
Construction and Usage of the Semantic
Interaction Pipeline

Unpublished
XX(X):1–29
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Michelle Dowling, John Wenskovitch, Peter Hauck, Adam Binford, Theo Long, Nicholas
Polys, Chris North

Abstract
Semantic interaction techniques in visual data analytics allow users to indirectly adjust model parameters by directly
manipulating the visual output of the models. Many existing tools that support semantic interaction do so with a
number of similar features, including using an underlying bidirectional pipeline, using a series of statistical models,
and performing inverse computations to transform user interactions into model updates. We propose a visual analytics
pipeline that captures these necessary features of semantic interactions. Our flexible, multi-model, bidirectional pipeline
has modular functionality to enable rapid prototyping. This enables quick alterations to the type of data being visualized,
models for transforming the data, semantic interaction methods, and visual encodings. To demonstrate how this pipeline
can be used, we developed a series of applications that employ semantic interactions. We also discuss how the pipeline
can be used or extended for future research on semantic interactions in visual analytics.

Introduction

Semantic interaction∗ is a powerful user interaction method-
ology, allowing analysts to explore and discover relation-
ships in data1. Semantic interaction exploits intuitive inter-
actions to manipulate underlying model-level parameters.
Through semantic interactions such as the direct manipula-
tion of visualizations, the system is able to learn about the
analyst’s reasoning process and thereby modify underlying
models, which in turn alter the visualization with this newly-
learned information2. This coupling of machine learning
algorithms with user knowledge and interactions allows for
the creation of robust analytics systems that collaboratively
exploit the skills of both human and computer.

For example, a number of semantic interaction tools and
techniques have been developed that make use of a visual
“proximity ≈ similarity” metaphor to map observations into
a visualization2–7. As analysts manipulate the observations
in these visualizations, they communicate to the system a
desired similarity between a subset of observations, which in
turn updates the underlying model parameters that define the
visualization. These interactions allow a user of the system
to continue exploring and understanding relationships in
the data without pausing to manipulate model parameters
manually. This frees the analyst’s cognition to focus on
high-level analysis concepts rather than low-level parameter
details8. As the analyst continues to perform such semantic
interactions, the system learns more about the analyst’s
reasoning, and the visualization incrementally adjusts to
reflect the data explorations that the analyst is investigating3.

Though a number of tools that use semantic interactions
have been developed, each is limited to its respective
design goals. For example, Andromeda6 uses a Weighted
Multidimensional Scaling (WMDS) algorithm to visualize
high-dimensional quantitative data, but includes no support
for foraging new data. Conversely, StarSPIRE7 and its

BigSPIRE10 extension use a multi-model approach to forage
for and potentially display thousands of documents, but
these tools are limited to text data. These tools each
implement a specific pipeline to answer targeted research
questions. Although they work well for their designed use
cases, the manner in which the systems are implemented
makes experimenting with different data types, mathematical
models, semantic interactions, and visual encodings difficult.
Thus, further research into visual analytics tools that enable
semantic interactions with these specific tools is limited.

To enable the exploration of many forms of semantic
interaction, we begin by defining the characteristics of a
new flexible pipeline for semantic interaction-enabled tools.
We then define components of a generalizable semantic
interaction pipeline that correspond to these characteristics.
We demonstrate the flexibility of the pipeline by prototyping
a variety of visual analytics tools. We conclude by discussing
how these prototypes, and therefore this semantic interaction
pipeline, can be used to explore data types, mathematical
models, interactions, and visual encodings in semantic
interaction-enabled visual analytics tools.

We note the following contributions:

1. We create a stricter definition of semantic interaction,
expanding on the principles defined by Endert et al3

and using V2PI as motivation.

2. Using V2PI-enabled tools, we identify requirements
for a pipeline for bidirectional interaction with visual
analytics models, and implement this pipeline to
enable rapid prototyping of visual analytics tools.

3. We supply five example applications using this
semantic interaction pipeline to explore different data

∗For readers unfamiliar with semantic interaction and multidimensional
projection, we provide a collection of terms and definitions in Table 1.

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Unpublished XX(X)

Term Definition
Attribute A property or dimension of an observation. This can be thought of as a single cell in a data table.

