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To tackle the onset of big data, visual ana-
lytics (VA) seeks to marry the human in-
tuition of visualization with mathematical 

models’ analytical horsepower. A critical question 
is, how will humans interact with and steer these 
complex mathematical models? Initially, users ap-
plied direct manipulation to such models in the 
same way they applied it to simpler visualizations 
in the premodel era—by using control panels to 
directly manipulate model parameters. However, 
opportunities are arising for direct manipulation 
of the model outputs, where the users’ thought 
processes take place, rather than the inputs. Here 
we present this new agenda for direct manipula-
tion for VA.

Direct Manipulation for  
Information Visualization
Direct manipulation specifies three principles for 
interaction design for information visualization:1

■■ continuous representation of the object of in-
terest,

■■ physical actions or labeled button presses in-
stead of complex syntax, and

■■ rapid incremental reversible operations whose 
impact on the object of interest is immediately 
visible.

Typically, these principles are applied through a con-
trol panel, containing visual widgets such as sliders, 
buttons, or query fields, coupled to the parameters 
of a visual representation in the main view. For ex-
ample, in Spotfire, analysts can choose attributes 

to map to available visual encodings (node color, 
size, shape, and so on); select variables for the x-, 
y-, and z-axes; and adjust sliders to filter by ranges 
on specific data dimensions (see Figure 1). We con-
tend that for VA, with the introduction of complex 
mathematical models behind the visualizations, 
direct-manipulation interaction has the opportu-
nity to evolve beyond the use of control panels.

Spatializations for Sensemaking
Spatializations create a visual representation of in-
formation in which data items’ relative proximity 
approximately depicts their similarity. (That is, the 
“near ≈ similar” metaphor holds true.) For exam-
ple, in Figure 2, clusters of documents represent 
themes or topics of interest. Such spatializations 
can be generated manually or computationally.

Manual Generation 
Analysts can leverage manually generated spatial lay-
outs to aid their analyses. For example, by organizing 
spatial layouts, they can externalize their insights 
about a dataset on the basis of the information’s 
positions.2 They frequently organize such layouts 
according to complex schemas using mixed meta-
phors, often organized topically according to the 
semantics relevant to their current analysis needs.

Analysts use tools that support manually con-
structing spatializations to visually synthesize hy-
potheses.3 That is, they directly manipulate spatial 
structures (often mixing clusters, timelines, con-
nections, geography, order of discovery, process 
waypoints, and so on) that help reveal their sense
making process. Such informal relationships in 
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the spatial layout are beneficial because they don’t 
require analysts to overformalize relationships 
too early in the process. This process of gradually 
increasing relationships’ formality is called incre-
mental formalism.4

Computational Generation 
Computationally generated spatializations are 
driven by the recent emphasis on big data and in-
volve complex mathematical models. These models, 
combined with user intuition and visualizations, 

Figure 1. Typical use of direct manipulation. The Spotfire scatterplot view can represent several dimensions 
of the data through spatial position and visual encodings; users manipulate it through buttons and sliders on 
control panels.

Figure 2. The In-Spire Galaxy View represents documents as dots. Each cluster of dots represents a group of 
similar documents.
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form the basis for VA, in which analysts operate 
dynamic tools that facilitate analysis and sense-
making of large, complex datasets.5 Models lever-
aged in VA tools include, but aren’t limited to, those 
for entity extraction, topic modeling, link analysis, 
dimensionality reduction, clustering, and labeling.

These models employ various distance metrics to 
measure the similarity between data objects. Ana-
lysts can use these metrics to spatialize data. For 
example, unstructured text can be represented as 
a “bag of words”—high-dimensional data in which 
each dimension is a unique keyword or phrase in 
the text. For example, in In-Spire’s Galaxy View 
layout, nearby points represent similar documents 
(see Figure 2).6 This helps analysts recognize rela-
tionships between documents and between clus-
ters of documents.

