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ABSTRACT

Completing text analysis tasks is a continuous sensemaking loop
of foraging for information and incrementally synthesizing it into
hypotheses. Past research has shown the advantages of using spa-
tial workspaces as a means for synthesizing information through
externalizing hypotheses and creating spatial schemas. However,
spatializing the entirety of datasets becomes prohibitive as the num-
ber of documents available to the analysts grows, particularly when
only a small subset are relevant to the task at hand. StarSPIRE is a
visual analytics tool designed to explore collections of documents,
leveraging users’ semantic interactions to steer (1) a synthesis model
that aids in document layout, and (2) a foraging model to automat-
ically retrieve new relevant information. In contrast to traditional
keyword search foraging (KSF), “semantic interaction foraging”
(SIF) occurs as a result of the user’s synthesis actions. To quantify
the value of semantic interaction foraging, we use StarSPIRE to
evaluate its utility for an intelligence analysis sensemaking task. Se-
mantic interaction foraging accounted for 26% of useful documents
found, and it also resulted in increased synthesis interactions and
improved sensemaking task performance by users in comparison to
only using keyword search.

Index Terms: Human-centered computing— Visualization—
Empirical studies in visualization; Human-centered computing—
Visualization—Visual analytics

1 INTRODUCTION

Prior research has highlighted the utility of spatializations to support
the sensemaking process for text analysis [4-6,11,16,21,23,30, 34,
48,52,53]. By providing a continuous physical workspace, analysts
can externalize their hypotheses and organize data into meaningful
schemas. However, manually arranging documents is a tedious
and time-consuming task. Analysts must read each document and
assess its relevance before deciding where the text belongs in an
incrementally evolving spatialization. This task is exacerbated in
realistic sensemaking scenarios because datasets are rarely small
enough to display in full, even on a large, high-resolution display.
Additionally, only a small subset of available documents is typically
relevant to the analyst’s sensemaking task. Analysts must then apply
a combination of searching for documents and organizing them
spatially. More specifically, analysts are tasked with two primary
challenges: foraging for relevant information, and synthesizing the
information into a coherent structure and narrative [10, 35].

These foraging and synthesizing tasks are combined in the visual
analytics tool StarSPIRE [12], which uses a spatial metaphor to serve
as a means of communicating with underlying document relevance
and spatial layout models. As the analyst synthesizes information,
StarSPIRE encodes their interactions in the workspace to update
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an underlying user model that captures the analyst’s interest foci
quantitatively. These are semantic interactions in the sense that
they directly reflect the analyst’s analytical thought process about
the meaning of the data (such as organizing documents, highlighting
and annotating text, etc.), rather than about manipulating model
parameters (e.g., sliders on keyword weights). The user model is
then used to support the foraging and synthesis processes.

To support the foraging process, the updated user model is used to
determine document relevance and to curate the working set of docu-
ments displayed in the workspace. Therefore, in addition to allowing
for traditional keyword search foraging (KSF) for documents (i.e.,
a user types in keywords and retrieves relevant documents), the
updated user model initiates semantic interaction foraging (SIF)
to automatically forage for documents that may be relevant to the
analyst. SIF displays new documents that the model infers may be
of interest to the analyst based on their prior synthesis actions. To
support the synthesis process, the updated user model is also used to
adjust the spatial layout, allowing the analyst to organize and visual-
ize the working set using a “proximity ~ similarity” metaphor [20].

These two processes work together in a contextual manner. Syn-
thesis actions by the analyst within the spatial workspace (contextual
input) serve to initiate SIF algorithms, and the resulting newly-
foraged documents are automatically positioned within the space
(contextual output) by the synthesis layout algorithm.

This capability for SIF raises several research questions. Does SIF
retrieve useful relevant information? Does it retrieve information that
might not be found using KSF alone? How does it affect analysts’
interactions, sensemaking process, and analytic performance? To
evaluate the utility of semantic interaction foraging for sensemaking
tasks, in particular the translation of semantic interactions into SIF,
we conducted a comparative user study using a text dataset with
a known ground truth from the VAST 2007 Challenge [36]. For
foraging, the control condition offered only KSF. The experimental
condition also offered SIF in addition to KSF.

We found in this study that KSF and SIF are complementary
foraging techniques, each with benefits and limitations regarding
the set of documents that each are best at retrieving. We found that
the introduction of SIF into StarSPIRE led to a boost in participant
comprehension of the scenario in the study dataset, led to an in-
crease in the number of user interactions with the workspace, and
led to the discovery of some relevant documents that were rarely
located by KSF alone. SIF shows clear effects on which documents
participants retrieved, how these documents were retrieved, how
the participants interacted with these documents, and the overall
information synthesis of the participants.

The contributions of this paper are:

* The design and results of a study to determine the effects of

SIF on the sensemaking process using StarSPIRE.

* An analysis of the study results to understand how SIF can

benefit the exploration of large document collections.

* Reflections on using KSF and SIF in visual analytics systems.

2 RELATED WORK

2.1 Semantic Interaction

Previous work has demonstrated the success of semantic interaction
for manipulating underlying models (e.g., force-directed, multidi-
mensional scaling) to shield users from the complexity of these



algorithms [22]. By manipulating the data instead of altering model
parameters explicitly, users are able to maintain focus on their analy-
ses, thus staying in the “cognitive zone” [17,26]. Similar techniques
have also been proposed in the user modeling community [2, 3].

Inspired by PNNL’s IN-SPIRE [37,51], systems such as Force-
SPIRE [20] and StarSPIRE [12] allow users to directly manipulate
data points, which are then translated to parametric model feedback.
Dis-Function [14] and Andromeda [41] follow a similar approach
with quantitative data. These systems are limited by the size of
the datasets that can be analyzed. As the number of data points
and/or the data dimensionality increases, the execution time of the
spatial layout models increases to the point where a quick interaction-
feedback loop is no longer supported.

2.2 Visualizing and Interacting with Text

To visualize large text corpora, Typograph [19] uses varying levels
of data abstraction by utilizing extracted topics, keywords, and docu-
ment snippets. Users can drill down to see the documents at different
levels of detail. The multi-model semantic interaction technique in
StarSPIRE, in comparison, addresses the scalability challenge by
continually updating a small working set of documents. Documents
in StarSPIRE are either not present, iconified, or open. We previ-
ously presented a visualization pipeline that outlines how interac-
tions are captured, interpreted, and leveraged to compose a working
set of documents to visualize [12]. The multi-model visualization
pipeline demonstrates how models can be interchanged to best suit
the analyst’s needs [12]. This pipeline was previously demonstrated
using a display layout and a document relevance model, but could
easily be extended to include clustering [47], large-scale informa-
tion retrieval [25], or data streaming and sampling algorithms. For
example, Vizster combines a clustering algorithm and a graph layout
algorithm to visualize social networks [29].

