the experiment. 
 
5.3 Task List 
Participants performed 11 tasks listed in Table 3.  Tasks are based 
on common needs in bioinformatics pathway analysis, but 
abstracted to general graph tasks.  Since a time-series data was 
used for the study, the tasks are more relevant to such type of 
data.   

Table 2: Data used for the experiment 
 

 
5.4  Experiment Protocol 
40 participants, 10 for each visualization participated in the 
experiment. All the participants in the study were freshman or 
sophomore undergraduate students and business majors. The 
graph visualizations in the study used node-link representation. 
None of the data analysis tasks required specific biological 
knowledge. So we did not require participants to have biological 
background. The participants were given a brief introduction to 
the visualization and explanation of some basic graph terminology 

Data Type Description 
Graph A directed graph having 50 vertices and 56 

edges. Each node had an out degree of 0 to 3.  
Multi-
Dimensional  

Time series data, having values for 10 time 
points for each vertex. 



used to describe tasks in the study. Table 4 lists the independent 
and dependent variables for the study.  
 Participants performed four practice tasks to get familiar 
with the user interface and the visualization after which they were 
given the actual tasks to perform (Table 3). All the tasks were 
described as multiple choice questions, with five possible choices. 
We recorded responses to the tasks, and time taken by the 
participants’ to perform each task. The practice tasks were: 
T1: Which node is most negative at time point 5? 
T2: How does Node 7 change over time? 
T3: What is change in group 12-13-19-20 from timepoint 3 to 5? 
T4: Which node shows a continuous increase up to timepoint 6, 

and a decrease from timepoints 7 through 10? 
 

Table 3: Lists the tasks used in the study, T pts. = number of 
timepoints, Vertices = number of vertices required for the task, goal 

= task type, Task = the task participants performed. 
  

 
Table 4: Lists independent and dependent variables for the study 

 
 

6 RESULTS 
6.1 Overall Performance 
On performing 2-way ANOVA analysis over all tasks, we found 
that there were significant differences in accuracy of participants’ 
responses based on the overlay method used. Participants using 
single attribute graph visualizations were significantly more 
accurate (p <0.05) than participants using multiple attribute graph 
visualization. Also, participants using single view visualizations 
performed significantly faster (p <0.05) as compared to multiple 
view visualizations.  Table 5 summarizes these results. 
 

Table 5: Summary of 2-way ANOVA analysis 
 
Overall Performance Single Views Multiple Views 
Single  
Attribute 

• More accurate 
• Faster 

• More accurate 
• Slower  

Multiple Attributes • Less accurate 
• Faster 

• Less accurate 
• Slower 

 
 The results were further strengthened on performing 1 way 
ANOVA analysis between visualization options. We found that 
participants using single attribute + single view visualization were 
more accurate than participants using multiple attribute + single 
view (p=0.02) visualization, and participants using single attribute 
+ multiple view visualization performed significantly more 
accurate than the participants using multiple attribute + multiple 
view visualization (p=0.02). There were not many differences in 
the accuracy of responses between participants using single 
attribute + single view and single attribute + multiple views 
(p=0.8), and participants using multiple attribute + single views 
and participants using multiple attribute + multiple views 
(p=0.76).  
 Similarly for performance times: participants using single 
attribute + single view were faster than participants using single 
attribute + multiple views (p=0.05), and participants using 
multiple attribute + single view were faster than participants using 
multiple attribute + multiple views (p=0.05). There was not much 
performance difference between participants using single attribute 
+ single views, and multiple attribute + multiple views (p=0.57) 
and participants using single attribute + single multiple views and 
participants using multiple attribute + multiple views (p=0.63). 
The results are summarized in the table 6. 
 

Table 6: Lists average time in seconds for each task, and 
percentage of correct responses for all the four visualization 
options. Black color indicates significantly better and no color 

significantly worse performance.  SS = single attribute + single 
view; SM = single attribute + multiple view; MS = multiple attribute + 

single view; MM = multiple attribute + multiple view. 

