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The world is becoming increasingly instru-
mented with sensors, monitoring, and 
other methods for generating data describ-

ing social, physical, and natural phenomena. So, 
data exist that could be analyzed to uncover, or 
discover, the phenomena from which they were 
created. However, as the analytic models lever-
aged to analyze these data continue to increase in 
complexity and computational capability, how can 
visualizations and user interaction methodologies 
adapt and evolve to continue to foster discovery 
and sensemaking?

User interaction is critical to such visual data 
exploration’s success because it lets users test as-
sertions, assumptions, and hypotheses about the 
information, given their prior knowledge about 
the world. This cognitive process can be generally 
called sensemaking. Visual analytics (VA) em-
phasizes sensemaking of large, complex datasets 
through interactively exploring visualizations gen-
erated through a combination of analytic models. 
(For more on this, see the related sidebar.) So, a 
central focus is understanding how to leverage hu-
man cognition in concert with powerful computa-
tion through usable visual metaphors.

My PhD dissertation coined the term semantic 
interaction in the context of a user interaction 
methodology for model steering in VA systems.1

It made three primary contributions. First, it ex-
plained the interactions users commonly employ 
when analyzing text information spatially without 
computational layout models, and the meaning 
they externalize into the manually crafted spatial 
constructs.2,3 Second, it enabled bidirectionality 
of spatializations by inverting popular dimension 
reduction models.4–6 Finally, it evaluated seman-
tic interaction’s impact on sensemaking through 
the synchronization of the analytic-model param-
eters, the visualization, and the user’s insights in 
the text analysis domain.7

Semantic Interaction
 Semantic interaction aims to enable co-reasoning 
between the user and the analytic models (cou-
pling cognition and computation) without requir-
ing the user to directly control them. To do this, it 
utilizes the visual metaphor in two ways:

■ the metaphor through which the insights are 
obtained (that is, the visualization of informa-
tion created by computational models) and

■ the interaction metaphor through which hypoth-
eses and assertions are communicated (that is, 
interaction occurs within the visual metaphor).

Users directly manipulate data in visualizations; 
semantic interaction then captures tacit knowl-
edge of the user and steers the underlying analytic 
models. These models can be adapted incremen-
tally on the basis of the user’s sensemaking pro-
cess and domain expertise explicated through the 
user’s interaction. (For semantic interaction de-
sign guidelines, see the related sidebar.)

That is, the visualization’s visual constructs ex-
pose the underlying analytic models’ parameters. 
On the basis of common visual metaphors (such 
as the geographic, spatial metaphor in which prox-
imity approximates similarity), we can infer tacit 
knowledge of the user’s reasoning by inverting 
these analytic models. So, users are shielded from 
the underlying complexities and can interact with 
their data through a bidirectional visual medium. 
The interactions users perform in the visualiza-
tions to augment the visual encodings within the 
metaphor enable the inference of their analytic 
reasoning, which is systematically applied to the 
underlying models.

The Semantic Interaction Pipeline
The information visualization pipeline in Figure 1 
shows how data characteristics are extracted and 
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assigned visual attributes or encodings, ultimately 
creating a visualization.8 Visualizations following 
this pipeline exhibit two primary components of 
the visual interface: the visualization showing the 
information and a GUI. The GUI’s graphical con-
trols (sliders, knobs, and so on) let users directly 
manipulate the parameters they control.

For example, direct manipulation user interfaces 
let users directly augment the values of data pa-
rameters and see the corresponding change in the 
visualization.9 (One example is using a slider to 
set the range of home prices and observing the 
filtered results in a map showing homes for sale.) 
This model has been a successful user interaction 
framework for information visualizations. Figure 
2a shows an example of such an interface.

VA systems have adopted this approach. How-
ever, a distinct difference is the added complex-
ity of the models (and their parameters) being 
controlled. For example, instead of filtering the 
data by selecting ranges for home prices, users 
employ graphical controls over model parameters 
such as weighting the mixture of eigenvectors of 
a principal component analysis (PCA) dimension 
reduction model to produce 2D views of high-
dimensional data. To users without expertise in 
such models, this poses fundamental usability 
challenges. Figure 2b shows an example of this 
type of direct manipulation interface.