Designing User Interaction for Spatializations
For computationally generated spatializations, 
the question arises of how to design user interac-
tion. The complex statistical models that com-
pute similarity using a combination of algorithms 
have numerous parameters to tune on the basis 
of the analysis’s context. For example, for visual 
text analysis, users must directly adjust keyword 
weights (measures of importance for each keyword 
and how much it influences the overall layout), 
add or remove documents and keywords, or pro-
vide more information on how to parse the docu-
ments for keyword entities upon import.

One such spatialization for streaming text data 
is Streamit, in which users explore a dataset by 
directly manipulating keyword weights.7 Similarly, 
iPCA (see Figure 3) is an interactive visualization 
tool that uses principal component analysis (PCA) 
to reduce high-dimensional data to a 2D plot.8 
Users employ sliders and other visual controls to 

directly adjust numerous model parameters, such 
as individual eigenvalues, eigenvectors, and other 
PCA components. In this way, they can observe 
how the visualization changes. This lets them gain 
insight into a dataset, assuming they know enough 
about the underlying PCA model to understand 
the implications of changing model parameters.

The straightforward application of direct ma-
nipulation suggests creating graphical controls for 
each parameter. This use of control panels might 
have been appropriate for early information vi-
sualizations in which the controls mapped natu-
rally to dimension filters and plot axes. However, 
it might be problematic for more complex models 
used in VA applications.

This approach has three fundamental usabil-
ity problems. First, many analysts aren’t experts 
in complex mathematical models and thus don’t 
understand the meaning of the parameters for the 
interactive controls. Second, analysts think about 
and understand the documents at the semantic 
level, yet the interactive controls for the models 
operate at the lower syntactic level of the model 
parameters. This creates a mismatch. Third, when 
analysts haven’t yet gained a good understanding 
of the documents and their insights are still infor-
mal, they don’t yet have a basis for expressing their 
inputs into the formal model parameters. These 
problems arise because the focus of direct manipu-
lation in the computationally generated spatializa-
tions (the model parameters) differs significantly 
from that in manually generated spatializations 
(the documents).

Suppose an analyst recognizes a small set of 
documents in a spatialization that she believes 
are related to a semantic topic X of her interest, 
but the current layout doesn’t reflect her hypoth-
esized similarity. She directly increases the weight 
of term X in the control panel (for example, by di-
rectly manipulating the layout parameters). How-
ever, this has no effect because X doesn’t appear 
in the documents.

Alternatively, she could move the documents 
together herself (for example, by directly manipu-
lating the layout output). She could then receive 
feedback from the models concerning other inter-
esting keywords that do relate to those documents. 
Also, the layout could be automatically updated to 
include other relevant documents. This would en-
able her to gain insight that helps to better formal-
ize her understanding of X.

This approach presents an opportunity to evolve 
the design of user interaction beyond control pan-
els to achieve direct-manipulation VA. The need 
exists to cooperatively integrate computationally 

Figure 3. iPCA (Interactive Principle Component 
Analysis) provides a dimension reduction algorithm 
that users manipulate through buttons and sliders in 
a control panel.8 (Source: Remco Chang; used with 
permission.)
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generated spatializations with those manually 
generated. This would shift the focus of interac-
tion from control panels for model input param-
eters to direct manipulation of the model outputs 
as represented by the spatialization itself.

Direct Manipulation of Spatializations
A trend is emerging in how VA systems that use 
complex statistical models handle interaction. This 
trend stems from letting users directly manipulate 
the data in a spatialization to guide and improve 
the layout according to their interests or inter-
pretations. For example, to indicate that two data 
points in a spatialization differ more than is com-
putationally indicated, users can move them apart 
directly in the view. So, the model learns about the 
dissimilarity and updates the spatialization to re-
flect the desired structure of the data. Thus, users 
can employ familiar direct-manipulation interac-
tions within familiar spatialization metaphors, en-
abling them to interact with complex, unfamiliar 
mathematical models.

Within the spatial metaphor, we see three levels 
of interactivity that motivate this emerging con-
cept of direct-manipulation VA. These levels are 
based on the extent to which machine learning 
steers the model.