 
6.2 Performance for Tasks involving 1 Time Point 
Since the overall analysis combines multiple task types, a deeper 
analysis broken down by task type is warranted. For the three 
tasks (T1, T2, and T3) involving a single time point (Table 3), 
using 2 way ANOVA analysis, participants using single views 
performed significantly faster (p < 0.05) than participants using 
multiple view visualization. However, there were no significant 
differences on accuracy of participants’ responses. The results are 
summarized in Table 7.  

T pts. Vertices Goal Task #,  Task 
1 
 
 
1 
 
 
1 

4 
 
 
4 
 
 
50 

Read value 
 
 
Search -
node 
 
Search - 
nodes 

1. What are the values of 
Nodes C 17-18-23-24 at 
time point 6? 

2. Which node of the group G 
29-31-32-33 is most 
positive at time point 7? 

3. Find a group of 4 nodes, out 
of which three are positive 
and one is negative at time 
point 7? 

2 
 
2 

1 
 
4 

Differences 
 
Differences 

4. What is change in N7 from 
time point 5 to time point 8? 

5. What is change in value of 
nodes C 17-18-23-24 from 
time point 6 to time point 8? 

10 
 
10 
 
 
10 
 
 
 
10 
 
 
10 
 
 
 
10 
 

1 
 
3  
 
 
5 
 
 
 
4 
 
 
50 
 
 
 
50 

Trend  
 
Topology 
trend 
 
Outlier - 
node 
 
 
Search –
Time pt 
 
Trend 
Search – 
nodes 
 
Outlier  
group  

6. How does N8 change over 
time? 

7. How many time points does 
it take for N29 and N30 to 
trigger N40? 

8. Which node is an outlier in 
the group B 8-9-15-16-22 
that displays most different 
behavior than the others? 

9. At what time point is the 
value of nodes D 12-13-19-
20 most negative? 

10. Find a node that shows a 
continuous increase up to 
timepoint 9 and then a sharp 
decrease. 

11. Find a group of nodes that 
display most different 
behavior than the rest of the 
graph over all the time 
points?  

Independent 
Variables 

• Tool: data overlay method 
• Tool: Single vs. multiple views 
• Task 

Dependent 
Variable 

• Time to answer each question 
• Number of correct responses 

Overall Performance SS SM MS MM 
% Accurate Responses 68 69 50 46 
Average Time per task (in sec) 51 66 47 62 



Table 7: Summary of 2-way ANOVA analysis for T1 – T3 involving 
analysis at a single timepoint 

 
 On performing 1 way ANOVAs between treatments, we 
found, participants using single attribute + single view were more 
accurate than participants using multiple attribute + single view 
(p=0.057). Participants using single attribute + single view were 
faster than participants using single attribute + multiple views (p = 
0.002), and participants using multiple attribute + single views 
were faster than participants using multiple attribute + multiple 
views (p=0.054). There was not much difference in performance 
time between participants using single attribute + single view and 
multiple attribute + single view (p=0.46), and participants using 
single attribute + multiple views and multiple attribute + multiple 
views (p=0.3). These results are summarized in Table 8. 
 
Table 8: Lists average time in seconds for T1 – T3, and percentage 

of correct responses for all the four visualization options. Black 
color in the table indicates significantly better, white color 

significantly worse and grey color no statistically significant 
performance differences, on performing 1 way ANOVAS between 

four visualization options. 

 
6.3 Performance for Tasks involving 2 Time Points 
For both the tasks T4 and T5 (Table 3), on performing 2 way 
ANOVA, participants using single attribute performed 
significantly better than participants using multiple attribute 
visualizations on accuracy (p <0.05), where as on both the tasks, 
participants using multiple attribute visualizations performed 
significantly faster than single attribute displays. Table 9 
summarizes these results.  
 