Work by Ruotsalo et al. has demonstrated the use of direct ma-
nipulation to influence information retrieval algorithms [39]. User
interactions within a radial topic spatialization were used to infer
possible user intent and thereby tune search results, working on the
principle that searches evolve incrementally [44]. This is similar to
the incremental formalism seen in sensemaking and spatial organiza-
tion [43]. They found that these interactions did not replace the need
for conducting traditional keyword searches, but that the users in the
condition that allowed for the use of the spatial interface performed
better than those who did not have this technique available. These
results closely mimic the results of our user study — inferring user in-
terests through interactions in a spatialization does not replace KSF,
yet it augments the underlying models, allowing users to identify
more pertinent pieces of information.

2.3 Foraging for Text

Other systems provide mechanisms for visualizing search results
beyond the typical ranked list (e.g., term distribution charts [28], self-
organizing semantic maps [31]), but these methods have not received
widespread adoption and do not provide the nuanced spatial interac-
tions that Intent Radar does [39]. While ranked lists are well-suited
to narrow and specific searches, they may not be as well-suited for
complex sensemaking tasks. For example, conducting a literature
review requires exploring multiple facets of a topic. A simple ranked
list of results does not yield insight into documents that are mix-
tures of different topics. Thus, recommendation systems typically
separate foraging and synthesis, presenting results in a separate list.
However, StarSPIRE integrates recommendation systems into the
sensemaking process by placing recommendations in context with
the user’s current analytical workspace.

2.4 Recommendation Systems

Recommendation systems work by assigning a predicted “rating”
or “preference” score to individual items based on the relevance of

that item to an analyst [38]. StarSPIRE falls under the “content-
based filtering” approach to recommendation systems, in which
these preference scores are determined by profiles of both the item
in question and the user exploring the collection of all items [15].

The foraging engine of StarSPIRE is also closely related to query-
by-example systems, which utilize a set of user-defined query ob-
jects. Query-by-example systems can be found in the literature
across many types of data, including unstructured text documents [8],
multimedia [27,40], and musical selections [24].

Our intent with this study was not to create a new algorithm for
a recommendation system; rather, we sought to evaluate the use of
semantic interaction techniques in support of document recommen-
dations. While the StarSPIRE foraging backend is relatively simple,
the weights applied to each category of semantic interaction allow
for ease of experimentation during the development of the system
and can be tuned to each scenario. In the future, these weights could
be learned either automatically or based on a large-scale study with
additional datasets. We assert that many recommendation systems
could be used as a foraging backend to StarSPIRE, which should
give even better performance than the heuristic system described in
Section 3 and Table 1.

3 STARSPIRE DESIGN

StarSPIRE is a visual analytics system prototype developed to
demonstrate semantic interaction with SIF. Many of the implemen-
tation details for StarSPIRE can be found in [12], though we briefly
summarize the components relevant to the study here. In particular,
StarSPIRE contains the following concepts:

1. A working set of documents, extracted from a universal set
by an information retrieval model and relevance threshold,
representative of the foraging process. This model computes
the relevance of a document as a combination of the extracted
entities within each document and the term weights in the user
interest model. This relevance calculation combined with a
threshold serves as a filter for which documents are displayed
in the workspace.

2. A spatialization of the working set of documents, organized by
a spatial display layout model, representative of the synthesis
process. This model computes a weighted, force-directed
layout of the documents, with a document similarity function
of co-occurring terms weighted by the term weights in the user
interest model. The model places similar documents nearer
each other in the layout.

3. A high-dimensional user interest model, learned from the
user’s semantic interactions on the working set and spatial-
ization. The model consists of weights on terms to represent
the user’s interest level. The user model is input to the retrieval
and layout model algorithms.

4. SIF occurs as a result of semantic interactions that update the
user interest model, which is then input into the retrieval model,
thereby updating the current working set that is displayed on
screen by the layout model. In contrast, KSF bypasses the
interest model and directly manipulates the working set.

StarSPIRE (Fig. 1) provides users with a spatial workspace to
view and incrementally arrange documents in a large display space
(similar to the Analyst’s Workspace [6]). Documents are visualized
using a node-link diagram, and are shown as iconified nodes or as
open text windows. To avoid a cluttered workspace, edges linking
documents (based on term co-occurrence) are only shown radiating
from the currently selected node. We designed a set of semantic
interactions (some of which are listed in Table 1) by observing
real-world analysts who offered usability feedback in informal and
formal test settings to tune the parameters. This system is built
upon the foundation of ForceSPIRE [20], which implemented the



Table 1: StarSPIRE’s available semantic interactions and their associated parametric impact on the user interest model. Effects on the term

weights ranged from 15% to 40% depending on interaction.

Semantic Interaction Effect on User Interest Model

Open document

Increase weight of terms in the document, and automatically pin.

Minimize document

Reduce weight of terms in the document.

Remove document

Reduce weight of terms in the document; remove document from working set.

Overlap documents (cluster)

Increase weight of terms co-occurring in the overlapped documents.

Highlight text in document

Increase weight of highlighted terms, add terms to model (if not already present).

Annotate document (notes)

Increase weight of terms in the annotation, add terms to model (if not already present).

Search (KSF)

Increase weight of search terms, add terms to model (if not already present), adjust relevance threshold.

Move or un/pin document

Adjust layout model constraints (layout model only; no effect on user interest model).

synthesis portion of the process and provided the weighted, force-
directed spatial layout. StarSPIRE adds the foraging portion of the
process, enabling data retrieval beyond what is already displayed
in the workspace. StarSPIRE also enables a richer set of visual
encodings to reflect term weights and document relevance.

3.1 Visual Encodings

Nodes are encoded with node size and saturation to reflect docu-
ment relevance based on the underlying user interest model (Fig. 1).
These encodings are updated during semantic interactions to reflect
incremental and constantly evolving user sensemaking. Edges are
labeled with the top-weighted terms that co-occur in both documents,
and line thickness encodes the total weight of co-occurring terms to
reveal how much the documents have in common.

Terms are extracted from documents using LingPipe [9] and are
underlined in the documents. Based on the user interest model,
StarSPIRE automatically highlights text using a yellow gradient
saturation scale to indicate important terms. This allows for quick
skimming of documents to determine if they are worth further inves-
tigation. User-created highlights are shown in a distinct green color
to differentiate from system-generated highlights. Highlighting turns
plain text files into visual glyphs that make them easier to locate
again on a large, high-resolution display [11,46].

StarSPIRE also provides visual cues to help users navigate the
workspace. Node outline color is used to indicate read or unread
status, and node hue is mapped to specific keyword searches (KSF)
the user has executed. Each node is labeled with the document title,
which can aid in choosing what documents to read as well as locating
previously read documents.

