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Be the Data: Embodied Visual Analytics
Xin Chen, Jessica Zeitz Self, Leanna House, John Wenskovitch, Maoyuan Sun, Nathan Wycoff, Jane

Robertson Evia, Scotland Leman, and Chris North

Abstract—With the rise of big data, it is becoming increasingly important to educate groups of students at many educational levels about
data analytics. In particular, students without a strong mathematical background may have an unenthusiastic attitude towards
high-dimensional data and find it challenging to understand relevant complex analytical methods, such as dimension reduction. In this
paper, we present an embodied approach for visual analytics designed to teach students about exploring alternative 2D projections of
high-dimensional data points using weighted multidimensional scaling. We propose a novel concept, Be the Data, to explore the
possibilities of using human’s embodied resources to learn from high-dimensional data. In our implemented system, each student
embodies a data point, and the position of students in a physical space represents a 2D projection of the high-dimensional data. Students
physically move within the room with respect to each other to collaboratively construct alternative projections and receive visual feedback
about relevant data dimensions. In this way, students can pose hypotheses about the data to discover the statistical support as well as
learn about complex concepts such as high-dimensional distance. We conducted educational workshops with students in various age
groups inexperienced in complex data analytical methods. Our findings indicate that Be the Data provided the necessary engagement to
enable students to quickly learn about high-dimensional data and analysis processes despite their minimal prior knowledge.

Index Terms—Embodied interaction, visual analytics, high-dimensional data, visualization in education.
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Fig. 1: In Be the Data, each students represents an individual data
point. A bird-eye view of student locations in the physical space is
shown on a large display above them.
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DATA is becoming increasingly complex, resulting in a clear
need to advance research and education in knowledge discov-

ery from large data. Educators are called upon to teach students data
analytical techniques, which rely on complex mathematical models
to formalize interpretations from data. For example, analysts use
dimension reduction algorithms (e.g., multidimensional scaling and
principal components analysis) to project high-dimensional data
onto lower (e.g., two or three) dimensions to help them explore
and understand the data.

It is difficult for students to explore and understand high-
dimensional data, especially for those without data analytics expe-
rience. They lack prior mathematical knowledge to understand the
complexity of reducing many dimensions to few dimensions [1], [2].
This lack of knowledge may further prevent students from learning
about these methods due to the cost of significant cognitive effort.
Data analytics coursework is typically not approachable by students
until they have mastered necessary quantitative theory and methods.
In addition, students who find statistical techniques difficult may
confront non-cognitive factors (e.g., unenthusiastic attitude) and
try to avoid such subjects [3], [4]. Moreover, learning from high
dimensional data requires comprehensive critical thinking skills
that extend beyond the application of mathematical methods, such
as formalizing alternative hypotheses, communicating personal
judgment, exploring multiple solutions, and assessing implications
of discoveries. Educators are called to create innovative and
effective instructional methods to generate interest in data analytics,
to make learning high-dimensional data analysis more approachable
to the untrained population (e.g., students with low proficiency in
mathematics or statistics), and to provide hands-on experience for
students to engage in the analysis process [2], [3].

Specifically, we seek to address the problem of helping novice
students to learn about high-dimensional data projections using
Weighted Multi-dimensional Scaling (WMDS) [5]. Methods like
WMDS provide a mechanism to convert a large (and daunting
for novice students) multi-dimensional table of data into a more
intuitive scatterplot, in which the spatial distance between points
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approximately represents their high-dimensional dissimilarity.
Alternative projections can be produced by adjusting weight
parameters on the data dimensions. But what do these plots mean
and how are they produced from the data? Simply showing students
the mathematical definition of WMDS is not likely to help (Fig. 2).

Students who have not previously studied high-dimensional
data need to grasp several key concepts, including the notions of
data dimensions, dimension weights, weighted high-dimensional
distance, and 2D distance. Creative new pedagogical approaches
that engage students with these concepts are needed to broaden the
reach and appeal of educational outreach for big data analytics.

To address the above needs, we developed a novel approach,
Be the Data, which applies embodied interaction [6] to visual
analytics for education and outreach [7]. Specifically, we employed
an interactive system (shown in Fig. 1) to teach students analytical
concepts for understanding high-dimensional data projection. Be
the Data involves five core principles:

1) Each student embodies a unique data point in a high-
dimensional dataset.

2) Students are immersed in a 2D projection represented by
their physical coordinates in a shared physical space.

3) Students construct projections by physically moving them-
selves with respect to each other within the space.

4) Students receive real-time visual feedback about projection
parameters, in the form of dimension weights that explain
their current projection.

5) Students work together to collaboratively explore alterna-
tive projections, pose hypotheses based on their data domain
knowledge, and learn from the data.

In this paper, we aim to explore how students exploit this novel
embodied approach to understand high-dimensional data and to
learn data analytics processes. The key contributions of this paper
are as follows:

• We present the system, Be the Data, which exploits embodi-
ment in visual analytics to invoke embodied learning.

• We describe multiple Be the Data workshops that we con-
ducted with students at several age groups to assess its value.

• We identify students’ data analytical strategies that employ
this form of embodiment.

• We find both qualitative and quantitative evidence of student
improvement in understanding high-dimensional data.

In previous work, we presented an overview of the system
description and a case study [7], initial results of a workshop with
one age group focusing on high-level learning strategies [8], and
an alternative application of the concept to social settings [9]. Here,
we expand on the concept, system, and workshop descriptions, and
present detailed results of five sets of workshops covering several
different age groups, including concepts learned, collaborative
strategies employed, analytical data structures explored, and
engagement.

We structure the remainder of this paper as follows: In Sect. 2,
we provide an overview of related work to place the contributions
of Be the Data in context. In Sect. 3, we discuss the conceptual
overview and instantiation of the Be the Data system, including the
visualization, tracking system, and dynamic clustering components.
Sect. 4 describes the workshops that used Be the Data as well as
our data collection and analysis methodology. This leads into the
results of our evaluation, presented in Sect. 5. We discuss how well
our studies and analysis met our high-level goals for Be the Data in

Fig. 2: Students find it difficult to understand high-dimensional
data projection. (a) A portion of a high-dimensional dataset about
animals. This dataset, in total, includes 30 animals with 30 variables.
The dataset is obtained from [10]. (b) A WMDS plot of the same
dataset. Without a strong understanding of the WMDS algorithm,
it is difficult to understand the spatial mapping from data table to
data projection.

Sect. 6, addressing the limitations of our studies as well as future
research directions, and finally conclude in Sect. 7.

2 RELATED WORK

This section discusses the novelty of Be the Data in the context of
existing work. We begin with a discussion of physical interaction
with data in immersive and high-resolution environments, noting
that these systems allow analysts to closely interact and even be
surrounded by data, but does not allow an analyst to become a
data point. We follow with a discussion of co-located collaborative
visual analytics, highlighting the benefits of collaborative explo-
ration of data that were found with other research projects. Next,
we discuss the benefits of interactive visualization in the context
of teaching the analysis and exploration of high-dimensional data.
Finally, we summarize the concept of Observation-Level Interaction
and inverse WMDS, which drives the weight updates through user
interaction with the projection.