Table 9: Summary of 2-way ANOVA analysis for T4 – T5 involving 

analysis at two timepoints 

 
 On performing 1 way ANOVAs participants using single 
attribute + single view were significantly more accurate than 
participants using multiple attribute + single views (p=0.05), 
participants using single attribute + multiple views were 
significantly more accurate than participants using multiple 
attribute + multiple views (p=0.02). There was not much 
difference in accuracy between participants using single attribute 
+ single view and participants using single attribute + multiple 
views (p=0.73), and participants using multiple attribute + single 
view and participants using multiple attribute + multiple views. 
Participants using multiple attribute + single views were faster 
than participants using single attribute + single views (p=0.06), 
and participants using multiple attribute + multiple views were 
faster than participants using single attribute + multiple views 
(p=0.09). Table 10 summarizes these results. 

Table 10: Lists average time in seconds for T4 – T5, and 
percentage of correct responses for all the four visualization 

options. Black color in the table indicates significantly better, white 
color significantly worse and grey color no statistically significant 

performance differences. 
 
T4 – T5 SS SM MS MM 
% Accurate Responses 85 90 60 50 
Average Time per task (in sec) 56 64 45 50 
 
6.4 Performance for Tasks involving all 10 Time Points 
For tasks (T6 – T11) involving all the 10 time points, on 
performing 2 way ANOVA analysis, participants using single 
attribute graph visualizations were more accurate than participants 
using multiple attribute visualizations. Table 11 summarizes these 
results.  
 

Table 11: Summary of 2-way ANOVA analysis for T6 – T11 
involving analysis at all the 10 timepoints 

 

 
 Both T6 and T10 (Table 3) required analyzing a node 
behavior over 10 time points. Though there were no significant 
performance differences, there are trends that should be further 
investigated. Participants using multiple views performed 
somewhat faster than participants using single views. Also, 
participants using single attribute displays were somewhat more 
accurate than participants using multiple attribute displays. Table 
12 summarizes these results. 
 

Table 12: Percentage of correct responses and Average time in 
seconds for participants for all the four visualizations for T6 and 

T10, no statistically significant results were found as indicated by 
the grey color. 

 
 On T7, that required searching for the number of time points 
involving topological information, we found that single attribute 
displays were better than multiple attribute displays both in terms 
of accuracy (p = 0.03), participants using single attribute + single 
view were faster than the other participants (p=0.049). These 
results are summarized in Table 13. 
 
Table 13: Percentage of correct responses and average time in sec 

for participants for all the four visualizations for T7, Black color in 
the table indicates significantly better and white color significantly 

worse performance. 
 

T7 SS SM MS MM 
% Accurate Responses 90 80 50 60 
Average Time per task (in sec) 32 56 45 55 

 
 On the most complex tasks, T8 and T11 (Table 14), that 
required searching for a vertex showing different behavior than 

T1 – T3 Single Views Multiple Views 
Single Attribute • Faster • Slower 
Multiple Attributes • Faster • Slower 

T1 – T3 SS SM MS MM 
% Accurate Responses 73 60 46 53 
Average Time per task (in sec) 45 81 42 69 

T4 – T5 Single Views Multiple Views 
Single Attribute • More accurate 

• Slower 
• More accurate 
• Slower 

Multiple Attributes • Less accurate 
• Faster 

• Less accurate 
• Faster 

T6 – T11 Single Views Multiple Views 
Single Attribute • More accurate • More accurate 
Multiple Attributes • Less accurate • Less accurate 

  SS SM MS MM 
T6 % of correct responses 80 100 80 70 
 Average time per task (in sec) 43 36 59 48 
T10 % of correct responses 80 80 40 50 
 Average time per task (in sec)  38 32 64 53 



the rest of the graph, participants using multiple attribute views 
were faster (p = 0.035) and more accurate (p = 0.07) than the 
participants using single attribute views.  
 

Table 14: Percentage of correct responses and average time in 
seconds for participants for all the four visualizations for T8 and 

T11, Black color in the table indicates significantly better and white 
color significantly worse performance. grey color indicates no 

performance differences. 
 