The semantic interaction pipeline (see Figure 
3) directly binds model-steering techniques to 
the interactive affordances created by the visual-
ization. For example, a distance function used to 
determine the relative similarity between two data 
points (often visually depicted using distance in a 
spatial layout) can be the interactive affordance to 
let users to explore that relationship. So, the user 
interacts directly with the visual metaphor, creating 
a bidirectional medium between the user and the 
analytic models. This interaction method is similar 
to “by example” interaction because users can di-
rectly show their intention using the visualization’s 
structure. This adds to visualization’s role in the 
reasoning process, in that it’s not only a method for 
gaining insight but also one for directly interacting 
with the information and the system.

The bidirectionality afforded by semantic in-
teraction comes through binding the parameter 
controls traditionally afforded by the GUI di-
rectly within the visual metaphor. Through this 
binding, the system can infer the user’s analytic 
reasoning from the user’s interaction with the 
visualization regarding the underlying math-
ematical model’s parameters. Specifically, a spa-
tial layout is one visual metaphor in which my 

colleagues and I have conducted much semantic 
interaction research.4,6,7

Semantic Interaction with Spatializations
A spatial visual metaphor (a spatialization) dem-
onstrates the bidirectionality afforded by semantic 
interaction. A spatial metaphor lends itself to com-
mon dimension reduction models to reduce the di-
mensionality of complex data to two dimensions. 
For example, relationships and similarities be-
tween high-dimensional data objects can be shown 
in two dimensions by leveraging such dimension 
reduction models as PCA, multidimensional scal-
ing, and force-directed layouts. Generally, these 
models try to approximate the distance between 
data objects in their true, high-dimensional rep-
resentation using fewer dimensions.

Researchers have applied semantic interaction 
methods to this visual metaphor. For example, 

Algorithm Visualization
User

(perceive)

User
(interact)

Data

Figure 1. The information visualization pipeline.8 Users can directly 
interact with the data (for example, filtering or correcting values), 
algorithm (for example, adjusting weights of relationships or changing 
parameter values), or visualization (for example, selecting a different 
encoding or modifying zoom levels).

(a) (b)

Figure 2. Examples of two types of direct manipulation interfaces.  
(a) Spotfire employs direct manipulation for dynamic querying (ranges 
for data values, such as the portfolio value or number of trades) for 
information visualization. (b) iPCA applies direct manipulation to visual 
analytics (VA)—for example, directly controlling each dimension’s 
relative contribution for principal component analysis.10
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inverting PCA, multidimensional scaling, and 
generative topographic mapping can enable semantic 
interaction in bidirectional spatializations.4,11 The 
ability to understand each model’s parameters 
that can be exposed through the visual encoding 
(in this case, the relative distance between data 
points) enabled this affordance. Further research 
has explored the tradeoffs between the various 
ways to map the user feedback of changing the 
relative distance between data objects to the 
underlying dimension reduction models.5,12

Impact: Current and Future
Semantic interaction to increase the usability of com-
plex VA systems has evolved along with VA’s growth 
and maturity as a research discipline. Interactivity has 
become increasingly important, and users’ attempts 
to communicate their hypotheses and assertions 
about the data to foster sensemaking have contin-
ued to employ (if not depend on) analytic models. 
Semantic interaction has helped foster this commu-
nication between the user and the model, having an 
impact beyond that at the time of my dissertation.

Sensemaking is the process of someone acquiring an un-
derstanding of the world based on that person’s concep-

tual model of events, actions, and information. Researchers 
have developed visual-analytics (VA) systems that support 
aspects of this process. This support can be characterized by 
the systems’ user interactions, especially as they pertain to 
the visual metaphor and underlying models. Sensemaking 
has two primary subprocesses: foraging and synthesis.1

Foraging
During foraging, users filter and gather collections of 
interesting or relevant information. Scientists categorize 
VA tools that support foraging by their ability to pass data 
through complex analytic and statistical models and visu-
alize the dataset’s computed structure for the user to gain 
insight (see Figure A). So, users interact with these tools 
primarily by directly manipulating the models’ parameters.

For example, interfaces that apply the information 
visualization interaction methodology of direct manipula-
tion2 present users with a set of graphical controls (slid-
ers, knobs, and so on) to control and modify the model 
parameters’ values. In VA tools, understanding these 
parameters (and the result of changing their values) can 
be difficult and is often outside the area of expertise for an 
expert in the specific data domain (for example, genom-
ics and international politics). In these cases, users must 
translate their domain expertise and semantics about the 
information to determine which parameters to adjust (and 
by how much)—a fundamental usability concern.