Dimension Weight A weight on a dimension that is representative of both the level of importance the analysts places
on that dimension and the influence that dimension has on the visualization.

Foraging Loop The combination of analytic steps from the Sensemaking Process that are used to search for new
information.

Model A mathematical algorithm that manipulates a set of data according to model parameters. This
definition of a model is the generalization of the Model pipeline component defined in Table 2.

Model Parameters The parameters that define how data is manipulated by a model.

Observation A single item in a dataset. This can be thought of as a single row in a data table.

Pipeline
The combination of the raw data, models used to manipulate the data, and the final visualization
produced based on the manipulated data. This definition of a pipeline is the generalization of the
Pipeline defined in Table 2.

Semantic Interaction An interaction within a visualization that requires updating one or more of the underlying models
that generated the visualization.

Sensemaking Loop The combination of analytic steps from the Sensemaking Process that are used to synthesize
information.

Sensemaking Process The conceptual flow of data defined by Pirolli and Card9 that is used to transform information
from raw data into a theory through a series of analytics steps (as shown in Figure 2.

Visualization An interactive, visual representation of data. This definition of a visualization is the
generalization of the Visualization pipeline component defined in Table 2.

V2PI A statistical semi-supervised machine-learning methodology developed by Leman et al.5 for
realizing semantic interaction.

Weighted Multidimensional
Scaling (WMDS)

A mathematical algorithm to determine a low-dimensional projection of high-dimensional data
based on weighted high-dimensional distances of the data.

Table 1. Semantic interaction and multidimensional projection terms and definitions.

types, mathematical models, semantic interactions,
and visual encodings.

The Design Space of Semantic Interaction
Pipelines
Wang et al. present a survey of visual analytics pipelines,
identifying commonalities and differences between those
pipelines11. They use the visual analytics model provided
by Keim et al.12 to motivate the initial steps of the survey.
As seen in Figure 1, Keim et al. capture the process behind
visual analytics tasks at a high level, but they abstract any
details of the computational model(s) and visualization(s)
into single nodes in the graph. Thus, the precise mechanisms
used to process and visualize the data are not adequately
captured in this model. This particular visual analytics model
is insufficient for depicting how to create visual analytics
tools that support semantic interaction.

To address this lack of detail in current visual analytics
pipelines, our goal in this work is to capture the structure of
the feedback loop between the the different data processing
components of the visual analytics pipeline. We accomplish
this goal by first defining identifying the requirements of a
semantic interaction-enabled visual analytics pipeline, which
thereby allows us to design a new generalized pipeline that
captures interactions between the pipeline components.

Because our motivation for defining this new pipeline
lies in the desire for semantic interactions, in this section
we first discuss sensemaking, the driving force behind
semantic interaction. We then discuss a particular realization
of semantic interaction, Visual to Parametric Interaction

Figure 1. The visual analytics model provided by Keim et al.12

provides a high-level overview of the structure of visual
analytics knowledge discovery, but lacks detail in defining the
feedback loop between Models and Visualization. In order to
support semantic interaction, additional structure is required in
a more detailed pipeline.

(V2PI), which is simple for non-experts of the system
to understand and use, yet is interpreted as a complex
manipulation of the underlying visualization models. From
there, we exemplify the principles of semantic interaction
through StarSPIRE, Andromeda, and a collection of other
visual analytics tools. We conclude that there are three
common properties that enable semantic interaction in visual
analytics tools: (1) a series of models, (2) looping foraging
and sensemaking interactions, and (3) inverse processes.

Sensemaking
Pirolli and Card9 introduce a conceptual data flow (Figure 2)
showing the transformation of information from raw data
into a theory through a series of analytic steps. Each of these

Prepared using sagej.cls



Dowling et al. 3

Figure 2. In the Sensemaking Process9 the desired sensemaking interaction contains a backward (or inverse) process for each
forward step. Chaining these combined forward/inverse processes as composable processes yields a full bidirectional pipeline.

steps is in the form of a compact bidirectional loop. For
example, an initial transfer of information from the external
data to the “shoebox” may uncover a new entity that was not
previously recognized. The existence of this new entity then
causes the analyst to return to the external data to uncover
new information in support of that entity.