The first level is direct manipulation of spatial 
constraints. These interactions let users place (and 
move) spatial constraints directly in the spatial-
ization. For example, the Dust & Magnet tool lets 
users place a series of “magnets” representing spe-
cific data dimensions or keywords in the spatial-
ization.9 Data objects rich in those dimensions are 
more attracted to the magnets. Such direct ma-
nipulation enables users to guide the spatialization 
layout by placing additional query-like attractors 
in the space.

The second level is direct manipulation of pa-
rameter weighting. Such data-centric interactions 
leverage metric-learning techniques to adjust the 
weighting schema of the dimensions or features 
used in distance metric calculations.10 Specifically, 
updates to the weighting scheme reflect the fea-
tures emphasized by the user’s interaction (the 
weight of relevant features of interest increases, 
and the weight of other features decreases). The 
weights are adjusted incrementally on the basis of 
heuristics associated with each type of interaction. 
For example, ForceSpire tightly couples several in-
teractions related to text analytics, such as reposi-
tioning documents, highlighting text, annotating, 
and searching, to the underlying dimension reduc-
tion model.10 For instance, highlighting a phrase 
in a document that contains a set of keywords 

increases those keywords’ weight in the distance 
metric.

The third level is direct manipulation for model 
steering. These interactions leverage machine 
learning to calculate the amount of change to each 
feature in the weighting schema. Basically, the VA 
application receives an updated spatial layout from 
the user and, given that layout, inverts the model 
to determine the updated model parameters. This 
might require an optimization search process to 
find the best overall fit. Then, the application can 
apply the updated parameters in the forward ap-
plication of the model to show how the updated fit 
changes the layout. For example, observation-level 
interaction11 and Dis-Function12 let users move 
groups of data points in a multidimensional-scaling 
layout closer together or farther apart to guide ma-
chine learning and explore alternative structures 
in the data.

In summary, all these interactions let users in-
teract directly with the information in context. 
Over continuous use, the spatialization updates to 
reflect the incremental insights the user generated 
(see Figure 4). This creates a symbiotic relationship 
between the user’s sensemaking process and the 
system’s machine learning.

Opportunities and Challenges
The following areas provide opportunities and pose 
challenges for research on direct-manipulation VA.

Figure 4. A ForceSpire spatialization’s progression. As 
the user gains insight, ForceSpire’s model learns to 
emphasize relevant features.
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Model Steering
The steering of mathematical models has become 
a popular way to adapt those models’ visual output 
to the user’s domain, task, and workflow. Users 
can augment the statistical determination of im-
portant features and characteristics in a dataset. 
Because the resulting visualizations include the 
user’s domain expertise, they become more appli-
cable to the domain.

Figure 5 highlights the changes to the visualiza-
tion pipeline necessary to support such direct ma-
nipulation. In the traditional pipeline (see Figure 
5a), control panels directly adjust model input pa-
rameters. In the new pipeline (see Figure 5b), direct 
manipulation of the spatialization requires invert-
ing the model to interpret the action’s intent, as 
we mentioned before. The pipeline maps the inter-
action backward by interpreting the actions and 
adjusting the parameter data—for example, learn-
ing dimension weights. There are many possible 
approaches to this interpretation step. Addition-
ally, using multiple models would further compli-
cate the pipeline, necessitating a many-to-many 
mapping of interactions to models.

This area involves two main challenges. First, 
how do you invert models and map interactions 
to the parameter-learning process? Second, how do 
you incorporate multiple models into the visual-
ization pipeline?

Feature Selection
A common stage of spatialization is feature selec-
tion. Features can be selected algorithmically from 
most forms of data, such as extracting keywords 
from text, extracting visual and audio signatures 
from images and sound, and so on. The purpose 
is to represent otherwise unstructured data as 
high-dimensional. For example, a VA application 
could use a number of natural-language-processing 

models to select keywords or key phrases from un-
structured text. These models determine keywords 
that are statistically more expressive than others, 
for that dataset. A frequent additional step selects 
features to optimize the signal-to-noise ratio.

This area involves two challenges. First, how do 
you incorporate users’ domain expertise, which 
includes features that might not be in the dataset? 
Second, how do you interactively combine features 
from different data types (for example, text, audio, 
and video)?