2.1 Physically-Embodied Interaction with Data
With technological breakthroughs beyond traditional desktop
settings, we have witnessed a growing number of visualization
applications that extend interaction into the physical world for more
embodied data exploration and collaboration [11], [12]. Similarly,
the Immersive Analytics agenda [13] seeks to more deeply embed
users in their data through advanced display and interaction
techniques. For example, interactive surfaces enable users to
directly interact with more degrees of freedom when manipulating
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data [14]. High-resolution or stereoscopic 3D display technologies
allow users to physically navigate data [15], [16]. Attempts have
been made to physicalize virtual data into manipulative artifacts,
with physical attributes (e.g., size, shape, materials, etc.) encoding
data [17].

Although these contributions demonstrate different physically-
embodied ways to interact with data, they are similar in the way
that they place users in, or at least closer to, their data. We call
this perspective “Be In the Data”. Our work differs from such
approaches by taking the embodiment to the extreme. Instead
of placing users in the data, users actually become data points.
Therefore, we call this new perspective of visual analytics “Be
the Data”, differing from “Be In the Data” in the perspective that
the user takes during analysis. Rather than looking into the data
points as an observer, users themselves take on the perspective of
a data point. This may give users a more egocentric perception to
conjecture various relationships with other data points. It has the
potential to render an engaging experience, enabling students to
personally identify with the data and how analytical methods affect
the data, which could further lead to deep insights.

2.2 Co-located Collaborative Visual Analytics
Co-located collaboration can benefit visual analytics tasks [18],
[19], [20], [21], [22]. Researchers found that closely-collaborating
teams shared their findings more frequently, reported more correct
facts, required fewer hints, and gained a higher task score than
loosely coupled teams. Ownership and awareness of collaborator
actions are two important factors to coordinate group efforts [23].
Leveraging spatial affordances of the co-located space, our work
enables both ownership and awareness in collaborative visual
analytics. Being a data point, each individual is responsible for
and fully controls the position of their own data point. Meanwhile,
everyone is aware of others’ positions since they are located in the
same room and also mirrored on a shared display. Students can
determine their own positions and negotiate with each other in a
coordinated manner, requiring them to learn about others’ data and
discuss relationships between their data points. Data exploration
naturally evolves through social interactions to construct alternative
projections of the data. No one is left out.

2.3 Teaching High Dimensional Data with Visualization
Teaching novice students about high-dimensional data analytics is
challenging. A common problem is that students lack interest and
mathematical background [3], [4]. Interactive visualizations have
been employed because they enable students to learn and apply
data analytical techniques in a visually interactive manner [24].
However, it may be challenging for learners to conceptualize
complex analytical operations on abstract data via simplistic
interaction mechanics suggested by a mouse and a keyboard [25].
Some have argued that learning new mathematical concepts is
metaphorically structured with physical interaction [26] and fully
embedded in body actions [27]. For example, Howison et al. [28]
provides empirical evidence that body movement is able to evoke
basic arithmetic operations to understand proportional equivalence
(e.g., 2

3 = 4
6 ). However, few educational applications for data

analytics use technology other than standard desktop or laptop
computers. This indicates a need for novel approaches to teach
high-dimensional data analytics. In this work, we take a proactive
approach to employ human bodies as movable data points. With this,
we can potentially map data analysis and exploration to integrated
sensory activities rather than just visual perceptions.

2.4 Observation-Level Interaction

Dimension reduction techniques like WMDS are often used to
encode data similarity as spatial proximity. The “proximity equals
similarity” visual metaphor is cognitively effective because people
naturally group similar information together and move different
information apart. This phenomenon has been found in both
physical settings (e.g., organizing notes on a white board) [29] and
virtual environments (e.g., organizing digital documents on large
displays) [30]. This metaphor shields analysts from the complexity
of the high-dimensional data by providing a simple 2D (or 3D)
plot. However, since loss occurs in the projection, analysts can
interact with parameters of the algorithm to explore many possible
projections, thus looking at the data from different perspectives.
For example, WMDS applies weight parameters to each data
dimension, enabling the analyst to put more or less emphasis
on each dimension in the computation of the high-dimensional
similarities (or distances) between data points.

In contrast, dimension reduction tools like Andromeda [31] also
implement Observation-Level Interaction (OLI) [32], in which
analysts can directly manipulate the data points (”observations” in
statistics terminology) in the 2D projection. The inverse WMDS
algorithm then computationally back-solves the WMDS algorithm
to identify the optimal data dimension weight parameters that would
most closely produce the desired projection. OLI is especially
useful when analysts have domain knowledge about the data points.
They can organize the data points accordingly to learn how the
data dimensions relate to their domain knowledge. Thus, users are
able to explore various projections of high-dimensional data based
on their conjectures of relationships among the data. Learners
communicate their judgment that data points are similar by pulling
them closer and data points are different by pushing them apart. In
turn, Andromeda identifies data dimensions that potentially explain
the user’s judgments and provides this as visual feedback. We
exploit OLI in Be the Data to enable young students to interact with
data points with which they have significant domain knowledge,
a dataset about animals. OLI can encourage students to think
specifically about the distances between points, a key concept in
dimension reduction.

In previous work [7], [8], we briefly described the system
implementation and initial results. Here we provide a complete
and detailed presentation of the concept, system, workshops, and
evaluation results. We have also applied this system in a different
setting, a social meeting scenario in which users embody data about
themselves [9].

3 BE THE DATA

3.1 Conceptual Overview

Be the Data exploits a large interactive room called the Cube, and
includes a large overhead display, a vision-based motion tracking
system, and a software system for direct manipulation of high-
dimensional data. Figure 1 shows an overview of the system.

To use the system, a group of students enter the Cube and
embody virtual data points by wearing trackable hats. With the hats,
their positions within the Cube are detected in real-time. Students
manipulate the layout of the data points by walking around in
the Cube. There is a large display overhead, where the students’
current positions and the corresponding impact on data dimension
weights are displayed as visualizations (Fig. 3). For example, if
we consider a high-dimensional dataset about animals, shown in
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Fig. 2a, each student represents an animal (data point) and their
position in the Cube is visually shown on the display (Fig. 3).

The underlying algorithm of the visualization relies on an
inversion of Weighted Multi-Dimensional Scaling (WMDS) [5].
WMDS visually plots data points in a 2D Euclidean space to
reveal the relative pair-wise distances of the data points in the
high-dimensional space. Conversely, Be the Data applies an inverse
WMDS machine learning algorithm based on Leman et al. [32]
that was introduced in Sect. 2.4 and is described in more detail in
Sect. 3.2.1. Using the OLI technique, the system maps the changes
in students’ data point positions to adjustments on the dimension
weight parameters. Students change their coordinates in the 2D
space by walking in the Cube. In turn, they are provided with
real-time feedback (i.e., a new set of dimension weights) that best
explains their current layout. When students move several times
to adjust the projection, they are effectively exploring the same
dataset from multiple perspectives.

The goal of this approach is to help students learn to think
about data in a high-dimensional manner, getting them beyond
thinking about just one dimension at a time. By embodying an
animal data point, they become intimately familiar with all the
multi-dimensional data values associated with that animal. By com-
paring with other students, they understand the multi-dimensional
differences between their animals. Positioning themselves in the
room requires that they think about the concept of distance and how
that relates to the multi-dimensional differences between animals.
The visual feedback helps them recognize how the distances they
chose emphasized some dimensions over others, perhaps as a result
of their own external knowledge (dimensions not contained in the
dataset) that they applied. Their acting out the projection helps
them understand the behavior of the WMDS analytical process.
The changes over time as they move help them to realize that there
are many possible interpretations of high-dimensional data, and
that they can explore many different kinds of questions about the
data.