These compact loops chain together to form two
major bidirectional loops. The first loop is the foraging
loop13, described as involving “processes aimed at seeking
information, searching and filtering it, and reading and
extracting information.” Following the foraging loop is
the sensemaking loop14, described as involving “iterative
development of a mental model (a conceptualization) from
the schema that best fits the evidence.” We will refer to this
overall conceptual data flow as the Sensemaking Process.

A number of tools have been implemented to support the
Sensemaking Process. One approach is to develop semantic
interactions that are specifically designed to support foraging
and/or sensemaking tasks. As our focus is on semantic
interactions, we next introduce V2PI, followed by several
tools that implement V2PI.

Visual to Parametric Interaction (V2PI)
V2PI5 provides a statistical semi-supervised machine-
learning methodology for realizing semantic interaction. It
is a framework for creating interactive visualizations that
rely on both proven statistical methods and expert user
judgment. Analysts are afforded the ability to both learn from
visualizations and adjust them directly to inject feedback.

The bidirectional framework formulated in V2PI is shown
in Figure 3. In this framework, a visualization V is created by
processing data D and parameters θ through a mathematical
model M. This visualization is presented to the user U (the

Figure 3. V2PI5 is a mathematical formulation of bidirectional
functionality. This framework supports the creation and
manipulation of a visualization V , which in turn enables the
manipulation of the parameters θ that influence model M. The
parameterized feedback (Fp) represents an inverse process
similar to what is included in the Sensemaking Process, in
which the user interaction is interpreted as a set of updates to
model parameters.

analyst) to evaluate. The analyst can directly manipulate
the visualization, referred to as cognitive feedback (Fc),
which creates an updated visualization V ′. This cognitive
feedback is formalized into parameterized feedback (Fp),
which updates model M through new parameters θ .

Leman et al. demonstrate the following example of V2PI
in their paper5. A cities dataset with 25 observations,
10 real dimensions (including latitude and longitude, among
others), and 20 noise dimensions is projected using WMDS.
In the initial projection with uniform weights across the
dimensions, the cities are scattered about the projection.
An analyst then provides cognitive feedback (Fc) to the
projection by selecting five of the cities and dragging
them to approximately their correct relative geographic

Prepared using sagej.cls



4 Unpublished XX(X)

locations. The system interprets this updated visualization
(V ′) as parameterized feedback (Fp), solving for new WMDS
dimension weights (θ ) that increase the weight on the
latitude and longitude dimensions while decreasing the
weight on all others. A new visualization (V ) is formed
from the updated weights, roughly positioning all of the
cities in their relative geographic locations. In this manner,
both the noise dimensions and the “real” dimensions that
were unnecessary to the analyst’s current line of inquiry
had minimal impact on the new projection. Instead, the
important latitude and longitude dimensions were uncovered
by parameterizing the analyst’s cognitive feedback via V2PI.

The fact that the analyst’s interaction with the visualiza-
tion itself is translated by the system into updated model
parameters qualifies V2PI as a type of semantic interaction.
From the Sensemaking Process perspective, this translation
on behalf of the analyst also means that the analyst can
remain within their sensemaking loop rather than deviating
to manipulate the model parameters themselves. The follow-
ing subsections describe tools and techniques that use V2PI
and demonstrate the principles of semantic interaction.

StarSPIRE
StarSPIRE7 is a visual text analytics tool. Analysts are
afforded the ability to interact with a document set through
direct manipulation of the visualization. The semantic
meanings of those interactions are interpreted by the system
as both updates to the layout that drives sensemaking and
as updates to the relevance metrics that drives automatic
document foraging. Underlying the interface of StarSPIRE
is the multi-model, bidirectional pipeline shown in Figure 4.

In the forward direction of this pipeline, the collection of
text documents (Data) is loaded into the system. A search
algorithm serves as the Relevance Model, which judges the
importance of each document and only displays the most
important documents to the analyst via a relevance threshold.
The Display Layout Model is a force-directed layout in
which the resting distance of each edge corresponds to a
similarity measure between each pair of documents. The
output of this force-directed layout is displayed to the analyst
and affords interactions such as moving document nodes,
annotating documents, searching for terms, and linking
document nodes.