Feature Extraction
Another common stage of spatialization is feature 
extraction. A high-dimensional representation must 
be reduced to a low-dimensional spatialization. This 
process typically applies a weighting schema to the 
set of selected dimensions to emphasize each di-
mension differently when projecting it onto the 
2D layout. Because the low-dimensional represen-
tations are inherently ambiguous representations 
of high-dimensional data, interactions in these 
low-dimensional spaces can also be ambiguous. 
Multiple inferences might be possible, requiring 
assumptions or more user input.

The challenge here is, how do you accurately 
interpret the interaction in the spatialization 
and apply the high-dimensional representation or 
weighting scheme to it?

Mixed Metaphors
As we mentioned before, users employ different 
contexts and metaphors to refer to information 
in different regions of spatializations.2,13 Common 
metaphors include topical clusters, timelines, geo-
spatial layouts, social networks, and process his-
tory. Users frequently mix these metaphors in the 
same workspace as either separate areas or nested 
schemas. These metaphors might be well defined 
or ambiguous and might evolve.4

This mixed-metaphor use of spatializations 
poses challenges to layout and clustering models 
that are generally designed to compute one type 
of layout across the entire visualization. So, you 
might need to combine multiple types of models 
in complex ways. For example, you could combine 
iCluster, which enables direct manipulation of a 
cluster membership model,14 with ForceSpire to 
enable dynamic layouts of clusters in space, in 
much the same way analysts currently do manu-
ally. The space’s continuity and flexibility could 
represent probabilistic membership.

This area involves two challenges. First, how do 
you detect, interpret, compute, and visualize mixed 
models that represent mixed metaphors? Second, 

Data
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Figure 5. Changing the visualization pipeline to support direct-
manipulation visual analytics. (a) In the traditional pipeline, users 
interact directly with the algorithm (the blue arrow) or data (the red 
arrow). (b) In the new, bidirectional pipeline, users interact directly 
with the spatial metaphor; interaction must be interpreted through the 
model (the purple arrows).
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how do you learn which model best captures the 
user’s interaction, on the basis of the layout?

Multiscale Models
To support big data, VA can leverage multiple mod-
els that deal with information at multiple scales 
(see Table 1). For small amounts of data, you could 
display all the data points on the screen by using 
dimensionality reduction (DR) models to organize 
space. At larger scales, cluster models can aggre-
gate data into fewer groups that could then be 
fed to DR models. At even larger scales, informa-
tion retrieval (IR) algorithms become essential for 
streaming or sampling data to dynamically display 
only relevant data.

You can apply a consistent direct-manipulation 
approach across all levels of scale by implement-
ing a system of mutual learning across models. 
For example, the IR model can query for data rele-
vance based on the dimension weights that the DR 
model learned. Likewise, the IR model can learn 
from user actions such as placing uninteresting 
data in the trash.

This area involves two challenges. First, how do 
you coordinate direct manipulation to steer models 
across multiple levels of scales for big data? Second, 
how do you enhance algorithm performance to 
support real-time direct manipulation of big data?

Implicit and Explicit User Interaction
With direct-manipulation VA, the system must 
infer user intentions from user interactions. How-

ever, one action could have multiple possible in-
tentions. For example, dragging a document out 
of a cluster might indicate that it didn’t belong 
in that cluster, that the user is establishing a new 
cluster with new nearby documents, or nothing 
at all. More implicit or explicit user input might 
be needed to accurately represent the user’s actual 
reasoning process. The amount of approximate or 
specific input needed might vary.

These options imply the possibility of many pa-
rameters for the interaction. Too much explicit 
input might pull the analyst out of his or her cog-
nitive zone. Analysts should be able to focus on 
the task, not the tool, using interaction to support 
their reasoning process.

This area involves two challenges. First, how can 
the user interface balance explicit and implicit user 
interaction for model feedback? Second, how can 
users easily undo or revise direct-manipulation 
interactions?