3.2 System Description

Be the Data blends both physical and virtual user interfaces through
the concept of the data projection. The physical interface includes
three parts: the physical space of the Cube, the tracking system,
and the large display. The virtual interface includes interactive
visualizations. Different from traditional input devices (e.g., mouse
and keyboard), students interact with the system by walking around
in the Cube. Such physical movement in the Cube is captured
in real time by tracking the location of the students’ hats with
the vision-based tracking system [7]. Each hat is specifically
designed to contain a unique visual identifier that is automatically
mapped to one of the animal data points. The hat movement is then
transformed into 2D coordinates according to their x-y position
in the room, which are then used as input for the inverse WMDS
and dynamic clustering algorithms. The layout and the calculated
weights are presented as interactive visualizations on the large
display. The students are also each given a lanyard that contains the
name and picture of their assigned datapoint animal so that other
students can see what they are, and a card containing a print out of
their data row of the table so they know their own data values.

3.2.1 Interactive WMDS Visualization
The interactive visualization includes two essential views: a WMDS
plot and a dimension chart, organized left and right respectively

on the large display (Fig. 3).The WMDS plot reflects the current
physical layout of the students in the Cube (from a bird’s eye view).
With the animal dataset, the data points are visualized as animal
icons and associated animal name labels. The dimension chart lists
the data dimensions in alphabetical order and reveals the current
values of their weight parameters as a bar chart.

Conceptually, the weight parameters in the dimension chart,
when input into the WMDS algorithm, produce the projection of
the data as shown in the WMDS plot. This can be interpreted such
that data points close to each other in the plot are relatively similar
while those far from each other are relatively different in the data
dimensions that are emphasized (i.e., dimensions that are weighted
more).

However, in Be the Data, the process is actually reversed. The
students control the projection, which is input into an inverse
WMDS algorithm to compute and display the weight parameters in
the dimension chart. The parameters are computed such that if they
were then input into WMDS, it would produce a projection plot as
close as possible to the students’ current layout. In WMDS plots,
the precise location of the observations are unimportant. Rather, the
pairwise distances between the observations define the projection.
Note that it might be impossible to find parameters that precisely
reproduce the students’ projection, if there is inadequate statistical
support in the data for that exact projection. Note also that, since
the inverse WMDS algorithm is a complex optimization problem,
it necessarily computes an approximate solution.

Initially, all weights are equal (Fig. 3a), and students must start
in the actual corresponding WMDS data point positions (marked on
the floor). As students change the layout by rearranging themselves
in the room, the weights get updated to explain the students’ choice
of positions (Fig. 3b). The length of the dimension bar reflects its
relative weight as compared to other bars: longer means a higher
weight. For example, as demonstrated in Fig. 3a and Fig. 3b, the
Tiger moves closer to the Pig, thus the Tiger is more similar to
the Pig than the remaining animals in the dimensions with higher
weights, such as Flippers, Hibernate, and Size.

The underlying algorithm of Be the Data is based on WMDS,
which maps three or more dimensions to two dimensions. WMDS
visually plots the data in 2D Euclidean space to represent the
pair-wise data point distances in the high-dimensional space. The
2D layout is determined by weight parameters ω = [ω1,ω2, ...,ωp],
which reflects the relative importance of each dimension, where p is
the number of dimensions. The 2D coordinates r of the initial plot
of high-dimensional data d is determined by minimizing a stress
function that computes the total error between the high-dimensional
and low-dimensional distances between points:

r = argmin
r1,...rn

n

∑
i=1

n

∑
j>i
|distL(ri,r j)−distH(ω,di,d j)| (1)

where n is the number of data points, distL(ri,r j) is a L2 Euclidean
distance function between 2D points ri and r j, and distH(ω,di,d j)
is a dimensionally-weighted L1 (Manhattan) distance function
between high-dimensional points di and d j.

Be the Data takes advantage of the inverse WMDS algorithm
as described in [32] so that we can map the layout changes to the
weight adjustments. The inverse algorithm solves for the weights
ω given updated low-dimensional coordinates r* determined by
the students’ positions in the room:

ω = argmin
ω1,...ωp

n

∑
i=1

n

∑
j>i
|distL(r∗i ,r

∗
j )−distH(ω,di,d j)| (2)
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Fig. 3: The plot on the overhead large display to visualize students’
locations in the room. (a) The students’ initial locations. (b) When
students move in the room, they change the two-dimensional
coordinates in the WMDS plot, which changes the relative weights
of dimensions. (c) Data points are grouped into colored clusters.
Dimension chart is ordered by weights.

3.2.2 Tracking System

To track the locations of participants during each workshop, Be
the Data uses an OptiTrack motion tracking system to locate the
spatial position of unique hats. The OptiTrack system consists of
24 Oqus cameras positioned around the system, and uses Qualisys
Track Manager (QTM) software to collect and process data from
the cameras in real-time. Each of the trackable hats is a rigid body
with 4-6 uniquely-positioned reflective markers placed upon it. The
QTM software identifies the (x,z) position of each hat, and streams
those positions to Be the Data. Our implementation allows for
tracking and differentiation of more than 50 objects. We estimate
that 24 cameras provides centimeter accuracy in spatial precision
with 4 millisecond latency [33]. Further details are provided in
Chen et al [7].

3.2.3 Dynamic Clustering
Although the WMDS plot and dimension chart visualize the
dimension weight changes that explains the physical layout, they
cannot explicitly reveal all of the data values of all the data points.
This is problematic, because while the weights explain the distances,
they do not adequately explain the actual values to understand the
semantics of the layout. For example, in Fig. 3b, the pig and tiger
are similar in Flippers, but is that because they both have high
or low values for Flippers? We know that animals with similar
Flippers are grouped, but where are the animals with high Flippers?

To remedy this, we visualize aggregations of only the highly-
weighted dimensions according to clusters in the plot. This
adequately reduces the number of values visualized to an easily
perceptible amount. To do this, we incorporate a dynamic clustering
algorithm to visualize 2D spatial clusters in the WMDS plot
(Fig. 3c). The system automatically and dynamically identifies
low-dimensional clusters of data points as students move around
the Cube.

Clusters are determined in real-time by an optimized method
of k-means, described in detail in Chen et al [7]. Briefly, the
number of clusters (k) is determined using the heuristic elbow
method to identify an optimal number of clusters for the current
projection [34]. This method computes an error measure for
increasing values of k until the improvement in the error falls
below a specified threshold. The value of k at this “elbow” is then
used for classification. Each cluster is assigned a unique color and
used for the data point labels in the WMDS plot. As the students
move around and the clusters update, the algorithm attempts to
preserve the cluster coloring by tracking cluster centroids over time.
The data values of the cluster centroids (i.e., the average values
of all data points in that cluster) are visualized in the dimension
chart for the highly-weighted dimensions as colored points on
the dimension bars, with color corresponding to cluster color and
position on the bars corresponding to those aggregate values. The
data values are scaled according to the dimension bar lengths
(weights). This scaling helps students understand the effect of the
weight on determining distance between points on the bars.

For example, in Fig. 3c, the red cluster ranks highest on the
Flippers dimension, which indicates that the red cluster had the
highest average value in the Flippers dimension. This makes sense,
since the red cluster contains the Blue Whale, Walrus, and Seal.
It also explains why this cluster is so far away from many other
clusters which have 0 for Flippers. When the dynamic clustering
feature is enabled, the dimension chart is sorted based on their
weights. This potentially helps students to quickly identify features
that differentiate the clusters.