Following an interaction, StarSPIRE interprets the
semantic meaning of interaction to determine how to
update the appropriate model parameters. These updates
to the models are accomplished by an inverse of the
computations used to generate the visualization. These
inverse computations determine how the parameters of the
models must be altered to generate the output that the analyst
specified via the interaction. Once the inverse computations
are complete, the analyst interest parameters are updated,
which triggers the forward computations of each of the
models to incrementally update the visualization.

Since the analyst directly manipulated the visualization
in the given interaction, and because this interaction was
translated into a complex update to model parameters, this
interaction qualifies as a type of V2PI. The power of this
interaction lies in that the interaction itself is simple, but the
results of the interaction allow analysts to simultaneously
forage for information (bringing new documents onto the

screen) and synthesize existing information (spatializing
documents based on an expressed similarity between existing
documents) without having to adjust model parameters
directly themselves. In this case, this enables the analysts to
stay focused on conceptual-level analysis (spatial layout) of
the documents, while the algorithms handle the detail-level
parameters (entity weights)8.

Andromeda
Andromeda6 is a visual analytics tool designed for high-
dimensional quantitative data analysis . As specified in
Andromeda’s pipeline15 (Figure 5), V2PI allows analysts to
directly manipulate points in a Weighted Multidimensional
Scaling (WMDS)16;17 projection of the data. This triggers
an inverse WMDS computation. The forward WMDS
computation uses the high-dimensional data and the
dimension weights to produce low-dimensional coordinates.
However, the inverse WMDS computation uses the low-
dimensional coordinates (from the user’s interaction) and
high-dimensional data to calculate a set of dimension
weights that best produce the desired projection. After
generating new dimension weights from the inverse WMDS
computation, a forward WMDS computation is then used to
reflect the results of the user interaction. More formally:

coordinates = WMDS(data, weights)
weights′ = WMDS-1(data, coordinates′)

In addition to V2PI, analysts can interact with the attribute
weights directly through Parametric Interaction (PI). To do
so, analysts manipulate sliders located in an accompanying
panel, which changes the values of the model parameters
directly. The simplicity of this interaction, although still
useful, provides a stark contrast to the power of OLI despite
the simplistic interaction of dragging points on the screen.

Through the use of V2PI, Andromeda allows analysts
to perform sensemaking tasks by directly manipulating the
visualization. Thus, Andromeda supports the sensemaking
loop of the Sensemaking Process. Although Andromeda does
not allow for the foraging of new observations in the same
way that StarSPIRE does, Andromeda does also support
the foraging loop of the Sensemaking Process by allowing
analysts to forage for new relationships and patterns in the
dataset. Therefore, Andromeda supports the Sensemaking
Process and V2PI to the same degree as StarSPIRE, albeit
in a slightly different manner.

Thus, the key to V2PI is not a pinning action as suggested
by Sacha et al.18, but rather a machine learning process in
which the inverse computation calculates the proper model
parameters on behalf of the analyst, based on the new
positions of the dragged points. This enables the analyst
to perform observation-centric sensemaking tasks, while
foraging for new relationships in the data.

Additional Examples of Semantic Interaction
In addition to the StarSPIRE and Andromeda systems,
a number of tools have been developed that make use
of semantic interaction to afford analysts with interactive
control of visualizations. We briefly highlight some of these
tools and pipelines here.

Prepared using sagej.cls



Dowling et al. 5

Figure 4. The bidirectional pipeline from StarSPIRE7 allows analysts to interact directly with the visualization. Included in this
pipeline are two models, the Relevance Model and the Display Layout model, which are each coupled with inverse computations
(Update Relevance Threshold and Update Entity Weights). The models are chained together into an overall bidirectional structure
that enables repeated interaction for sensemaking in a collection of documents.

Figure 5. The Andromeda pipeline affords the analyst two
methods to interact with the projection weights. If the analyst
performs parametric interaction on the weights, those weights
are modified directly and the execution path skips over the
inverse WMDS computation. If the analyst performs V2PI by
directly manipulating the projection, the inverse WMDS
computation interprets the user interaction into an updated set
of projection weights.