3.2 Semantic Interactions

The semantic interactions and their effect on the user model is
described in Table 1. These semantic interactions influence the
parameters of the user model, either increasing or decreasing the
weights of the associated terms. Additionally, terms can be added
or removed from the model through these interactions. In order
to allow users to change the course of their analysis without being
limited by initial paths of investigation, term weights slowly decay
over time to slightly emphasize more recent interactions.

The semantic interactions provide feedback to the user interest
model and thereby steer the underlying foraging and synthesis mod-
els. After each interaction, the system determines which documents
continue to meet the relevance threshold based on the updated user
interest model. The relevance threshold can also vary depending
on the interaction. For example, removing a document raises the
relevance threshold temporarily, allowing more irrelevant documents
to be pruned from the workspace. Conversely, explicitly executing
a search lowers the relevance threshold temporarily to allow more
documents to be added to the workspace. Moving nodes and pinning
them to fixed locations in the spatialization are the only interactions

that operate solely on the layout without updating the user’s interest
model. Overall, the system was designed to reflect the incremental
nature of the human sensemaking process [35], such that semantic
interactions have an incremental effect on retrieval and layout.

3.3 Keyword Search and Semantic Interaction Foraging

StarSPIRE allows for two types of foraging: keyword search and
semantic interaction. The system explicitly searches for matching
documents when the user executes a keyword search. Executing
KSF in this manner serves a dual purpose. First, nodes are color
coded according to search hits, which can be used to identify relevant
documents already on the screen. Second, documents are foraged
from the database that are not currently displayed in the workspace.

StarSPIRE uses SIF when users highlight text, write annotations
on a document, or overlap documents. SIF first determines which
term weights increased in the model as a result of the interaction.
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Next, StarSPIRE uses these terms to search the repository of all
documents in the database that are not currently displayed in the
workspace. This forms a set of documents that are candidates for
addition to the workspace. These documents are then ranked in terms
of relevance by matching them to the user’s interest model. The
top n documents that surpass the relevance threshold are then added
into the workspace where they are laid out according to the current
display layout model, placing the search results in context of the
user’s current work. This eliminates the user’s need to swap views to
execute a query, review results, and add information to the synthesis
space. In this manner, synthesis-related actions are leveraged to
forage for information, while foraging actions aid in synthesizing
information by updating the visual encodings and spatial layout.
For example, when a user overlaps two documents that they think
are related, StarSPIRE increases the weight on the terms shared
between those two documents in the user interest model, inferring
their importance to the user. StarSPIRE then forages for additional
documents containing those terms, ranks the documents on relevance
to the user interest model, and adds the most relevant to the working
set and inserts them into the layout model shown on the screen.
KSF is the traditional method of obtaining potentially relevant
documents. Adding SIF functionality enables the system to passively
search for information as the analyst is synthesizing documents into
their workspace. Because it is based on the user interest model, SIF
utilizes many more search terms than are typically contained in KSF
queries. This allows for richer matching to find new documents that
closely fit the user’s perception of what is important, and can help to
overcome the difficulties users have in choosing good search terms.

4 STUDY DESIGN

The goal of this study is to quantify the impact, if any, of introducing
contextualized SIF into the sensemaking process. Specifically, how
does StarSPIRE with SIF compare to StarSPIRE without SIF? To ac-
complish this, we conducted a comparative user study with SIF+KSF
(referred to as the “SIF+KSF” group) as the test condition and only
KSF (referred to as the “KSF” group) as the control condition.

4.1 Task Description

To ensure that users would not be able to simply read all documents
in the dataset, and thus would have to forage for a small subset
of relevant documents, we chose the large VAST 2007 Challenge
dataset named Blue Iguanodon' [36]. This dataset presents a law
enforcement/counterterrorism scenario composed of multiple latent
subplots within the overarching scenario of illegal exotic animal
sales. Participants were asked to explore these documents to investi-
gate the scenario. The documents themselves include news articles,
blog posts, photographs, hand-drawn comics, and spreadsheets. All
of the data, except for the spreadsheets, was used in this study. Be-
cause StarSPIRE does not currently contain support for images, all
images and comics were transcribed to describe their contents. This
resulted in 1486 documents. These documents were processed using
LingPipe [9] for entity extraction. After eliminating all entities that
only appeared a single time, 1440 entities remained in the term set.
The original Blue Iguanodon dataset does not contain a clear
starting point, but to aid the participants, we slightly modified the
task description to indicate a starting document for analysis: an
article describing an outbreak of a disease called “monkeypox” and
implying that chinchillas may be carriers of this disease. Their goal
was to identify the cause of this outbreak. The task is suitable for
students as well as professionals, requiring no specialized analytical
experience or domain knowledge. Also, there is a ground truth for
the task: the VAST 2007 Challenge has an associated scoring guide,
which enabled us to quantitatively evaluate the quality of analysis.

'In addition to the contest summary paper cited above, more information
about the 2007 VAST Challenge and the Blue Iguanodon dataset can be
found at http://www.cs.umd.edu/hcil/VASTcontest07/.

Participants used StarSPIRE on six 30” LCD panels, tiled in a
2x3 grid, on a 24-megapixel display system. This apparatus was
chosen to give users ample space to perform spatial synthesis, and
avoid the need to close documents purely for lack of space. Large
high-resolution displays have been shown to have many benefits for
cognitively intensive sensemaking tasks [5,7,18].

Participants were given identical training on StarSPIRE with a
smaller dataset of 111 short text documents. After a demonstration
of the tool’s functionality, participants were instructed to solve an
analytical task in order to grow comfortable using StarSPIRE’s in-
terface. Participants were then given 75 minutes to complete the
sensemaking task, requiring participants to explore the 1486 docu-
ment set to identify the hidden plots regarding illicit activity. The
task required participants to sort out and synthesize relevant informa-
tion from many documents into a coherent hypothesized narrative.
All participants used the full allotted time. Although it was unlikely
to detect all of the interconnected subplots in this short time frame,
a reasonable and uniform time for analysis helped to prevent fatigue
and ensure quality analysis. To motivate participants, monetary
prizes in addition to the initial compensation were granted to the top
three performing participants.

After completing the 75-minute analytical session, participants
answered survey questions pertaining to the who, what, and where
of the plot, and described their overall hypothesis. All participants
had access to their final workspace during the survey to be able to
reference their annotations and open documents. Next, the partic-
ipants drew and annotated their spatial organizational schema on
paper. Finally, users completed a survey to give feedback on their
analytical strategy, difficulties encountered, and how StarSPIRE
helped or hindered their analysis. The proctor conducted a brief
semi-structured interview for any remaining comments. Also, par-
ticipants were able to pause and ask questions at any point during
the sensemaking session. The entire session, from informed consent
to final survey and interview, spanned approximately two hours.