We include the WMDS plot in the visualization for three
purposes. First, it enables the students to see all data points
simultaneously. Awareness of each other’s locations and movements
is important for collaborators to coordinate their activities [20].
We make each individual’s input salient so that the consequences
of everyone’s decision is visible and counts for the group result.
Meanwhile, it raises individual responsibility for decisions about
the data being embodied. Such ownership is helpful to decrease
student inclinations to simply follow others. Second, the graphic
representation combined with physical layouts are coherent with
students’ mental model of the proximity ≈ similarity metaphor.
Imagery activity bridges the abstract with the concrete [35],
combining physical and virtual. Third, the interactive visualization
explicitly documents students’ thinking process, which can be
replayed for instructional and research purposes.
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Workshop Grade Level Number of Participants

ICAT 3rd grade 80
AWC 6th and 7th grade 62
CEED 10th or 11th grade 50
STEP Pre-college 33
DA Undergraduate 49

TABLE 1: Participant educational level.

4 EVALUATION

We conducted educational and outreach workshops to explore how
novice students (i.e., students without mathematical background in
high-dimensional data) employ embodied interaction with Be the
Data to learn and analyze high-dimensional data. Specifically, we
sought to answer the following two questions:

1) Did students learn key concepts about high-dimensional
data, including weight variables, relative distance, dimension
reduction, and data exploration? Did this increase their
confidence?

2) How did students exploit Be the Data to learn about data and
data analytics processes?

4.1 Participants

Over the course of a year, we conducted five different workshops at
STEM outreach activities at our institution, involving students from
a range of age groups. The workshops were designed as educational
activities embedded within broader outreach events. Thus, the
workshops were not designed as controlled studies, but more like
ecologically valid field studies. We recruited 62 participants in
6th and 7th grade at an Association for Women in Computing
(AWC) workshop, 50 participants in 10th and 11th grade at
Center for the Enhancement of Engineering Diversity (CEED)
workshops, 33 recent high-school graduates entering college in
the Student Transition Engineering Program (STEP) workshop,
49 undergraduate participants in a data analytics (DA) introduction
workshop (Table 1), and 80 3rd graders at an Institute for Creative
Arts and Technology (ICAT) outreach event.

Participants were new to high-dimensional data analytics and
the WMDS method. For ICAT and AWC participants, none of
the school curriculum had yet covered WMDS related concepts
according to the students’ teachers. CEED, STEP and DA partici-
pants were asked on a survey about their familiarity with WMDS.
Of 123 returned responses, 75 students checked “never heard of
it,” 45 students checked “heard of it but never used it,” 3 student
checked “learned about it,” and 0 students checked “expert on it.”

4.2 Workshop and Procedure

In groups of 20-30, students were asked to analyze a high-
dimensional dataset of 20-30 animals with 30 dimensions (Fig-
ure 2a) using Be the Data. Each dimension reflects the degree (on
a scale of 0–100) to which animals could be described by that
characteristic (e.g, skunks were rated 100 in the dimension smelly,
whereas horses were rated 33 in the same dimension).

Before the workshop started, students completed a pre-survey.
After the workshop, they completed a post-survey. Due to event
scheduling constraints, ICAT participants did not take the pre-
survey or post-survey. The dynamic clustering feature was imple-
mented later and was only available for the DA workshop.

The workshop lasted approximately 30 minutes. It started
with a short introduction on high-dimensional data. The instructor

explained the concept of high-dimensional data using the animal
data shown in a table (Fig. 2a), and identified dimensions as
columns in the table. Then, the instructor explained how to use
the system and gave examples. Specifically, she explained that
the visualization on the screen is a 2D projection of the given
high-dimensional data, and that positions of animal icons on
the visualization represented students’ coordinates in the room.
The instructor asked students to move randomly in the cube
and let them look at the visualization and weight changes. The
instructor explained the proximity≈ similarity metaphor to interpret
the WMDS visualization with highly-weighted dimensions. The
instructor picked a few of the students, two near and two far,
to share their data and explain the reason for their distances
from each other. The instructor completed the explanation by
suggesting that the system could be used to explore data randomly
or intentionally when addressing research questions. For example,
the instructor asked, “What makes some animals good or bad pets?”
With guided discussion, the students would group and/or align
themselves according to animals they liked to disliked as pets.

After the introduction, students as a group were asked by the
instructor to suggest questions that they would like to investigate
collaboratively with the tool. Some students raised their hands and
proposed questions. If necessary, the instructor selected and refined
a proposed question to ensure that it allowed for the exploration
of the entire dataset as a group, rather than drawing a conclusion
about a single animal or subset of animals. Although the students
did not suggest questions that could not be answered easily with
Be the Data, the instructor was ready to nudge students away from
questions that were not about the observations. That is, questions
referring to, say, correlation between variables, are hard to answer
with Be the Data, but questions for which the observations (i.e.,
animals) are the subjects of interest comply with the nature of
OLI [36]. If the group initially had difficulty thinking of questions,
the instructor gave them more sample questions to solve, such as,
“What may describe herbivores, omnivores, and carnivores?” One
creative question asked by the students was, “What makes animals
good to eat?”

After selecting a question, the students as a group then
collaboratively used the system to answer the question as they
collectively saw fit. Questions required whole-group collaboration
in that each student needed to move according to their own intuition
but also in concert with the other students. Further collaborations
resulted when some students did not know where to move or
disagreed on where to move (refer to Table 3). Once the group
decided that they had reached their desired positions and were done
moving, the system updated the visualization to display the new
dimension weights. The students then reflected on their findings
by discussing the results as a group. In some cases, the students
were given the opportunity to further adjust their positions and the
instructor provoked some additional discussion about what was
learned about the animal data.

4.3 Data Collection and Analysis

To answer the research questions listed at the beginning of
this section, we collected qualitative and quantitative data from
recorded video, pre-surveys, and post-surveys. The overhead video
recordings preserved anonymity of participants while still allowing
researchers to investigate the workshop execution. The surveys
included multiple choice and open-ended questions that reflected
students’ understanding of technical concepts, as well as attitudes
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towards the workshop and data analytics. Differences in pre-
and post-survey answers were used to measure potential gains
from the workshop. Unfortunately, due to errors on the pre-
survey of the AWC event, we do not have results for AWC’s
pre-survey. We learned from the AWC workshop that changes in
the survey questions and data management were needed to warrant
analytical comparisons between the pre- and post-surveys. We
further improved survey questions in the DA and CEED workshops
to measure students’ learning more thoroughly.

To analyze the quantitative data from the surveys, we include a
Bayesian approach. There has been some debate over the use of
classical methods which rely on p-values to make inference [37].
The p-values can easily be miscalculated and/or misunderstood
when comparing them to a type I error (i.e., a significance level
α). For this paper, we employ Bayesian models to analyze the
quantitative data. In many (if not all) cases, a classical results in
the same, final inferences as those that we report in Sect. 5. To
support readers unfamiliar with Bayes, we report p-values when
applicable.