Intent Radar22 introduces interactive intent modeling,
allowing an analyst to provide feedback for search intents
and thereby direct exploratory search. The analyst provides
relevance feedback to the model by dragging or clicking
keywords, increasing the relevance by moving the keyword
closer to the center or decreasing it by moving it outward in
the radar interface. This causes the system to compute new
estimates for the analyst’s current and future intents.

Dis-Function19 presents a method for interactively
learning distance functions for projections using a three-step
process: (1) present the analyst with a projection, (2) allow
the analyst to interact with the projection, and (3) update
the projection based on the analyst feedback. The Dis-
Function system also provides additional views alongside
the scatterplot to better communicate the properties of the
distance function to the analyst. The left pipeline from
Figure 6 visualizes this distance function learning process.

Molchanov et al.23 develop a system that uses cluster
medians as control points that can be repositioned in the
projection. When an analyst performs a repositioning action,
the system interprets this action as an attempt to relocate the
associated cluster or class of observations while not moving
any other cluster or class. As it is often not possible to create
a new projection that supports these precise conditions, the
system computes a least-squares solution for a system of
corresponding linear equations.

Paulovich et al.20 propose a Piecewise Laplacian
Projection as a multidimensional projection technique, with
the process shown visually in the center pipeline of
Figure 6. Here, control points are used to constrain the
Laplacian system that governs the projection. When an

analyst manipulates an observation in the projection, they
induce a change in the Laplacian matrix associated with the
neighborhood graph that includes the nearest control point
to the manipulated observation. The update to the Laplacian
matrix then drives an update to the projection.

Mamani et al.21 propose a technique for modifying
neighborhood structures in a projection, with the steps of
this transformation shown in the right pipeline of Figure 6.
A series of local affine mappings transform the projection in
response to user-driven repositioning of observations.

These visual analytics tools and pipelines all share a
number of common characteristics in their support of
semantic interaction. Next, we begin to formalize the
requirements of a pipeline that reflect these characteristics,
providing a standardized way to think about and represent
semantic interaction systems.

Characteristics of Semantic Interaction Tools

When comparing the characteristics of the above visual
analytics tools, we note that there are several commonalities.
Combined with the ideas from the Sensemaking Process,
we define the following three properties as necessary for
supporting semantic interaction in visual analytics tools:

1. A Series of Models: The pictorial representation
of the Sensemaking Process (Figure 2) contains six
boxes representing progressively more refined collections
of information. These collections are connected via a
pair of processes that allow for this transformation of
information. Semantic interaction specifically calls for such a
representation of information refinement into a visualization
via a model, with interactions altering the parameters of
that model. In Andromeda, we see this concept of a
model reflected by its use of WMDS and inverse WMDS
computations, which can be represented by a single model.
StarSPIRE takes this concept a step further by using two
models: the Relevance Model and the Display Layout Model.
Thus, a series of models are necessary to enable this direct
manipulation of the visualization.

2. Looping Sensemaking Interactions: As discussed pre-
viously, the Sensemaking Process defines pairs of processes
that allow for information to be progressively transformed.
These pairs of processes allow the transformation to go either
top-down or bottom-up, implying that there is a concept
of looping between these collections of information. This
looping structure can be seen in StarSPIRE and Andromeda,

Prepared using sagej.cls



6 Unpublished XX(X)

Figure 6. Pipelines from Dis-Function19 (left), Piecewise Laplacian Projection20 (center), Mamani et al21 (right). Each of these
pipelines reflects the implementation of a system that uses V2PI as an interaction method, despite the differing pipeline structures.

Figure 7. A representation of our three requirements for a new
semantic interaction pipeline: Model Composition,
Bidirectionality, and Model Inversion. Model Composition refers
to the chaining of a series of models, each of which support one
semantic computation. Bidirectionality allows user interactions
to drive updates to the underlying models. Model Inversion
refers to the pairs of a forward computation with an inverse
computation. The inverse computation supports the translation
of semantic interactions into manipulations of model
parameters.

which each allow for models and their associated computa-
tions to be rerun iteratively based on interactions performed.
It is not enough to use a series of models to visualize data;
the visualization must be interactive and the analyst must be
allowed to provide feedback to the underlying models.