We collected logs of all interactions performed by users as well
as snapshots of the underlying model parameter values, took screen-
shots every minute, and saved their final workspaces so that they
could be loaded and examined at a later date.

4.2 Participants

We recruited 18 graduate and undergraduate students from vary-
ing academic backgrounds. Participant ages ranged from 18 to 42
(u =23, 6 = 5.6). Twelve participants were male and six were
female. Twelve were computer science students, five from engineer-
ing disciplines, and one from mathematics. Six participants were
graduate students, and twelve were undergraduates. Each participant
was randomly assigned a condition (KSF or SIF+KSF, described in
the next subsection) such that each condition had an equal number
of participants.

Figure 2: A participant interacting with StarSPIRE.



4.3 Study Conditions

This study consisted of two conditions. The test condition is referred
to as the “SIF+KSF” group, in which participants had access to the
full StarSPIRE system. Participants assigned to this group could
use both semantic interaction foraging and keyword search foraging
when exploring the document collection. In other words, StarSPIRE
foraged for new documents to recommend to each participant based
on their explicit keyword searches, as well as by their interactions
in opening, minimizing, removing, overlapping, highlighting, and
annotating documents. The semantic interactions provided to these
participants are listed in Table 1.

The control condition is referred to as the “KSF” group. Partici-
pants assigned to this group could only forage for new documents
via explicit keyword searches that they typed into search boxes.
Participants still had the ability to perform the semantic interac-
tions listed in Table 1 that updated the user model, but automatic
foraging did not occur as a result of those actions. For example,
participants could still highlight phrases within the documents to
support their own synthesis process and to support the layout and
automatic highlighting, but StarSPIRE did not automatically forage
for documents related to those phrases or the updated model. The
StarSPIRE system was identical in both conditions, except that the
SIF functionality was turned off in the KSF condition. Participants
were unaware of the different conditions for the study, and no change
to the user interface was evident to the KSF participants.

5 STUuDY RESULTS

Using a combination of log files, screenshots, solution sheets, sur-
veys, and interviews, we quantitatively and qualitatively evaluate
how SIF impacted the sensemaking process. Specifically, we ex-
amine (1) how well users performed, (2) how well they foraged for
relevant documents, (3) which relevant documents they discovered
and how they found them, (4) what interactions they performed, and
(5) what strategies they applied.

Each of the following subsections begins with a summary of the
research question addressed, followed by the study results and a
discussion of their significance. We report both significant and non-
significant results, showing both conclusions drawn from this study
as well as directions for further investigation.

5.1 SIF+KSF Participants Averaged Higher Scores

In this subsection, we investigate how the introduction of SIF af-
fected the participant scores resulting from their exploration of the
Blue Iguanodon document collection. We found that SIF+KSF group
members exhibited significantly higher average scores.

5.1.1 Results

Using the published scoring rules from the VAST 2007 Chal-
lenge [36], we computed a performance score for each participant.
Participant scores ranged from 1 to 17. The maximum possible
score was 58, although we did not expect participants to approach
this value given the time constraints of this study. No participants
identified any subplots outside of the plot indicated in the starting
document. The highest possible score considering only the initial
plot was 27. The scores were higher in the SIF+KSF group than in
the KSF group (SIF+KSF: u = 8.0, 6 = 5.4, min = 3, max = 17,
KSF: u =4.2, 6 = 3.3, min = 1, max = 10). The individual scores
with their means are shown in Fig. 3.

Due to the small sample size (n = 9 for each group), we first per-
formed two Shapiro-Wilk tests [42] for normality, to learn whether
or not the participant scores in each group were normally distributed.
The non-significant outcomes of this test at the o = 0.05 level
(W = 0.064 for the SIF+KSF group, W = 0.229 for the KSF group)
indicated that the scores were approximately normally distributed.

Following this, we performed a t-test assuming unequal variance,
using the alternative hypothesis that the SIF+KSF scores would be
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Figure 3: Score (left y-axis scale), precision, and recall (right y-axis
scale) of foraging performance by all participants. Mean group scores
are shown as blue diamonds. We found a statistically significant
difference between conditions in score, but not in precision and recall.

higher than the KSF scores. At a significance level of o = 0.05,
we found that the SIF+KSF group scores were significantly higher
than the KSF group scores (t = 1.8045, df = 13, p = 0.0471). This
process of non-significant Shapiro-Wilk test preceding an unequal
variance t-test was used for all other inferential statistics presented
in the following subsections.

5.1.2 Discussion

The results from this section show that, on average, participants in
the SIF+KSF group understood the plot to a greater degree than
those in the KSF group. Though the p-value is near the o = 0.05
significance threshold, this is due in part to the small sample size
of 9 participants in each group. The mean score for SIF+KSF par-
ticipants was nearly double that of the KSF participants. However,
we also note that the inclusion of SIF produced a higher variance in
scores than participants who were only afforded KSF. We suspect
that this is due in part to the variable number of semantic interactions
performed by SIF+KSF participants — both the choice and frequency
of semantic interactions used influences the set of documents that
are foraged, and thereby influences how well the participant under-
stands the plot. We discuss further explanations for the effect of the
inclusion of SIF on documents foraged in the next two subsections.

5.2 No Change to Precision and Recall between Groups

In this subsection, we investigate how the introduction of SIF af-
fected precision and recall scores for foraging performance. We
found no significant difference in foraging precision and recall be-
tween the SIF+KSF and KSF groups.

5.2.1 Results

In evaluating the foraging performance of participants, we compute
precision, recall, and F-measure values for the relevant documents
found by each participant. These results are summarized in Table 2.
We compute precision to be the number of relevant documents found
divided by the total number of documents retrieved and recall as
the number of relevant documents found divided by the number of
relevant documents in the known solution. F-measure is computed
as 2 x precision x recall / (precision+ recall). In this scenario, there
were 33 documents relevant to the known solution. We used the
participant log files to identify which documents were retrieved into
the workspace in order to calculate precision, recall, and F-measure
(shown in Fig. 3).

The SIF+KSF group averaged a precision score of 0.14 (¢ =
0.07), a recall score of 0.59 (¢ = 0.13), and an F-measure of 0.21



Table 2: Scores, counts of documents retrieved, and precision-recall
statistics for each condition.