The quantitative data from the surveys were primarily from
two types of questions: (a) questions with right or wrong answers,
and (b) questions that request students to rate their attitude. We
analyze right or wrong answers per question and survey with Beta-
Binomial Bayesian models [38]. From these models, we learn the
posterior distribution for the probability of a correct answer, and
then we estimate the distribution for the difference in probabilities
between the pre- and post-surveys. We use the distribution for the
difference to assess and infer changes in the student responses
before and after Be the Data. For example, consider the question
“identify dimensions on DR plot” (for the STEP workshop). The
maximum a posteriori (MAP) difference is 0.48 with a credible
interval (0.22,0.67) (in Table 2). This means that the most probable
difference between the pre- and post-probabilities of being correct
is 0.48. Because the credible interval does not overlap 0, we can
infer that students’ understanding did change during the workshop.
When we report p-values for these questions, small p-values may
reject the null hypothesis that the pre- and post-probability of being
correct are equal, as it is in this example (0.0008).

We analyze questions about attitude using a very similar
approach. Rather than learning the posterior distribution for the
probability of being correct, we learn the posterior distribution for
the mean attitude response. To do so, we use a Gaussian model
with reference priors [38] to analyze responses per question and per
survey. In turn, we estimate the distribution for the difference in
means. For example, the MAP estimate for the difference in mean
attitude toward the statement “Analyzing data is boring” in CEED
is −2.09 with a credible interval (−2.96,−1.21). This means that
most probable difference in mean is −2.09. This difference is
notable because 0 is not included in the credible interval. When we
report p-values for these questions, small p-values may reject the
null hypothesis that the pre- and post-attitude means are equal.

To analyze qualitative data from the surveys’ open-ended
questions, we had two researchers grade participant responses
independently and compare their grades to assure accuracy. That
is, the open ended questions on the survey have 1) several right
and wrong answers and 2) countless ways to write such answers.
The two graders determine which answers are right or wrong,
and do not offer partial credit. For example, if asked to explain
why there are discrepancies in two WMDS plots of the same
data but with different dimension weight specifications, there are
countless answers. Two correct answers include “The weights

changed” and “The smelly and walks variables played a greater
part.” Whereas, two wrong answers include, “The points changed
locations” and “I don’t know.” These correctness scores were then
evaluated quantitatively as above.

The last form of data that we analyzed were collected via videos.
From the videos, we observed when and how students collaborate to
solve problems. For example, to evaluate Research Question 2, we
observe how or when students collectively communicate, strategize,
and respond to updated layouts. From these data, we do not
analyze the accuracy of students’ insights about the data, but
rather the student actions when using Be the Data. In Section 5,
we summarize findings we make from the observations.

5 RESULTS

In this section, we discuss outcomes and lessons learned after
conducting the five workshops. We begin with a detailed discussion
of some of the key concepts learned from the workshops, discussing
the participants’ improvement in interpreting high-dimensional
data projections and how they are generated. These results are
discussed using results from pre- and post-surveys taken by
participants. We follow this discussion with examples of students
learning about a dataset using Be the Data, as well as providing
a taxonomy of layouts generated by the workshop participants
and their relationship to the way the participants interpreted the
dataset. Finally, we discuss user engagement with Be the Data
and comment on potential improvement for future iterations of the
system.

5.1 Key Concepts Learned
After the study, 60 out of 62 students returned post-surveys in
AWC, 47 out of 50 students returned both pre- and post-surveys in
CEED, 28 out of 33 students returned both pre- and post-surveys in
STEP, 49 out of 49 students returned pre-surveys and 48 returned
post-surveys in DA. The results of correctness proportion in the
pre- and post-surveys, expected differences, credible intervals,
and p-values are shown in Table 2. It suggests that students
gained knowledge about the following concepts: relative distance,
dimension reduction, and data exploration. It also indicates that
students showed more interest and confidence in learning about
high-dimensional data.

Students learned concepts about relative distance in dimension
reduction plots. To evaluate their understanding, students were
asked to interpret similarities of data points in a dimension
reduction visualization. In all the workshops, students were asked
questions on a dimension reduction (DR) plot with all weights equal
(Fig. 4a). In the AWC workshop, 92% of the students answered
correctly afterwards. In the STEP workshop, there was strong
evidence of improvement (credible interval (0.01,0.35)). In the
CEED and DA workshops, almost all the students (96% for both)
answered correctly afterwards. There was no improvement, due to
the high rate of correctness in the pre-survey (also 96% for both).
The relatively high percentage of correctness in all workshops
indicate that the proximity ≈ similarity visual metaphor is an
intuitive idea that can be exploited for usability in data analytics.

In both CEED and DA workshops, we asked three additional
questions to further study student understanding of relative distance.
First, students were asked to interpret similarity of data points on
a dimension reduction plot with unequal weights (Fig. 4b). There
was no significant improvement due to the high correctness rate
(96% in CEED and 94% in DA) in the pre-survey.
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Workshop Question Pre Correctness Post Correctness Expected Difference Credible Interval p-value

Key concept: relative distance
AWC Relative distance on a DR plot with all weights equal — 0.92 — — —
STEP Relative distance on a DR plot with all weights equal 0.79 0.96 0.15 (0.01,0.35)* 0.0495*
CEED Relative distance on a DR plot with all weights equal 0.96 0.96 0 (−0.09,0.09) 0.999
CEED Relative distance on a DR plot with weights not equal 0.96 0.98 0.02 (−0.06,0.11) 0.557
CEED Explain changes in two DR plots 0.19 0.60 0.40 (0.21,0.57)* <0.001*
CEED Predict the change if you want a data point to be closer to a cluster 0.32 0.85 0.52 (0.35,0.68)* <0.001*
DA Relative distance on a DR plot with all weights equal 0.96 0.96 0 (−0.09,0.09) 0.9834
DA Relative distance on a DR plot with weights not equal 0.94 0.98 0.03 (−0.05,0.13) 0.3204
DA Explain changes in two DR plots 0.38 0.60 0.21 (0.03,0.41)* 0.0265*
DA Predict the change if you want a data point to be closer to a cluster 0.46 0.79 0.33 (0.15,0.50)* 0.0005*

Key concept: dimension reduction
AWC Identify dimensions on a 2D plot — 0.57 — — —
AWC Identify dimensions on a 3D plot — 0.50 — — —
AWC Identify dimensions on DR plot — 0.78 — — —
STEP Identify dimensions on a 2D plot 0.93 0.93 0.01 (−0.15,0.15) 0.8346
STEP Identify dimensions on a 3D plot 0.75 0.79 0.04 (−0.18,0.25) 0.8115
STEP Identify dimensions on DR plot 0.29 0.75 0.48 (0.22,0.67)* 0.0008*
CEED Identify dimensions on DR plot 0.66 0.94 0.27 (0.12,0.42)* 0.001*
DA Identify dimensions on DR plot 0.73 0.96 0.22 (0.09,0.36)* 0.0022*

Key concept: data exploration
STEP Exploratory nature of data — 0.86 — — —
CEED Exploratory nature of data — 0.96 — — —
DA Exploratory nature of data — 0.90 — — —

Interests and Confidence
Pre Average Post Average Expected Difference Credible Interval p-value

CEED Analyzing data is boring 4.63 2.54 −2.09 (−2.96,−1.21)* <0.001*
CEED The lack of mathematical background prevents me from analyzing high-dimensional data 3.37 1.33 −2.04 (−2.97,−1.12)* <0.001*
CEED I know what is meant by the term, high-dimensional data 2.61 9.00 6.39 (5.42,7.36)* <0.001*
DA Analyzing data is boring 2.63 1.88 −0.75 (−1.48,−0.02)* 0.0519
DA The lack of mathematical background prevents me from analyzing high-dimensional data 3.49 2.24 −1.25 (−2.23,−0.27)* 0.0191*
DA I know what is meant by the term, high-dimensional data 4.97 8.53 3.56 (2.53,4.58)* <0.0001*

TABLE 2: A quantitative summary of students’ learning of key concepts (i.e., relative distance, dimension reduction, data exploration),
and interest and confidence towards learning about high-dimensional data before and after the workshop. DR stands for dimension
reduction. Columns 3 and 4 are observed proportion of correct answers for the pre- and post-surveys. Columns 5 and 6 show the expected
difference and the credible interval for the difference in proportions. Column 7 contains the p-values from a two-tailed two sample t-test.
The * in columns 6 and 7 flags questions with a significant difference in pre- and post-surveys.