VA tools leverage such models as entity extraction, 
topic modeling, link analysis, dimensionality reduction, 
clustering, and labeling. These models use various distance 
metrics to measure similarity between data objects. You 
can use these models to spatialize data. For example, you 
can represent unstructured text as a bag of words, high-
dimensional data in which each dimension is a unique 
keyword or phrase in the text. Visualizations such as 
IN-SPIRE’s Galaxy View3 organize points representing text 
documents such that nearby points represent similar docu-
ments. This helps users recognize relationships between 
documents and between clusters of documents.

Synthesis
On the basis of the information acquired from foraging, us-
ers advance through the synthesis stages. In these stages, 
they construct and test hypotheses about how the foraged 
information might relate to their understanding of the 
world. Synthesis tools let users organize and maintain their 
hypotheses and insight regarding the data (see Figure 
B). These tools often employ a flexible, informal spatial 
medium or canvas.

For example, by organizing spatial layouts, users can 
externalize their insights about a dataset on the basis of 
the information’s position.4 Users frequently organize such 
layouts by complex schemas and mixed metaphors, often 
organized topically according to the semantics relevant 
to their analysis needs. Analysts use tools that support 
manually constructing spatializations to visually synthesize 
hypotheses.5 That is, they create spatial structures (often 
mixing clusters, timelines, connections, geography, order 

Visual Analytics for Sensemaking

Statistical
Model 

Figure A. Interaction with foraging tools. Users interact directly with 

the statistical model (red), then gain insight through observing the 

change in the visualization (blue).

Figure B. Interaction with synthesis tools. Users manually create a 

spatial layout of the information to maintain and organize their insights 

about the data.
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Making Insights in Big Data Accessible
The ForceSPIRE system demonstrates how a spa-
tialization of text documents can be the pri-
mary interface for user interaction (see Figure 
4).6 ForceSPIRE uses relative distance to indicate 
documents’ similarity. It computes the distances 
through force-directed layout. The single spatial 
layout is the primary view, through which most 
interaction occurs. We chose the user interactions 
specifically to correspond with those found during 
studies observing users performing text analysis 

using a spatial metaphor.2,3 The studies found that 
users reposition documents, highlight phrases, 
take notes, and perform text searches while ac-
tively reading. ForceSPIRE couples each of these 
interactions with model updates.6

My colleagues and I directly extended the find-
ings from this research into work in analyzing large 
volumes of text. We used multiple tiers and styles of 
analytic and mathematical models to process and 
retrieve data, extract features, and so on. Each of 
these stages in the data-processing pipeline presents 
opportunities to steer the model on the basis of the 
inference of the user interaction.13 For example, a 
challenge in large data volumes is retrieving only 
the most relevant subset of the data to maintain 
locally and visualize. Thus, how can semantic in-
teraction steer information retrieval techniques to 
locally maintain and visualize only the most rel-
evant information with respect to the user’s ana-
lytic process? Many such techniques can benefit 

of discovery, process waypoints, and so on) that 
carry meaning to them regarding their sense-
making process.

Such informal relationships in the spatial 
layout are beneficial because they don’t require 
users to overformalize relationships too early in 
the process. This gradual increase in relationship 
formality is called incremental formalism.6 This 
approach directly presents the user interaction 
to users both in the visual metaphor and on the 
data. So, the users can leverage their domain 
expertise to make sense of the information.
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Figure 3. The semantic interaction pipeline. Users interact directly 
with the visualization, from which inferences are made to update the 
model or algorithm. Semantic interaction uses the stored “soft data” in 
conjunction with the “hard data” (raw data) to incorporate the user’s 
expertise into the VA system.

Search

Highlight

Annotate

Figure 4. With ForceSPIRE, users can search, 
highlight, annotate, and reposition documents 
spatially. Documents can appear as minimized 
rectangles (see the yellow, blue, and teal rectangles 
in the enlarged region at the bottom) and as full-
detail windows (resizable by the user). ForceSPIRE 
makes model inferences on each user interaction, 
creating machine and human co-reasoning.
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from the information inferred about the user to 
more accurately query within, and across, databases 
containing relevant information. That is, how can 
semantic interaction scale the inferred reasoning of 
the user into the larger data volumes through the 
malleability of information retrieval techniques? 
Furthermore, this might require additional visual 
representations (or aggregations) of information.