3. Inverse Interactions: In order to loop between each
step in the Sensemaking Process, each bottom-up process
must have an associated top-down process that allows for
feedback and learning. That is, each bottom-up process
must have an inverse associated with it. In V2PI, this
is represented by (1) using parameters θ to produce the
visualization V , (2) allowing analysts to provide cognitive
feedback by directly manipulating V and thereby producing
V ′, and (3) recomputing θ to generate a new visualization.
In Andromeda, this is clearly represented by the fact that
the WMDS computation has an associated inverse WMDS
computation to perform this inverse calculation based on user
interactions. StarSPIRE has similar properties, as seen by
the manner in which user interactions manipulate both the
Relevance Model and Display Layout Model.

Pipeline Requirements
The three properties of visual analytics tools that use
semantic interactions described in the previous section lead
us to propose three corresponding requirements for a new

visual analytics pipeline that enables representations of the
complexity involved in semantic interaction:

1. Models should be composable, able to operate in
sequence by taking as input the result of the previous
model and sending as output the result of its computation
to the next model. The idea of composable models is a
well-addressed problem7;11;18, although literature describing
similar tools may use different terminology. As this is
not a novel contribution, we will not focus on this point.
Instead, we simply note that composable model structures
support unknown numbers and combinations of models
that can perform a variety of functions. As discussed
previously, composable model structures are also seen in the
Sensemaking Process to transition between multiple stages
of the overall process. This is thus a necessary feature in a
generalizable visual analytics pipeline that supports semantic
interactions. The composable model structure can be seen in
the upper pipeline in Figure 7.

2. The pipeline should support a looping structure
through bidirectionality, allowing each user interaction to
drive a backward and forward iteration through the pipeline.
Based on our previous discussion of the usefulness of a
looping structure, we suggest a requirement of a bidirectional
structure, as shown in the lower-left pipeline in Figure 7. This
requirement directly supports the foraging and sensemaking
loops in the Sensemaking Process. With this bidirectional
pipeline, user interactions drive updates to the underlying
models.

3. Each model should comprise both a forward
computation and an inverse computation, supporting
the bidirectional structure. The need for bidirectionality
combined with the more tightly-coupled loops that join
each stage of the overall Sensemaking Process lead to a
need for model inversion. That is, to properly interpret a
semantic interaction, an inverse computation is needed to
translate the semantic interaction within the visualization to
manipulations of model parameters. Thus, a generalizable
pipeline that supports these semantic interactions requires
an inverse computation that accompanies the forward
computations of each model. This inversion also keeps
analysts’ mental process tightly coupled to the data
projection so that they do not have to leave their foraging or
sensemaking loops in order to interact with the system. The
model inversion structure is represented in the lower-right
pipeline in Figure 7.

One important feature model inversion is the ability
to short circuit the rest of the pipeline, which is a

Prepared using sagej.cls



Dowling et al. 7

key new feature of a multi-model pipeline not found
in earlier definitions7. Short circuiting happens when the
inverse computation of a model does not need to send the
interaction any further down the pipeline. As an example, our
Andromeda implementation (shown as a part of Figure 9 and
discussed in the Web Andromeda subsection of the Pipeline
Implementations section) enables a V2PI interaction. When
this occurs, an inverse computation is triggered in its
Similarity Model. However, since all the points are already
visualized, there is no need to communicate with the Data
again. Thus, instead of running the entire pipeline, we short
circuit, executing the forward computations beginning at
the Similarity Model to update the Visualization. This short
circuiting is represented by the dotted upward arrow in the
lower-right pipeline in Figure 7.

When evaluating traditional visual analytics models (e.g.,
Keim et al.12), we note that there is rarely a distinction
between different models that may be used in the pipeline.
Furthermore, while bidirectionality may be represented on
some level, the manner in which the visual analytics pipeline
handles this bidirectionality is not discussed or represented
in detail. As a result, there is no representation of inverse
computations. Thus, there is a need a new pipeline for visual
analytics tools that better supports these requirements for
semantic interaction.