SII;;:I;SF KSF Avg. Al Avg.
Score (out of 27) 8.0 4.6 6.1
Unique Relevant Docs Retrieved (out of 33) 19.3 18.1 18.7
Total Unique Docs Retrieved (out of 1486) 178.0 145.2 161.6
Precision 0.14 0.14 0.14
Recall 0.59 0.55 0.57
F-Measure 0.21 0.21 0.21

(0 =0.09). Similarly, the KSF group averaged a precision score of
0.14 (o =0.04), a recall score of 0.55 (o = 0.06), and an F-measure
of 0.21 (o = 0.05). It is noteworthy that both groups had very similar
precision, recall, and F-measure scores. This result is counter to
our initial hypothesis, which was that SIF would increase recall but
might penalize precision.

We did not observe a significant difference between SIF+KSF
and KSF conditions in the total number of unique documents re-
trieved (r = 0.8681, df = 12, p = 0.4024). Across conditions,
the number of unique documents retrieved ranged from 70 to
315 (u = 162, o = 80), which corresponds to 4.7% to 21.2% of
the entire dataset retrieved. The SIF+KSF participants retrieved
between 70 and 315 unique documents (¢t = 178, o = 102), and the
KSF condition participants retrieved between 90 and 239 documents
(1 =145, 0 = 50). Although these documents were imported into
the workspace, not all of them were read. This in and of itself is a
promising result. Participants were able to mentally filter out many
of the irrelevant documents in their synthesis phase.

5.2.2 Discussion

Because we are evaluating the influence of semantic interactions on
foraging, our computations of precision and recall used the number
of documents (and relevant documents) retrieved, rather than using a
similar measure such as number of documents opened or interacted
with. This choice allows us to measure what the system is giving the
analysts to read, rather than exploring what the analysts are focusing
on. It is certainly possible that altering these computations could
affect our non-significant results.

Overall, it is interesting to note that the foraging results for the
SIF+KSF group consistently show a standard deviation twice that of
the KSF group. This is further evidence that SIF introduces greater
variability into the foraging process. The number of documents
retrieved from the dataset varied based on user analytical strategy.

5.3 SIF and KSF Serve Complementary Document For-
aging Roles

In this subsection, we investigate how the introduction of SIF affects
the set of relevant documents retrieved and how they were retrieved.
We found that KSF and SIF each have their own advantages towards
retrieving certain sets of documents, and that highlighting was the
primary semantic interaction used to retrieve documents.

Table 3: Quantity and percentage of relevant documents retrieved
using the various interaction methods for the two conditions.

SIF+KSF KSF
Relevant Docs Retrieved (includes re-finds) 22.4 20.1
Total from SIF 5.8 (26%)
SIF from Highlight 5.0 (22%)
SIF from Annotate 0.2 (1%)
SIF from Overlap 0.6 (3%)
KSF from Search 16.7 (74%)  20.1 (100%)

5.3.1 Results

Document discovery results are summarized in Fig. 4. Of the
relevant documents in the collection, the “chinsurrection” docu-
ments were almost universally found by every KSF participant (one
KSF participant missed one of the documents). In contrast, some
SIF+KSF participants missed them. These documents are central to
the main plot of the investigation, which most of the participants at
least partially solved. All of these documents contain the name of
the central nefarious character, “Cesar Gil,” that most of the users
cited in their solutions. All KSF group users explicitly searched on
his name, but three of the SIF+KSF users did not, and consequently
some of those three missed a subset of these documents.

In contrast, the other relevant documents were found more often
by the SIF+KSF participants. In particular, three of these documents
were not found by any of KSF users, yet were found by 3/9 of the
SIF+KSF users. One of these documents contained supporting evi-
dence for the main plot described above, but did not identify Cesar
Gil by name. The other two documents contained information rele-
vant to a second subplot that interconnects with the main plot, about
another character named “rBear,” although none of the participants
succeeded in solving this plot. This character’s name was never
explicitly searched for by any of the participants, so it is likely this
information was retrieved through SIF, perhaps exploiting other key-
words in common between the two plots, such as “monkeypox” (a
highly weighted term in the final states of many of the participants’
user interest models). This indicates that it was valuable to have the
SIF mechanism to expand the scope of investigation to this other
relevant but less obviously connected information, beyond keywords
on which users might not think to explicitly search.

The SIF+KSF group located some relevant documents through
their semantic interaction foraging ability, while the KSF group
used only the keyword search means. The percentages are shown
in Table 3. We examined the interaction logs of the participants in
the SIF+KSF condition to determine if they retrieved relevant docu-
ments via semantic interactions that executed SIF retrieval. Eight
out of nine SIF+KSF users retrieved new relevant documents using
SIF. Including re-finds (relevant documents that were located, re-
moved from the working set by the user, and then located again),
SIF accounted for 26% of the total number of relevant documents
retrieved by the SIF+KSF group. For individual SIF+KSF users, this
percentage ranged from 0% to 100%, demonstrating the wide variety
of user strategies. This also suggests that users succeeded in finding
useful information via SIF, information that might not have been
found through explicit KSF. By far, most of the SIF-retrieved rele-
vant documents were retrieved as a result of highlight interactions,
indicating the importance of this type of semantic interaction.

5.3.2 Discussion

From this analysis of foraging behavior, we can see benefits of both
SIF and KSF. KSF is useful when specific terms of interest are
known; a keyword search for “Cesar Gil” added many of the “chin-
surrection” documents into the working set, indicating that KSF is
still valuable for foraging, especially for terms that are more obvious
targets of investigation. Simultaneously, KSF is limited when those
precise search terms are not present in other relevant documents. SIF,
in contrast, can locate documents related to the current direction of
exploration without the analyst knowing precisely what to search for,
but with the limitation that SIF may not locate all of the documents
that an analyst may be seeking. This limitation can be addressed by
more accurate learning and retrieval models in the future.
Interestingly, the SIF+KSF group earned higher analysis scores
on average, despite not finding all of the core “chinsurrection” doc-
uments. Instead, they earned higher scores by building up a more
complete plot with the supplemental documents they found through
SIF. The sensemaking process is boosted by SIF locating this broader
supplemental information, beyond the obvious core documents.
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Figure 4: The difference between the number of SIF+KSF group participants and KSF group participants who found each relevant document.
Positive scores (above the horizontal axis) mean that more SIF+KSF participants found the document, while negative scores (below the horizontal
axis) mean that more KSF participants found the document. More SIF+KSF participants found a majority of the documents, but more KSF

participants found the core “chinsurrection” documents.

5.4 SIF+KSF Participants Performed More Synthesis In-
teractions

In this subsection, we investigate how the introduction of SIF af-
fected the number of semantic interactions performed by participants.
We observed significant differences between study conditions in
terms of how much information users externalized to the workspace
via some synthesis-related actions, which may have contributed
to the potential trend of improved performance by the SIF+KSF
participants compared to the KSF participants.