Semantic interaction has impacted projects at 
Pacific Northwest National Laboratory that stem 
from user needs to understand these large volumes 
of text data. Semantic interaction’s capability to 
capture the analytic reasoning associated with a 
user interaction and amplify that reasoning into 
the analytic model lets users extend their reach 

and coverage into the larger data scales. These us-
ers’ domain expertise generally does not include 
knowledge in statistics or the data sciences. So, 
placing their user interaction directly onto the vi-
sual data representations enables them to reason 
on the data using the visualization and to commu-
nicate their hypotheses and assertions directly in 
the visualization. Anecdotal feedback from these 
users has been positive, with a user evaluation 
in progress. Similarly, research at Virginia Tech is 
investigating how semantic interaction can help 
steer information retrieval techniques to address 
big-data challenges. This research is fundamen-
tally advancing our understanding of semantic 
interaction and evolving ForceSPIRE as a testbed 
for prototyping and evaluating specific pairings of 
user interaction and computation.

Semantic interaction techniques have also af-
fected big-data challenges that emphasize a vari-
ety of data (for example, multimedia). Phenomena 
that are captured, collected, and encoded digitally 
often span multiple media types. So, promoting 
sensemaking through VA technologies often re-
quires users to reason across multiple media types. 
One challenge with such heterogeneous datasets is 
to correlate, or fuse, the data types’ feature spaces 
that represent a cognitively cohesive concept or 
topic. Through inferring the higher-level analytic 
reasoning from user interaction tailored toward 
each of these data types, the opportunity exists to 
successfully decode phenomena whose discovery 
and understanding require multiple data types.

From Streaming Data to Streaming Insights
The continuous sensing and collecting of informa-
tion poses streaming-data challenges and oppor-
tunities. A specific challenge is how to understand 
evolving and changing phenomena in real time. 
In terms of steering and adapting the underlying 
models using semantic interaction, challenges ex-
ist regarding the temporal nature of the data and 
the reasoning process. As users generate hypothe-
ses and reason about the data, how can the models 
interpret the temporal nature of those hypotheses 
and assertions? How can VA systems working with 
streaming data understand the temporal impor-
tance of what information to retain and what to 
delete as a user progresses through sensemaking?

Researchers are applying semantic interaction 
to streaming-data challenges (following the last 
design guideline in the sidebar “Semantic Interac-
tion Design Guidelines”). Instead of using seman-
tic interaction to understand the features users 
are interested in over time, the goal here might 
be to understand the features or data that users 

Here are guidelines for semantic interaction for spatializations:1

 ■ A visual “near = similar” metaphor supports analysts’ spatial 
cognition and is generated by statistical models and similarity 
metrics.2

 ■ Use semantic interactions within the visual metaphor, based on 
common interactions occurring in spatial analytic processes3 
such as searching, highlighting, annotating, and repositioning 
documents.

 ■ Interpret and map the semantic interactions to the model’s 
underlying parameters, by updating weights and adding 
information.

 ■ Shield users from the complexity of the underlying mathemati-
cal models and parameters.

 ■ Models should learn incrementally by taking into account inter-
action during the entire analytic process, supporting analysts’ 
process of incremental formalism.4

 ■ Provide visual feedback of the updated model and learned 
parameters within the visual metaphor.

 ■ Reuse learned model parameters in streaming data or future data.
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don’t show interest in. So, semantic interaction 
enables streaming models to determine what in-
formation to “forget.” For example, dimension re-
duction models can understand what dimensions 
carry little if any weight, given the user’s context. 
Similarly, reasoning models can learn what rules 
or assertions are no longer valid, weight them ac-
cording to a belief propagation network implicit 
from the user, or create new ones from the user’s 
domain expertise.

Evaluating Visual Analysis
VA technology has evolved from visualizing infor-
mation to visualizing an analytic model’s approxi-
mation of data (the model’s output). Such a model 
approximates, or fits, the information given a spe-
cific parameterization of that model. The ability 
to steer, select, and refine such models is critical 
because they result in the generated visualizations. 
This poses the challenge of measuring the similar-
ity between a user’s conceptual model of a topic or 
domain and the analytic model’s approximation of 
the information.

My colleagues and I have evaluated how semantic 
interaction affects the analytic process. Semantic 
interaction is intended primarily for sensemak-
ing and discovery tasks. So, the goal is to foster 
the creation of insight. Prior research has inves-
tigated the challenges of evaluating visualizations 
intended for open-ended discovery.14,15 Thus, to 
evaluate semantic interaction (specifically, in the 
context of text analysis using ForceSPIRE), we can 
observe the analytic process and the analytic prod-
uct. For example, my colleagues and I evaluated 
semantic interaction’s ability to couple cognition 
and computation through visualization by analyz-
ing the evolution of three components throughout 
a user study: the model parameter weights, the vi-
sualization, and the user’s insights.7 Our research 
showed that semantic interaction could incremen-
tally steer the underlying model, and in turn the 
visualization, to coincide with the user’s analysis 
and insights.