  SS SM MS MM 
T8 % Accurate Responses 40 40 75 70 
 Average Time per task (in sec) 67 81 54 67 
T11 % Accurate Responses 35 40 60 65 
 Average Time per task (in sec) 47 65 38 46 

 
 For Task 9 (Table 15), though participants using single 
attribute display were more accurate than participants using 
multiple attribute displays (p=0.04), participants using multiple 
attribute displays were faster than the participants using single 
attribute display (p=0.1).  
 

Table 15: Percentage of correct responses and average time in 
seconds for participants for all the four visualizations for T9, Black 

color in the table indicates significantly better, white color 
significantly worse, grey color indicates no performance 

differences. 

 
7 SUMMARY 
Tables 16 and 17 summarize design guidelines for graph 
visualizations, for the two dimensional design space tested for 
time-series data analysis. From the tables it becomes apparent that 
the number of attributes displayed on nodes has a non trivial 
influence on accuracy, whereas the number of visualizations 
affects performance time. 
  

Table 16: Tasks for single vs. multiple attribute (Dimension 1) 
graph visualizations 

 
Single Attribute Multiple Attribute 
+ More accurate for single 

time point analysis. 
+ More accurate for 

comparisons between two 
time points. 

+ More accurate for analyzing 
behavior of a single node for 
all the time points. 

+ More accurate for searching 
graph requiring topological 
information 

+ More accurate for searching 
a timepoint for which a 
vertex shows a particular 
behavior. 

+ Faster results for 
comparisons between two 
timepoints. 

+ More accurate and faster 
performance for searching 
graph for outlier vertices i.e. 
vertices or group of vertices 
that display different 
behavior than the other 
vertices  

+ Faster performance for 
searching a timepoint at 
which a vertex shows a 
particular behavior. 

 
 
  

Table 17: Tasks for which single vs. multiple views (Dimension 2) 
are better 

 
Single View Multiple Views 
+ Faster graph analysis at a 

single time point 
+ Faster for searching a 

vertex requiring 
topological information. 

+ Faster performance for 
searching graph for outlier 
vertices i.e. vertices or 
group of vertices that 
display different behavior 
than the other vertices 

+ Faster performance for 
analyzing behavior of a 
single node for all the time 
points. 

+ Faster performance on 
searching for a node/group 
of nodes that displays a 
particular behavior  

+ Faster performance for 
analyzing values for 
multiple vertices at one or 
more time points. 

 
7 DISCUSSION 
We conducted a study to measure performance of participants on 
predefined tasks for graph visualizations that used different 
options to overlay data on the vertices. Perhaps the most 
interesting finding of the study is that the number of attributes 
displayed on the nodes has more influence on accuracy of user 
responses, whereas the number of visualizations affects the 
performance time. However, as can be inferred from the results, 
visualizations should be designed based on which data analysis 
tasks need to be supported. 
 Most participants in the study were non-technical (freshman 
or sophomore business majors) and unfamiliar with graph 
terminology. Though, once given an explanation they understood 
the visualizations and graph terms used in the tasks. The 
participants were given a more thorough explanation of the graph 
than the parallel co-ordinate visualization. Since the participants 
were novice users, they were also not experienced with 
performing data analysis on multiple views simultaneously. Also, 
the data used for analysis in the study was fairly straightforward, 
wherein almost all the vertices in the graph followed a regular 
pattern except a few. Many of the tasks for the study could be 
performed using just the graph visualization, eliminating the 
necessity for using parallel co-ordinates. Due to these reasons, it 
is likely that the experimental design biased the overall results 
towards single views.   
 We also noticed that the participants using multiple views 
performed most of the tasks in the graph visualization, and used 
the additional parallel coordinate view for confirming their 
results. Perhaps having more noisy data where graph vertices did 
not follow a regular pattern would have required participants to 
utilize both the visualizations. Also, giving participants a longer 
training period on brushing and linking might have been helpful 
for them to better utilize the reverse brushing direction in which 
the parallel coordinate view is used to query the graph view. 
Despite these concerns, we noticed that multiple views were 
utilized by participants to analyze behavior of nodes over all the 
time points, mainly as a read-only view. It also helped participants 
to compare behavior of a group of nodes simultaneously. 
 Graph visualizations that overlaid data by a single attribute at 
a time were most helpful to analyze graphs at a particular time 
point. The reason being this visualization technique lets users 
focus just on a particular timepoint of interest. These views are 
also helpful on search tasks that require topological information. 
The graph visualization using multiple attributes can get cluttered 
due to the amount of information being visualized simultaneously. 
This may make interpretation of topology of a graph more 
difficult. We found that the graph visualization with multiple 