Multiparameter Interaction
Novel input modalities might offer more powerful 
ways for users to express their complex intentions. 
For example, multitouch interfaces can provide 
richer interaction for individuals and groups by 
providing more simultaneous input points with 
which to express parameters. For instance, in the 
machine-learning step, a user could move a data 
point with one hand while specifying target data 
points with the other hand to indicate which simi-
larity relationships he or she intends. The added 

Table 1. Using multiscale models to address big-data challenges for direct-manipulation visual analytics (VA).

Level of scale

Display Database Cloud

Usage description The system lays out the data 
according to the user’s spatial-
organization feedback.

The system aggregates clusters 
of data in the layout according to 
the user’s grouping feedback.

The system uses the layout 
to query very large data and 
retrieve additional relevant data.

Data scale of manipulation 
(no. of data items)

<1 million <1 billion <1 trillion

Algorithms Dimensionality reduction Clustering

Classification

Topic modeling

Information retrieval

Sampling

Streaming

Visualization Spatial layout

Visual proximity = similarity

Clusters

Hierarchy

Containment

Visual aggregate = similarity

Salience

Depth

Visual salience = similarity

Interaction Moving items Grouping items

Piling

Deleting items

Searching

Interactive feedback for 
machine learning

Similarities

Dimension weights

Object weights

Cluster counts and contents

Centroid landmarks

Labels

Object relevance

Keyword dimensions and weights
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bandwidth of these multitouch interactions can 
more accurately define such manipulations’ ana-
lytical reasoning.

Large, high-resolution displays can provide more 
area with which to construct spatial relationships. 
They give the analyst real, meaningful space as a 
communication medium and as common ground 
between the human and model. For example, dis-
tances between documents can imply a similarity 
measure, whereas the absolute location of infor-
mation can serve as a landmark for themes and 
concepts. Direct-manipulation VA might be the 
killer app for these novel hardware technologies.

This area involves two challenges. First, how 
much user input is needed to convey intention to 
the models? Second, how can the system provide 
real-time visual feedback regarding the interpreted 
actions?

Bias
Model steering potentially introduces user biases 
into visualizations. Researchers have attempted 
to address this challenge. For example, captur-
ing interaction data over time10 can reveal new 
keywords added to the model. The distribution of 
weight between these user-derived keywords and 
those extracted from the data might indicate how 
much the user’s domain expertise influences the 
spatialization.

Furthermore, the temporal history of keyword 
weighting can indicate trends in the analysis. 
Converging trends in the weighting of entities 
might indicate confirmation bias, whereas diverg-
ing weights might represent an analysis involving 
multiple hypotheses. In particular, it might be pos-
sible to quantify specific biases such as confirma-
tion bias15 and alert users to them in real time. 
Biases are also opportunities to steer algorithms 
toward a user’s expression of interest, but down-
sides such as overfitting and missing other inter-
esting insights could occur. Such data could also 
be used to compare multiple analysts’ processes or 
support collaborative methods.

The challenge here is, how do you illuminate 
the potential bias associated with introducing the 
user’s domain expertise into the model?

Direct manipulation is familiar to informa-
tion visualization designers, given graphical 

controls over direct visual mappings (for example, 
x- and y- axes on scatterplots, dynamic queries of 
value thresholds, and so on). However, as visual-
izations employ increasingly complex mathemati-
cal models, interaction designers face the challenge 
of maintaining the intrinsic principles that make 
direct manipulation successful, while adapting it 
to control complex model parameters that might 
not clearly map to the visual representation. As 
we showed, for VA, the goal of providing direct 
manipulation isn’t fully realized through control 
panels for model parameters.

Direct manipulation of the visual representa-
tion itself (see Table 2) will enable users to test 
hypotheses, discover relationships, and input their 
domain expertise into the calculations used to 
produce the view. Tools should strive to strike a 
balance between fully automated and fully man-
ual solutions. In other words, a balance must ex-
ist between cognition and computation in VA. By 
leveraging the information-rich medium of a spa-
tial layout as the primary communication method 
between the user and system, researchers will be 
able to realize direct-manipulation VA. We hope 
that the research opportunities and challenges we 
presented will help establish a firm science of in-
teraction in VA.�
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