(a) Students were asked to interpret relative distance on a dimension reduction
plot with equal weights.

(b) Students were asked to interpret relative distance on a dimension reduction
plot with unequal weights.

Fig. 4: Students interpreted relative distance on dimension reduction
plots.

Second, they were asked to explain if and why their answer
changed between the equal weight plot to the unequal weight plot.
With a qualitative analysis of their written responses, we found
strong evidence of improvement (credible interval (0.21,0.57) in
CEED, credible interval (0.03,0.41) in DA). For example, some
students answered correctly afterwards as “The weights changed”

and “The smelly and walks variables played a greater part.”
16 students who answered incorrectly in the pre-survey by

simply restating the distance changes at the graphical presentation
level (e.g., the points got closer on this plot) changed their answers
in the post-survey to consider weighted variables. For example:
“Because we are comparing the [points] based on different weighted
categories than before. Before, all categories were equal, and now
they have weighted values” and “The weight of the variables
changed, maybe because of a different research question that was
asked.”

Third, students were asked which dimension weight(s) needed
to change if they want one particular data point (e.g., seal) to be
closer with a cluster (e.g., blue whale and otter). Based on their
written responses, we found strong evidence of improvement (the
credible interval (0.35,0.68) in CEED, (0.15,0.50) in DA). Six
students who did not answer the question correctly in the pre-
survey answered correctly in the post-survey, such as “much higher
weight on “swims” and “strength and swims variable are weighted
heavier.”

Seven students who answered incorrectly in the pre-survey (e.g.,
“It has to go higher on both the axes”) answered correctly in the
post-survey (e.g., “Change the weight again and base it according
to what lives in water”). Two students who answered the question
too generally (e.g., “The weights of the variables”) answered it
more specifically in the post-survey (e.g., “The weight of some
variables such as swims”).

Students learned to interpret multiple dimensions on dimension
reduction plots (henceforth, DR plot). To evaluate their knowledge
about DR plots compared with 2D and 3D scatterplots, students
were asked which dimensions are used to plot data in a given 2D
scatterplot, 3D scatterplot and DR plot. Students needed to identify
the correct two, three, or all of the dimensions, respectively. The
workshops did not specifically teach about the 2D and 3D scatter-
plots; we assume students already understood those concepts and
we used them as a baseline for comparison. In the AWC workshop,
57%, 50%, and 78% of the students respectively answered these
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questions correctly afterwards. Students in the STEP workshop
showed a significant improvement in understanding the DR plot
(credible interval (0.22,0.67)). Before the instruction, the students
understood the 2D scatterplot and 3D scatterplot, but not the DR
plot. After the instruction, their understanding of the DR plot
approximately reached the same level as those of the other plots.
In the DA and CEED workshops, we only asked the question on
a DR plot. There was strong evidence of improvement (credible
interval (0.12,0.42) in CEED, (0.09,0.36) in DA).

Students understood the exploratory nature of high-dimensional
data. To evaluate their understanding, we asked students, on the
STEP and DA post-survey, to explain whether it is possible to create
many dimension reduction plots from the same high-dimensional
data. This question was not asked in the pre-survey because the
question was meaningless before students had the opportunity
to explore the data. Based on their written responses, we found
that 86%, 96%, and 90% of students in the STEP, CEED, and
DA workshops, respectively, understood that many different plots
could be created to investigate answers to different questions. For
example, some students answered: “Depend[ing] on the research
question asked, different variables are taken into consideration
more heavily than others” and “There are different interpretations
of the same data.”

Two students further elaborated that the visualization helped
them to see the data in an easily perceptible way. Participants tend
to focus on a few variables, although there are often many more in
play. The visualization clearly presented these impacting variables
to the students.

In the CEED and DA workshops, we studied students’ attitudes
in learning about high-dimensional data before and after the
workshop. Students answered three questions using a 0-10 scale,
with 0 = strongly disagree and 10 = strongly agree with the question
statement. The results of average scores in the pre- and post-surveys,
p-values, and effect size are shown in Table 2. For the statement
that “Analyzing data is boring,” there is a significant difference in
CEED and marginal difference in in DA (DA students’ responses
indicate some prior interest in data analytics).

Results for the statement that “The lack of mathematical
background prevents me from analyzing high-dimensional data”
showed strong evidence that students, after attending the workshop,
were more confident in analyzing high-dimensional data with
relatively weak mathematical background.

Results from the question that “I know what is meant by the
term, high-dimensional data” showed strong evidence that students
believed that they understood the topic better after attending
the workshop. In the follow-up question asking what they had
learned, students appreciated the relevance of high-dimensional
data analysis in their daily lives:
• “Anybody is capable of analyzing high-dimensional data and

applies this more often than one would initially think.”
• “The system is a neat way to gather sentiment and it could be

used for other projects like political sentiment, which would
be cool.”

• Some students mentioned other high-dimensional data (e.g.,
sports, countries) that could be analyzed in this manner.

5.2 Collaborative Learning with Be the Data

Students learned about data through embodied interaction. They
progressively formalized data relationships through embodied
social interactions. We demonstrate these behaviors with one group

who answered the question, what make some animals good to eat.
Five key steps of their analysis process are shown in Fig. 5.

In the initial exploratory phase, one student who represented the
skunk separated herself from others as an obviously inedible animal.
This led to the system identifying smelly as an important variable
(Fig. 5a). The skunk is an outlier in this dimension with a value of
100, while other animals range from 1 to 51. The system increased
the weight on the dimension smelly to reveal the reason for this
layout. Then, students discussed with their neighbors about whether
their animal was edible, based on their own knowledge about their
embodied animals. This indicates that students took the ownership
of their data point. Some students gradually took a more dominant
role in directing others to move. For example, one student directed
the crowd and pointed with her hands (Fig. 5b), “less edible animals
move here, more edible animals move over there...”. Instead of data
dimensions, students focused on their embodied animals, the data
points. Soon they formed two groups: non-edible animals on the
upper right corner and edible animals on the lower left corner
(Fig. 5c). This led the system to increase the weight on dimensions
buckteeth, domestic, and hops.

Then, the student (as noted in Fig. 5d) who embodied the rat
realized that she belonged to neither group, since she felt that some
cultures do eat rats. She moved out of the inedible group and stood
directly in between the two groups to indicate partial edibility,
and to see what made her unique: buckteeth. This prompted other
students to reconsider and refine their positions. The non-edible
group spread themselves out by discussing with their neighbors
(Fig. 5e). Additionally, the girl representing the Persian cat in the
edible group thought that she should not be as edible as the rabbit
and pig. This led the students to construct a layout representing a
spectrum of edibility rather than a simple binary edibleness. The
system then revealed that for this layout, the dimensions buckteeth,
domestic, forest, smelly, and tusks had their weights significantly
increased compared with other dimensions.