Refining the Definition of Semantic Interaction
with a New Pipeline
Given these requirements, we introduce a new generalized
pipeline for semantic interaction-enabled visual analytics
tools. Endert et al. introduced semantic interaction for
visual analytics and defined the concept with seven broad
principles3. With the introduction of this bidirectional
visual analytics pipeline, we refine this notion of semantic
interaction more specifically to refer to computations that
make use of composable models, a bidirectional flow, and
inverse computations. This refined definition for semantic
interaction still supports the seven principles of semantic
interaction defined by Endert et al. For example, we still
support analysts’ spatial cognition, use semantic interactions
within the visual metaphor, and shield the analyst from the
complex underlying models.

At a concrete level, we require properties of the pipeline
to map back to the model composability, bidirectionality,
and inversion requirements discussed previously. Having
composable models means that each model individually
should be self-contained and should have a standardized
method for both receiving information from a previous
model and passing information onward to the next model.
In other words, these models should have a plug-and-
play functionality. To support bidirectionality, each semantic
interaction should trigger an series of inverse computations
to update the models, which in turn triggers an entire iteration
of the backward and forward directions of the pipeline. This
bidirectionality and the inverse computations define how the
system interprets and processes each semantic interaction.

Given the described requirements for a new semantic
interaction pipeline, we specifically define the new pipeline
to consist of Data, a series of Models, and the Visualization.
This pipeline is shown in Figure 8. A brief description of

these components is also included in Table 2, along with
descriptions of the instantiations of these components in
our example applications. Model composability is addressed
through a series of Models. Each of these Models contains a
forward computation and an inverse computation, supporting
the inverse computation requirement. The bidirectionality of
the overall pipeline is handled through transitions through
these computations, using the forward computations in
the forward direction and the inverse computations in the
backward direction to loop through the entire pipeline in
response to a semantic interaction. Thus, this proposed
structure accurately captures the power and complexity of
semantic interactions.

Using the Pipeline to Model Existing Semantic
Interaction Systems

With this pipeline structure, we have the ability to model the
behavior of the existing V2PI-enabled semantic interaction
systems described in previous sections. Figure 9 shows a
mapping between the pipelines provided in the original
system descriptions (shown previously in Figures 4, 5, and 6)
and our interpretation of the system behavior as modeled
by our semantic interaction pipeline. From top to bottom in
Figure 9:

Andromeda supports a scatterplot projection system that
responds to analyst feedback through V2PI interaction,
and also contains a method for updating the dimension
weights directly (Parametric Interaction). Therefore, the
V2PI portion of Andromeda can be modeled with a
Projection Model in which the forward computation renders
the projection and the inverse computation interprets and
responds to analyst feedback. The Parametric Interaction
features can be contained in an “Andromeda Model” that
extends from the Projection Model. Our implementation of
Web Andromeda using our pipeline, discussed later in the
Pipeline Applications section, details these models to a much
greater degree.

StarSPIRE requires both a Projection Model for the
projection as well as a Relevance Model to handle the
relevance computations. Because the projection depends
upon the relevance values of the documents, the Relevance
Model should be the first to run in the pipeline. The forward
computation of the Relevance Model computes the relevance
values of the documents, while the inverse computation
learns and updates the relevance display threshold based
on analyst feedback. The Projection Model projects the
documents and responds to analyst feedback much like the
Projection Model discussed for Andromeda, though using a
force-directed method for projection instead of WMDS.

Dis-Function displays, among other views, a scatterplot
of projected pairwise distances using Principal Component
Analysis (PCA). An analyst is able to interact with that
projection to provide incremental feedback, which in turn
updates the projection. This behavior is quite similar to that
of the Projection Model in Andromeda, although using PCA
instead of WMDS. As such, we can model Dis-Function with
a Projection Model that projects in the forward computation
using PCA and responds to analyst feedback in the inverse
computation.