5.4.1 Results

In order to track how users synthesized information, we once again
analyzed the interaction logs (Fig. 5). We identified the follow-
ing semantic interactions as being directly related to synthesis
through the externalization of the user’s thought processes: high-
lighting, annotating, and document overlapping (clustering). The
SIF+KSF condition participants performed significantly more high-
lights (r = 2.3227, df = 16, p = 0.0169) and significantly more
annotations (¢ = 2.0809, df =9, p = 0.0336). There was no sig-
nificant difference between the number of times that users clus-
tered documents by overlapping them (SIF+KSF u = 15.6; KSF
1 = 11.2), nor was there a significant difference in the number of
keyword searches performed by each group (SIF+KSF p = 19.2;
KSF p = 18.0). Users varied in their preferences for performing var-
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Figure 5: The panels from left to right show the total number of
highlight, annotation, document overlap, and search interactions per-
formed by each participant. Means are shown as blue diamonds. The
highlight and annotation conditions are significantly different, with the
SIF+KSF group performing more actions than the KSF group in both.
The overlap and search conditions are not significantly different.

ious interactions (e.g., some preferred annotating over highlighting,
others preferred overlapping documents).

5.4.2 Discussion

We can infer from these results that the SIF+KSF users externalized
more of their understanding of the dataset and hypotheses about what
information was relevant. Overall, these participants provided more
feedback to the user model regarding their interests. This feedback
was not only used to retrieve documents, but also to augment the
spatialization in terms of document positioning, visual encodings,
and automatic text highlighting. This process serves to continually
give analysts visual feedback on what documents it believes will be
most relevant or interesting for the analyst to read. Therefore, the
system is more likely to indicate good documents on the display for
the user to open and read next based on their interests. Both study
conditions were provided with this relevance feedback based on
their underlying interest model, although the SIF+KSF participants
benefited from this feature more than KSF participants.

Furthermore, user’s highlighting and annotating documents aids
in auto-highlighting of the text in open documents, making them
easier to skim. It also helps transform open documents into distin-
guishable visual glyphs that aids in re-finding information, making
analysts more efficient in navigating the workspace and referencing
the workspace for filling out their final solution reports [11,46].

The significant difference between study conditions may have
been a result of a positive-reinforcing feedback loop. As users made
highlights in documents or wrote notes, the system retrieved and
identified documents that it believed the users would be interested in.
This may have encouraged the users in the SIF+KSF condition to
continue performing these actions. Thus, synthesis-related actions
foraged for information, both on and off the screen, which led to
more data being interpreted and formulated into hypotheses. It is
interesting though that this did not seem to significantly reduce their
use of search. This might suggest a possible design opportunity for
more clear visual connection between KSF and SIF.

5.5 Participants Exhibited a Variety of Strategies

In this subsection, we investigate the structure and layout of the
final workspaces for both groups of participants. Overall, participant
strategies for use of the workspace mirrored previous results about
sensemaking with large display spaces [5,7]. Users organized a
variety of spatial representations of the document collection as part
of their distributed cognitive process.



Figure 6: Final workspace of (left) user KSF #9 showing the spatial organization of documents, annotations, and search boxes that label the
space, and (right) user SIF+KSF #4 showing a large central pool of unopened documents, with opened documents arranged on the periphery.

5.5.1 Results

The final screenshots of user workspaces shared a common artifact,
likely caused by a low relevance threshold that kept a high number
of documents on the display. Most participants’ final workspaces
contained a central pool of unopened document nodes with docu-
ments arranged around the periphery of the display. The nodes in
the central pool represented weakly relevant information. Nodes
that were highly relevant to a specific cluster of documents were
positioned near the cluster.

Users were asked to sketch spatial representations of their final
workspaces — how they perceived the space. Users adopted different
methods for labeling the space, even within their own drawings,
which would make automatic cluster detection and classification
difficult [21]. For example, users created specific tags for areas of
the display that directly matched extracted entities (e.g., monkeypox,
Cesar Gil), but they also tagged areas of the space with cognitively
meaningful labels (e.g., who, what, where). This behavior has been
previously observed, where users label their spatial workspaces in
fuzzy and complicated manners that would be difficult to match by
another person or algorithm [13].

The number of open documents on the final workspaces varied
greatly, from 2 to 35 (u = 15.56, 6 = 10.51). There was also sub-
stantial variance within each condition. The SIF+KSF condition
participants kept a range of 2 to 34 documents open on their final
workspace (U = 14.78, 0 = 11.69). The KSF condition participants
ranged in keeping 3 to 35 documents open (1 = 16.33, 0 = 9.84).
The lack of significant difference implies that any trend in perfor-
mance between the conditions cannot be explained by the number
of open documents alone.

Interestingly, participants who had very few documents open on
their final workspace still drew spatial schemas indicating where
they had opened and then minimized or closed documents. For
example, participant SIF+KSF #1 opened documents 57 times, but
only had two documents open on his final workspace, neither of
which were relevant to the solution. In fact, participant SIF+KSF #1
did not have any relevant documents on his final workspace, open or
closed. He preferred a neat and clutter-free workspace and deleted
documents after he had read and processed the information. For
reference, this participant retrieved 20 relevant documents and had
the second highest score. The highest scoring participant overall,
SIF+KSF #8, assumed quite the opposite strategy. She retrieved a
total of 310 documents, 28 of which were relevant. She also opened
documents 57 times, yet she kept 16 open on her final workspace,
11 of which were relevant to the overall solution.

In the KSF condition, participants KSF #1 and KSF #2 had the
highest scores in their group. They also adopted differing strategies
in terms of keeping documents on the display. KSF #2 retrieved
117 documents, 21 of which were relevant. She had 15 documents
open on her final workspace, 10 of which were relevant. KSF #1
retrieved 118 documents, 15 of which were relevant. He had 6 docu-

ments open on his final workspace, but none were relevant. However,
three documents were opened and then minimized, indicating that
they were read.

5.5.2 Discussion

We found no correlation between any of these organizational strategy
metrics and user performance. This can be attributed to individual
differences in analytical strategies, such as user ability, the desire
to keep a neat workspace (or not minding having the display filled
with open and closed documents), or needing to focus on one or two
documents at a time so as not to get distracted. These preferences
were explained during the post-study surveys and semi-structured
interviews. We see that StarSPIRE supports a variety of analytical
strategies and user preferences without a particular strategy having
an adverse impact on sensemaking quality and performance. Our
results also replicate previous work that demonstrates how users
remember spatial locations of items on a large, physical workspace,
both during data analysis and after the fact when the display is
empty [5,32].