This raises the question, does temporal synchro-
nization between the model parameter weights, 
the visual representation, and the user’s insights 
represent a valuable metric for evaluating VA tools 
for discovery? Such an approach for evaluating vi-
sual data exploration performs well in conjunction 
with methods such as insight-based evaluation,16 
to understand the evolution of a user’s insight over 
time. Additionally, whereas much semantic inter-
action research has focused on implicitly steering 
models, the holistic design of VA tools will likely 
combine explicit, direct manipulation interactions 

in concert with semantic interactions to provide 
users with both direct manipulation controls and 
implicit knowledge amplification when desired.

Toward a Science of Interaction
The need to understand, measure, and quantify 
the analysis process has created a study, or science, 
of interaction.17 (For more on this, see the sidebar 
“Inferring Reasoning from User Interaction.”) The 
underlying claim is that user interactions embody 
and externalize aspects of the analysis process. Se-
mantic interaction can help further this scientific 
understanding of user interaction by systemati-
cally quantifying the interaction and binding it to 
model parameters.

The research I’ve been describing has looked at 
how to analyze user interaction directly within 
the visual metaphor to reveal analytical reasoning. 
However, other scientific areas have studied user 
interaction data captured from other metaphors, 
such as clickstream data for Web browsing, physi-
cal and social movement for behavioral analysis 
of groups of people, and product purchase trends 
for marketing.

Also, beyond direct model steering, the analysis 
of the user interaction can include understanding 
user biases and cognitive stages during a sense-
making task. The “soft data” (see Figure 3) col-
lected from user interaction can be the basis of 
study. Theories and models for analysis (for ex-
ample, task models and user models) can be de-
veloped in a data-driven way. That is, through 
exploring additional mappings between user inter-
action data and cognitive processes, this science of 
interaction can continue to evolve and solidify as 
theories continue to form.

Other Visual Metaphors and Analytic Models
Semantic interaction research has focused largely 
on spatializations that show similarity using the 
relative distance between data objects. Other visual 
metaphors and representations can be leveraged 
in a similar, bidirectional nature. In transition-
ing semantic interaction design guidelines (see 
the related sidebar) to such metaphors, a critical 
component is the model used for generating the 
visualization.

For example, using a sparkline to show the tem-
poral trend of the abundance of a specific term 
or hashtag on social media might not directly 
benefit from semantic interaction. This is because 
the visualization generation doesn’t involve model 
translation (the count of terms is directly visu-
alized). However, if we use an analytic model to 
determine the trend as an aggregate of terms or 
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hashtags (or even a weighting of some terms as 
more important than others), we can steer the 
technique for determining that trend. For exam-
ple, users could directly manipulate the sparkline’s 
height at specific places to inject their subjective 
domain expertise around that time or topic.

Extending semantic interaction to additional vi-
sual metaphors and encodings is particularly valu-
able in VA, which typically leverages one or more 
analytic models to produce a visualization. Such 
advancements could improve interactivity for ex-
ploratory data analysis in visualization tools such 
as Tableau or Spotfire.

Semantic interaction principles can also apply 
to models that might not be directly invertible. 
For example, topic detection models might not 
have a clean, mathematical inversion. However, 
augmenting their parameterization is still criti-
cal to foster sensemaking and discovery. So, we 
can couple their parameterization with the visual 
affordances created in the visualization to enable 
semantic interaction. For example, we can show 
topics in a word cloud, in which users can create 
and adjust the hierarchical topic detection and ag-
gregation methods used by the specific model. We 

can then infer the reasoning of such visual aug-
mentations and use it to parameterize the model 
in accordance with the user’s domain expertise. 
Additional such models might include those used 
for anomaly detection, standard deviation and er-
ror, entity extraction, storytelling, and network 
structure detection.

The work on semantic interaction has presented 
the visual-analytics community a set of con-

tributions that can seed idea spaces for further 
work. This work poses challenges to multidisci-
plinary research projects and institutions to un-
derstand couplings between not only cognitive and 
computational processes of systems being built but 
also disciplines including human–computer inter-
action, information visualization, data mining, 
and statistics. In reflecting on this work in the 
context of the visual-analytics community’s cur-
rent needs and directions, opportunities exist to 
continue to promote the usability and effective-
ness of systems that enable users to gain insights 
in impactful domains. 
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