In this scenario, students progressively formalized data rela-
tionships through social interactions, and the system expressively
transformed their domain knowledge about animals into changes to
the visualized dimension weights. In the analysis process, students
focused on their embodied data objects and moved physically to
explore data relationships. The visualizations evolved as students
continuously interpreted and changed their judgments about the
data. The layout evolution – from one outlier (Fig. 5a), to a
binary classification (Fig. 5c), and finally to a distribution spectrum
(Fig. 5e) – indicates that students progressively refined a deeper
understanding of the data. Such progressive deep interpretation of
the data is also revealed in the increasing number of high-weighted
dimensions (comparing the dimensions in the three figures) for
explaining the student generated projections, representing their
growth in high-dimensional thinking.

Learning with Be the Data involves embodiment through a
dynamic process of human-computer and human-human interaction
(Table 3). This unique physical interactive setting enables various
human-computer interactions where human behaviors can directly
steer computation (e.g., walking in the room or joining or leaving a
group). In turn, computational results, presented as visualizations,
contribute to progressive interpretation of the data. Students looked
at the visualization to evaluate their positions in some group, gained
feedback about dimensions, and then determined the next step (e.g.,
leaving a group). Simultaneously, the embodied setting of Be the
Data also helped to promote human-human interactions for data
exploration. Students took ownership of their embodied data points,
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(a)

(c)

(b)

(d)

(e)

Fig. 5: Students exploit embodiment to understand the data. (a) The student who represented skunk moved far from other students to the
bottom-right corner (not shown)). (b) Students discussed alternative positioning and one student took leadership. (c) Students formed
two separate groups, indicating a binary hypothesis about the data: edible versus non-edible. (d) The student representing rat moved to
between the groups. (e) Other students adjusted positions, which revealed a final hypothesis as a spectrum of edibility.
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(a) Layouts corresponding to two analytical stages for the question “What make some animals good to eat?”

(b) Layouts corresponding to two analytical stages for the question “What makes a good pet?”

(c) Layouts corresponding to two analytical stages for the question “What differentiates wild and domestic animals?”

Fig. 6: Three examples of layout changes corresponding to two analytical stages for a given question.

which helped to elicit discussions. Some students took on leadership
roles and directed others to move. The free movement capability
gave students many opportunities to interact with others. This
made learning with Be the Data more collaborative, as students
were more engaged with others during the learning process. The
coupling of physical and virtual enabled both of these forms of
interaction to relate and intertwine. Physical behaviors served both
human-computer and human-human interactions.

5.3 Analytic Strategies of Students

We observed four typical structures of student generated layouts
with Be the Data. These layouts are exemplified in Figs. 5, 6, and
7, and display 1) outliers, 2) binary groups indicating a boolean
understanding of data, 3) multiple clusters, and 4) linear spectra.
Different structures reflect different interpretations of the data,
and, more importantly, reflect differences in exploratory analytic
strategies. In total, we identified three analytic strategies applied
by students when using Be the Data: broadening analysis, in-depth
analysis, and multi-perspective analysis. That is, it seems that with
flexible social interactions, groups of students are able to broaden

their analysis by considering more dimensions, perform in-depth
analysis by reinforcing previously identified dimension(s), and hold
multiple perspectives to interpret a dataset. We use the narratives
portrayed by Figs. 5, 6, and 7 to support our discovery of these
analytic strategies.

Broadening Analysis. We found students progressively consid-
ered more dimensions of the data during their exploratory analysis
process, revealed as layout structure changes in Figs. 5 and Fig. 6.
With instant system and peer feedback, students continuously
explored assumptions and changed their judgments of the data. In
Fig. 5, the layout evolution from one outlier (Fig. 5a) to binary
groups (Fig. 5c), to a linear spectrum (Fig. 5e) demonstrates that the
potentially considered dimensions (shown with blue boxes in these
figures) increased from one to three to five. Similarly, in Fig. 6a and
Fig. 6b, in early stages, students tended to focus on two dimensions
in the data. In later stages they expanded their focus to four or
five dimensions of the data. The increase in considered dimensions
represents a broadening analysis strategy. Students progressively
understand the data by considering more dimensions, and these
dimensions are incrementally added to their analysis result. This
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(a) Answers from three groups to the question, what explains where animals live?

(b) One group answered the question, what differentiates four-
legged animals with others?

(c) One group answered the question, what differentiates preda-
tors, prey, neither, or both?

(d) One group answered the question, how vegetarians, carnivores,
and omnivores differ?

(e) One group answered the question, what animal you want to
encounter on a deserted island?

Fig. 7: Students interpret the same dataset from different perspectives, revealed as different visual layouts.

is revealed as the layout changes during their analysis. We only
observed increased dimensions in the questions that seemed more
subjective than others. For example, the interpretation of whether
an animal is good to eat or is a good pet is subjective, while the
interpretation of whether an animal is domestic is objective. In
contrast to this strategy used to answer subjective questions, we
found another strategy for the objective questions.

In-depth Analysis. We found that students confirmed key
dimensions in early exploration stages and reinforced their findings
at later stages, as reflected in Fig. 6c. In this figure, students are
exploring an answer to the question, What makes wild animals
and domestic animals different? At first, students formed two
groups (Fig. 6c left). Under further investigation however, the
students formed three groups (Fig. 6c right) and discovered that
the dimension domestic increased in weight while others decreased.
With the structural change students first confirmed the role of a key
dimension, domestic, and then reinforced their confirmation.

Multi-perspective Analysis. Considering the exploratory nature
of high-dimensional data, it is useful for students to consider
different perspectives and thus produce different visualizations
to gain new insights from the same data. As represented by

layouts in Fig. 7, perspective changes when having either 1)
multiple groups of students answering one common question
and/or 2) the same or different sets of students answering multiple
questions. For example, three groups of students answered the
same question, “What explains where animals live?” differently
(Fig. 7a). By bringing different external domain knowledge to bear,
different visualizations were produced. Also, four groups asked and
answered different questions to explore this dataset from different
perspectives (Figs. 7b-7e). Different student groups had a variety
of expertise and experiences and they were motivated by difference
questions, so the students’ exploration perspectives were different.

5.4 Engagement and Usability Issues

Be the Data provided an enjoyable and engaging user experience.
Students enjoyed the workshop as indicated in their responses
to the open-ended question about their workshop experience.
Among 183 responses (60 returned from AWC, 28 from STEP,
48 from DA, 47 from CEED), “interactive,” “moving around,”
and “interesting” (or “fun,” “engaged,” and “cool”) were the most
frequently mentioned positive factors, being mentioned 53, 68,
and 69 times respectively. “Collaboration” and “teamwork” were
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Human-Computer Interaction
• Moving around in the room
• Joining or leaving a group
• Looking at the visualization to determine positions

Human-Human (Social) Interaction
• Discussing with others, while identifying with their embodied animal:

“I am rabbit, so where is squirrel?”
“Panda is too close to me [dolphin].”
“Lion is over there. So I [tiger] need to move.”
“You [seal] and I [walrus] are the same, let’s move together.”

• Directing others to move:
“Good to eat on the left, not good to eat on the right.”
“You guys want to go over there to be separate from carnivores.”
“We need to spread out.”
“Whale needs to move that way.”