6 DISCUSSION

We begin this section by summarizing the lessons learned from this
study, and discussing ways by which these lessons can be applied
beyond StarSPIRE and into visual analytics in general (Section 6.1).
Following this, we discuss two issues that surfaced through our ob-
servations of participants and analysis of the study data. The first
was a sometimes overwhelming number of documents staying on
the display, which suggests a need to modify the relevance threshold
(Section 6.2). The second is the problem of cognitive tunneling,
which we noticed when no participants identified additional subplots
in the data (Section 6.3). We discuss these issues and suggest meth-
ods for alleviating the problems in future work. We also discuss
a feature that proved to be surprisingly important to the users, the
automatic text highlighting (Section 6.4). In addition, we discuss
the potential for tuning semantic interactions to individual users
(Section 6.5), and the limitations of our study (Section 6.6).

6.1 General Principles

Throughout the experimental results detailed in the previous section,
we saw that incorporating a “passive” foraging mechanism like
SIF that retrieves documents based on a learned user model can
recommend documents to analysts that they may not have found
via traditional keyword search means. The result of these document
recommendations is that analysts gain a better understanding of the
underlying plot in the document collection (evidenced by their higher
scores), and interact with the workspace more, leading to a feedback
cycle that continues to improve document recommendations with
each additional interaction. At the same time, the quality of the
documents recommended (measured by the foraging precision and
recall scores) is not reduced.



KSF and SIF represent independent, complementary mechanisms
for information retrieval, each with strengths and weaknesses. As
such, SIF should not be used by system designers as a replacement
for keyword search. Indeed, the inclusion of a search box can greatly
benefit the usability of a visualization system as datasets increase in
size [1]. Rather, our findings suggest that implicit or passive search
mechanisms can be included in visualization systems to draw the
user’s attention to related objects that may not necessarily include
identical search terms.

Similarly, our findings suggest that interactions alone are suffi-
cient to drive these search mechanisms, building a user model by
interpreting the interest of a user based on how they interact with
other documents. We noted previously (Section 2.4) that our learning
rules to generate a user model are relatively simple, and that more
thorough recommendation systems that follow an interaction-driven
approach could certainly outperform our findings. However, our
results show that even this simple approach can cause substantial
improvement. We additionally assert that existing visualization sys-
tems could make use of our simple approach of mapping interactions
to weight modifications, ultimately to the benefit of a user.

For example, Andromeda [41] allows users to manipulate projec-
tions to learn a set of attribute weights that will best approximate the
user-provided projection. To use this mechanism, a user uses drag-
and-drop interactions to manipulate the current projection, dragging
observations to various positions in the workspace to communicate
desired similarity/dissimilarity relationships. The new weights are
not learned until the user has finished their repositioning interac-
tions and click an “Update Layout” button. With a StarSPIRE-like
approach, the system can begin to learn the user’s desired simi-
larity/dissimilarity goals while the user is still performing these
interactions. As the user moves more observations, Andromeda
could begin to recommend additional observations to reposition, and
could even recommend the positions to place the additional observa-
tions. Such suggestions could lead to better reprojection results as
the feedback from user to system is increased.

Similarly, Intent Radar [39] allows users to manipulate a pro-
jection of keywords centered about a “radar” display. Users can
reposition keywords closer to the center of the radar to indicate that
a particular keyword is more important to their interests. Using the
StarSPIRE approach, the system could learn from this sequence of
interactions, perhaps discovering documents that contain these key-
words and recommending other keywords within those documents.

6.2 Relevance Threshold

In this study, it appears that the relevance threshold may have been
set too low, causing too much irrelevant information to remain on
the display. This was observed during the pilot study, but we chose
to maintain this relevance threshold level so that the system would
not over-prune the workspace, which can be more problematic. As
a result, many users ended up with a central “pool” of data and
arranged their open documents on the perimeter.

Participants retrieved a widely varying number of documents (i =
161.61, 0 = 79.52). The number of documents removed also varied
greatly (4 =31.50, o0 =20.34). This can be attributed to differences
in analytical strategies by the participants. During the post-study
interviews, it was revealed that some users (e.g., KSF #1) preferred
to keep a clutter-free workspace and keep as few documents open as
possible. Others (e.g., SIF+KSF #8) did not feel overwhelmed by the
excess information and preferred having a great deal of information
to pull from. These two participants earned the highest scores in
their groups. The data gathered in this study show that the variation
in clutter represented by the participants’ layouts did not correlate
with their performance; however, it is reasonable to assume that an
excessive amount of clutter would impact task performance.

In order to support these varied styles, it may be prudent to alter
the document relevance threshold to adapt to each user instead of

having static values based on interactions. The model could incre-
mentally learn from the interactions users perform and update as
needed. For example, if a user has a tendency to delete documents
from the workspace, the threshold for keeping documents should
be raised so that more are automatically pruned from the display.
An alternative to this strategy may be to begin with a more strict
threshold to only show closely-related documents. Then, once a
foraging saturation is reached, the threshold could be lowered incre-
mentally to bring in new documents. Likewise, if the system is able
to detect a large number of documents that are just under the current
relevance threshold, say related to a new subplot that has just been
encountered, the relevance threshold could be lowered to bring in
all of those new documents.

6.3 Cognitive Tunneling

While the Blue Iguanodon dataset contained multiple subplots, no
users branched out to identify any other plot aside from the main
plot mentioned in the starting document. Some participants pursued
alternative hypotheses for this subplot, but none correctly identified
adjacent subplots. Interestingly, a few participants read documents
containing information on different subplots, and one even executed
searches for relevant entities involved in a second subplot. However,
they did not include this information in their solution. Our instruc-
tions to the study participants did not indicate that there was only
a single plot within the dataset; we merely provided them with the
starting document and allowed them to begin exploring. Participants
may have implicitly assumed that they should focus on the specific
plot hinted at in the starting document, ignoring other interesting
threads that they uncovered in the data. This indicates that many of
the participants in both study conditions fell victim to a phenomenon
similar to cognitive tunneling [33] or satisfaction of search [45], in
which an analyst narrows their attention to target an initial discovery,
ignoring other possibilities.

One explanation for this issue is due to how information was
retrieved and synthesized by participants. Documents added to the
workspace were those containing terms that most closely matched
the user’s model for both study conditions. This could have led to
confirmation bias and a tendency to ignore alternatives in the plot.
That said, confirmation bias is a feature of participants, not retrieval
systems. For example, an analyst investigating the question “Do
chinchillas have monkeypox?” could initiate a search that returns in-
formation that both confirms and refutes the question. The decision
to pursue one conclusion or the other occurs during the synthesis
process that follows the search. Indeed, results from Section 5.3
show that introducing SIF may work to alleviate the effects of con-
firmation bias, because SIF returns related documents that may not
be found through traditional keyword search. Our results show that
SIF presented participants with a broader set of documents, many
with more subtle ties to the currently investigated hypothesis.