T9 SS SM MS MM 
% Accurate Responses 70 90 60 40 
Average Time per task (in sec) 82 71 49 48 



attributes needs an interaction mechanism to select and highlight a 
single timepoint across all the vertices, somewhat analogous to 
the slider’s behavior in the single-attribute version. 
 Displaying multiple attributes on vertices leads to better 
performance for tasks that requires searching graphs for outlier 
vertices, i.e., vertices that display most different behavior than 
most other vertices in the graph. This option lets users visualize 
behavior of vertices at all the time points simultaneously, making 
it easier to pick the vertices that are outliers.  
 For tasks that involved comparing graph vertices between 
two time points we found that graph visualization that overlaid 
data for multiple attributes simultaneously on vertices were faster 
than visualizations that overlaid data just one time point at a time. 
However single time point displays were more accurate. This may 
be due to the fact that though mousing-over vertices in both the 
graph visualizations displayed values, they didn’t display the time 
point’s label (attribute name). More accurate results may have 
been possible if the mouse-over tooltip in multiple attributes 
displayed both the value and the timepoint label. 
 The study under discussion was influenced for the data 
analysis needs in the bioinformatics domain. The choice of color 
scale (green – yellow – red), number of graph nodes, visual 
representations were based on the data representation typically 
used by the life scientists. But the need to associate time series 
data with graph representations is common in other domains 
(computer networks, communications, etc). The data analysis 
tasks though influenced by pathway analysis requirements [21, 
22], were generalized enough to be applicable for other types of 
graph analysis too.  However, more niche visualization 
representations (the color scale, number of nodes used) for a 
particular domain may cause different results. The users were not 
tested for green – red color blindness.  
 The data used for this study was time series. In an earlier 
study [22], we found that life scientists view different data sets in 
different ways. The data analysis requirements for time series data 
are different than for categorical data or multi-categorical data. 
Hence, though we can use the results as an initial guide to design 
visualizations for other data sets for similar tasks to time series 
data, unless a study is conducted for tasks with respect to a 
particular data set we cannot accurately generalize these results to 
other datasets. Also, the participants for the study were non 
experienced data analysts. It is possible that a different trend of 
results is observed with more experienced users. 
 
8   CONCLUSIONS 
This study identifies an initial design space for visualizing graphs 
with associated timeseries data.  The study analyzes 4 
visualization design instances within two key dimensions of the 
design space.  The results suggest that overlaying data on graph 
vertices one timepoint at a time may lead to more accurate and 
faster performance for tasks involving analysis of a graph at a 
single timepoint, and comparisons between graph vertices for two 
distinct timepoints. Overlaying data simultaneously for all the 
timepoints on graph vertices may lead to faster performance for 
tasks involving searching for outlier vertices that show different 
behavior than the rest of the graph vertices for all timepoints. 
Single views have advantages over multiple views on tasks that 
require topological information while searching a graph.  Multiple 
views are advantageous when analyzing complex behaviors for 
groups of vertices over time.   
 Further work is needed to consider other portions of the 
design space, alternate visual representations for embedded data 
and multidimensional data views, larger multidimensional data 
that is not timeseries, and data associated with graph edges. 
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