• Preserving the authority and initiative to determine their own position:
“I don’t think I [gorilla] am a good pet.”
“I (rat) might not belong to the non-edible group [and wandered away].”
“I am pretty sure I [chimpanzee] am an omnivore.”

• Exploiting their shared spatial capabilities:
“They gotta be in that corner.”
“Cat, come over here.”

• Moving around to discuss with different groups of people:
Large group collaboration spontaneously occurred to form clusters in the space.
Small group collaboration spontaneously occurred to refine positions with neighbors.

TABLE 3: A summary of human-computer and human-human
interaction in Be the Data. Both forms of interaction feed into
each other and steer the underlying model, which further updates
the visualizations. Embodied interactions of moving in the space
simultaneously serve both HCI and HHI purposes.

mentioned 26 times. Students described Be the Data as “extremely
interesting,” “way more fun than class,” and felt that they were
more “engaged in the activity (as opposed to a lecture).”

Therefore, students felt that “data can be fun, not always tedious
and boring.” An elementary school teacher, while observing his
students’ activities in Be the Data, commented that “I have never
seen my students so engaged for so long.”

From those 183 responses, students also mentioned that they
like the new technology (15 occurrences) and visualization (22 oc-
currences), and believed it was an intuitive way (6 occurrences) to
learn data. Students commented that it was the “most unique data
organization tool I’ve seen” and remarked on “how intuitive it was
being able to see what we were doing on the screen.”

While some students mentioned that the workshop was ed-
ucational and informative (22 occurrences), two students were
concerned about not learning the algorithm in a way that enabled
them to analyze data mathematically. One student specifically noted
the intuitiveness of performing multi-dimensional analysis and the
difficulties of describing and quantifying data details. One student
disliked the workshop.

6 DISCUSSION

Our goal was to explore this new extreme form of embodiment to
support student learning about high-dimensional data and analytical
processes. Be the Data is an attempt to unify physical world
experience and computational analytics experience in a natural
way. We focused on an exploratory qualitative and quantitative
analysis of how the students used this embodied approach to learn.
Our results suggest that students gained knowledge about relevant
concepts, produced various inferences from the data, and were
engaged in the collaborative data exploration.

Be the Data offered an intuitive medium for students to
reason about abstract data. The familiarity of the embodied
“proximity ≈ similarity” metaphor seemed to support an efficient
conceptualization of the underlying mathematical model. This
could be due to exploiting students’ spatial awareness capabilities
in the real world [39], [40] to interpreting the spatial organization

of abstract data. As students moved, they received immediate
visual feedback of dimension changes. They built intuitions about
relationships between their movement and the dimension changes.
They were able to explore and test hypotheses to increase their
understanding of the data in a high-dimensional way. Gigerenzer
describes such learning as “Gut Feelings” [41]. He gave an
example that although very few people would be able to calculate
the parabolic curve that the ball takes and solve the problem
mathematically, they are able to run towards the location where
the ball will come down and catch the ball. This idea is similar
to Be the Data: students gained understanding about dimension
reduction concepts (as indicated by the improvement in the post-
survey) and were able to draw multivariate insights that were not
stemming directly from the mathematical formula. Such learning
experience might lead to a better understanding later when they
are confronted with the mathematical underpinnings. This is an
interesting potential future study.

Yet, the embodiment in Be the Data is more than just the
physical interaction with the space [6]. Based on the qualitative
results, the social interaction and the students’ close identification
with the animal they embodied also seemed to play major roles.
For example, when discussing with each other, students frequently
used first person pronouns and possessives when referring to their
animal’s data values (Table 3). These characteristics seemed to
contribute to the high level of engagement of the students in the
data analysis tasks.

Be the Data has the potential to promote STEM education and
outreach in data analytics. We conjectured that students, especially
younger ones, would not pay attention to a data analysis task
on the screen for 30 minutes. But with Be the Data, students as
young as elementary and middle school age were engaged in data
exploration throughout the workshop. The complexity of the data
model formulation often scares students away from learning data
analytics [3], but students might enjoy learning data analytics in
a more natural way as doorway into future mathematics [4], [42].
Results from our user study suggested that Be the Data made the
complex analytical method approachable to novices, made the data
analysis tasks appealing, sparked interest, and encouraged further
exploration of the subject. Therefore, we expect that Be the Data
could be applied to reach a broad population of learners who are not
necessarily knowledgeable about multivariate analysis algorithms.

6.1 Limitations

Our study has several limitations. It did not have a control group to
compare against. More work is needed to understand how learners
would perform differently, for example, when given a desktop
application or attending a lecture. It is unknown if embodied
physical interaction improved the collaborative understanding of
information over purely virtual interactions. It would be difficult to
tease apart all the dimensions of embodiment and social interaction
that are so closely intertwined in the Be the Data approach,
and to factorially experiment on their individual contributions
to learning. However, our research is valuable in the identification
of learners’ analytical and collaborative strategies (qualitative) that
employ this form of embodiment, accompanied by the evidence
of learning (quantitative) and their reactions. A comparison of
different applications and educational methods is beyond the scope
of the current exploration.
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6.2 Future Work

There are many ways Be the Data could be improved and extended.
For the visualization, viewing the cluster labels in the graph
and cluster values on the dimension chart is not ideal, since
students have to switch their focus from left to right to connect the
information from both. To reduce such effort, theme labels near
clusters of dots could offer a potential solution [43]. Also, saving
analytical artifacts during usage might benefit data exploration
processes and educational activities. For example, if the system
could identify and save multiple layouts during the exploration
process, students could compare various explorations, and return to
their key analytical steps if they are stuck in the current exploration.
This would have helped in our workshops to enable the students to
compare the results from multiple student groups.

In addition, students could gain access to data value details
and even parametric interactions on the weight parameters through
linked hand-held devices. Students could visualize details about
the distances to their neighbors, and interactively tune weights
or modify choices of distance metrics to see how it affects the
projection. In such cases, it would be very interesting to visually
project the data points onto the floor of the room, and students
could chase their data points around the room as the mathematical
WMDS model updates. This could increase the game-like fun of
Be the Data. Handheld devices with WiFi or GPS tracking could
also potentially be used to eliminate the need for the expensive
vision-based tracking system and hats, making Be the Data more
broadly portable to classrooms and other spaces. This could exploit
student interest in games such as Pokémon GO, but applied to data
analytics education.

It would also be interesting to explore applications of the Be
the Data concept to other types of statistical models for data
analytics, beyond WMDS. For example, students could examine
differences between multiple types of dimension reduction models
that have been parameterized for OLI interaction, such as MDS,
PCA, and GTM [36], or learn about clustering algorithms that use
OLI techniques [44] and even topic modeling for text analytics [45].
Many other types of statistical models could be parameterized and
inverted to support OLI interaction [32], and then applied using the
Be the Data form of embodied interaction.

7 CONCLUSION

We created the novel Be the Data concept, system, and associated
educational workshops, in which students embody unique data
points in a high-dimensional dataset and physically explore
alternative projections as a collaborative group. We demonstrated
its effectiveness in educational and outreach scenarios with students
ranging from elementary to undergraduate ages and analyzed their
embodied analytical strategies. Be the Data is able to empower
students, who have relatively low sophistication in the underlying
data analytics model, to learn and draw high-dimensional inferences
from the data. As a result, we believe that Be the Data, through
maximizing embodiment, enables engagement that may benefit
education in high-dimensional data analytics.
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