This cognitive tunneling effect can also be attributed to each user
being provided with an explicit starting point in the analysis. While
this was intended to focus the investigation of the study participants
during a time-limited task and reducing the variation between users,
it also has the effect of limiting open-ended investigation within the
document set. The automatic and dynamic highlighting may further
influence this effect by “steering” the participants towards searching
for highlighted terms and missing potentially useful documents that
are not significantly highlighted. Studies from the visual search
community have noted that prevalence [50] and detectability [49]
play significant roles in target location.

One way to alleviate this problem is to introduce novel documents
to the workspace in addition to highly relevant documents. Ruotsalo
et al. achieved this by sampling from a distribution of documents
according to their relevance [39]. This allowed for closely related
documents to be shown as results, but also occasionally to show
novel documents. Again echoing the idea of detectability for visual



search, it is advantageous to visually indicate novel documents
within the spatialization to draw user focus to them. We noted that
participants tended to open large, bright documents, even if they
were in a cluster of many documents. How to integrate the notion of
veering away from the user’s model to highlight novel information
within the current multi-model semantic interaction pipeline remains
an open research challenge.

Another possibility is to provide large-scale overview spatializa-
tions of the full document collection. ForceSPIRE accomplished
this by simply displaying the entire document collection at start-up,
but therefore only worked for small document collections [20]. Star-
SPIRE abandoned that approach in order to handle larger document
collections, instead focusing on retrieval. This leads to opportunities
to integrate other types of overviews of large document collections,
such as sampling, clustering, and topic modeling [17].

6.4 Automatic Text Highlighting

According to user comments, the user-tuned automatic text high-
lighting (shown in the interface in Fig. 1) proved to be one of most
valuable features in StarSPIRE. This feature gave the users a subtle
yet salient visual representation of the underlying interest model.
The highlights had the potential to change with each interaction,
thus continuously representing the current underlying model’s state,
reflecting which terms the user interest model had placed the most
emphasis on. This visual feedback about the state of the model was
conveniently presented, in context, directly within the documents
and served as a form of “explainable AI”.

However, automatic highlighting proved to be much more useful
than merely giving feedback. Participants leveraged the automatic
highlighting to (1) determine which documents in a collection are
worth reading, and (2) determine which portions of a document
to focus on, particularly in longer documents. Thus, StarSPIRE
gave users feedback at multiple levels of data abstraction through
a visual metaphor that users found easy to interpret. At the graph
level (many documents), the node relevance size-encoding and text
highlighting served to guide users toward relevant documents to
read. They could quickly identify pertinent documents with a quick
glance at the highlighted terms. At the individual document level,
text highlighting directed users to portions of the document to read.
This was particularly useful to home in on specific paragraphs in
long documents, and to identify where multiple reports contain
similar information that the user has already read before, allowing
them to skip over that content. Further, no users complained about
the system recommending improper documents. The incremental
dynamics of the working set, layout, and visual encodings did not
appear to frustrate them. These features appeared to help direct the
user’s attention, but further research is necessary to measure any
increased analyst efficiency produced by auto-highlighting.

6.5 Tuning Semantic Interactions

Participants employed vastly different strategies in conducting their
analysis. For example, foraging performance was similar across the
participants, but how they went about foraging varied greatly. It is
not unreasonable to assume that users had different preferences in
terms of what interactions they performed. Currently, interactions
are interpreted the same way for all users. We may be able to tune
the impact of the interactions to better approximate the preferences
of each individual user, perhaps using machine learning methods to
tune the parameters of the semantic interactions.

For example, if a user repeatedly closes documents that were
retrieved as a result of highlighting sentences in a document, the
system could reduce the impact that highlighting has on extracted
entities. In this manner, we can attempt to avoid over-assuming the
intent of users. Instead, we can begin with a baseline interpretation
of interactions and incrementally tune these interpretations through
a meta-level semantic interaction learning process.

6.6 Limitations

Three noteworthy limitations to this study include the small number
of participants, the single document set used, and the short task time
duration. First, it is possible that we could have discovered stronger
significance levels and more significant results with additional par-
ticipants, reducing some of the variance in the participant scores
and behaviors. Additionally, using only the Blue Iguanodon set of
documents in this study limits the generalizability of our findings.
This is due to the large amount of noise in the document set (since
many documents are irrelevant to the main plot), as well as the short
average length of these documents. It is certainly possible that these
findings could differ with a collection of longer documents. Finally,
while supporting longer-term sensemaking sessions is certainly a
goal of this work, the current study focuses on short two hour ses-
sions. It would be interesting to see the value of SIF functionality in
multi-day scenarios.

An additional consideration in the study design is that, while the
KSF group did not have the advantage of SIF, they did have other
advantages associated with semantic interaction and the user interest
model, such as automatic highlighting, relevance-based node sizing,
etc. Most KSF-only systems would likely not include these features.
Thus, the actual difference between the experimental condition and
the control condition in this study was perhaps smaller than it would
be in a realistic setting. The results found in this study might actually
be amplified when comparing SIF to traditional KSF approaches.

7 CONCLUSIONS AND FUTURE WORK

We conducted a comparative user study with StarSPIRE to examine
the impact of SIF on the sensemaking process. The study showed
that foraging performance was similar between conditions. However,
the group afforded with SIF functionality performed significantly
more synthesis-related semantic interactions. They externalized
more information (a process associated with synthesis) and injected
more feedback into the underlying user interest model. The system
was then able to forage and identify a broader set of relevant infor-
mation in the spatial workspace. This led to improved sensemaking
task performance, for foraging large textual information and syn-
thesizing a coherent and complete hypothesis narrative, as scored
against a known ground-truth solution. Participants in the SIF+KSF
condition retrieved 26% of their total relevant documents through
SIF on average. Executing traditional keyword searches retrieved
the remaining 74% of relevant documents. SIF and KSF proved to
be effective complementary retrieval techniques.

Based on this user study, participants were able to solve a portion
of the given sensemaking task while retrieving and reading only a
small portion of the overall dataset. However, there was not a clear
superior analytical strategy, which demonstrates that StarSPIRE
supports multiple avenues for sensemaking. We also identified
potential improvements for StarSPIRE and its underlying layout
and relevance models that inform the design of future semantic
interaction systems. The automatic text highlighting and node size
relevance encoding, both features enabled by semantic interactions
that learn a user interest model, were especially appreciated by users.

We intend to implement the identified changes, including altering
the relevance model to include novel documents in addition to the
documents that most closely match the current user interest model.
After these proposed changes are made, we plan to conduct a longi-
tudinal study to observe long-term usage of StarSPIRE on real-world
data. Example tasks include conducting an in-depth literature review
and learning about a current event in the news.
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