Prepared using sagej.cls



8 Unpublished XX(X)

Figure 8. Our proposed semantic interaction pipeline, resulting from the combination of the three requirements shown in Figure 7.
Model composability is shown through the chaining of a series of models horizontally in the pipeline. Bidirectionality results from the
separated forward (top) and inverse (bottom) paths through the models. Model inversion is again shown through the pairing of a
forward computation and an inverse computation in each of the models. This representation also shows short circuiting arrows that
connect the inverse and forward computations in the Models. The result is an interactive system that transforms data into a
visualization, and enables the manipulation of the visualization to better explore the data.

Paulovich et al. present a Piecewise Laplacian projection
system in which samples are drawn from a full dataset,
control points are created for each sample, and a
neighborhood graph is constructed for the full dataset. As
an analyst manipulates the projection, these control points
and neighborhood graphs dynamically update. Using our
pipeline, we can model this process using a Sampling Model
to perform the sampling step and a Projection Model to
perform the projection. In the Sampling Model, the forward
computation performs the initial sampling step, while the
inverse computation is unnecessary and can be implemented
as an identity inverse (though a computation could be
added here if the samples were updated based on analyst
feedback). In the Projection Model, the forward computation
creates the control points and projects the data using the
Laplacian system, while the inverse computation interprets
and responds to analyst feedback from manipulating the
projection. Because this is the main loop within the system,
the Projection Model can short-circuit, immediately updating
the projection after the analyst feedback is received.

Mamani et al. propose a technique similar to that of
Paulovich et al., though the precise mathematics of the
projection differ (based on local affine mappings rather than
Laplacian). Still, the basic process of sample first and project
second remains the same in the forward computations.
The process of responding to analyst feedback and then
reprojecting incorporates a fresh set of samples considered
by the interaction, therefore the full inverse computation
process runs through all models rather than short-circuiting
early in the Projection Model. Therefore, this pipeline is
identical to the Paulovich et al. pipeline at the model
level, though the mathematical details of the Sampling and
Projection Models differ.

Concrete Pipeline Implementation
Here, we discuss the concrete components that we
designed and implemented to demonstrate this new semantic
interaction-enabled visual analytics pipeline. We discuss
the goals of our implementation, and describe the modular
components that combine to form the semantic interaction
applications that are described in the next section.

Implementation Specification
To implement this new pipeline, we impose several
specifications to support our own personal research goals.

The following personal specifications are expanded upon
through the rest of this section:

1. To allow for rapid prototyping within the pipeline, it
must be easy to alter existing components or add new
components.

2. To allow us to freely interchange components, each
component of the pipeline must be self-contained.
This enables us to easily create new pipelines, thus
enabling experimenting with different visualizations,
interaction techniques, models, and data types.

3. To allow for fast prototyping of different visualiza-
tions, the visualization itself must be separated from
the rest of the pipeline. That is, the visualization only
needs to be aware of the finalized data that will be
visualized, and must also be able to communicate user
interactions back to the pipeline.

4. To simplify development of the visualizations and as
a method for sharing and distributing the visualization
tools, the visualization itself must be a web interface,
with the pipeline for the visualization running on a
server that sends computed data to the visualization
and listens for user interactions to process.

To facilitate the exploration of this design space, we wish
to rapidly prototype each of our implementations. We chose
to implement our pipelines in Python, since it is a suitable
language for prototyping. Python is also widely used in data
and text processing, with a vast array of available libraries
and packages for doing so. As a result, Python enables us to
use a wide array of tools already created while allowing for
easy changes in the future. Thus, we can easily alter existing
components of the pipeline or add new components as we
choose.

We further designed each component of the pipeline
to be independent and modular. As a result, none of the
components of our pipeline are individually complex, but
the independence of each component and communication
protocol defined between them (which is discussed in
more detail in the Communication within the Pipeline
subsection) allows for semantic interactions and plug-and-
play functionality with little effort.

In order to separate the visualization from the rest of
the pipeline, we define an intermediate component, the
Connector, that is responsible for handing the necessary

Prepared using sagej.cls



Dowling et al. 9

Figure 9. Using the proposed semantic interaction pipeline shown in Figure 8, we can now model the behavior of existing semantic
interaction systems like Andromeda (Figure 5), StarSPIRE (Figure 4), and DisFunction, Piecewise Laplacian Projection, and
Mamani et al. (Figure 6).

Prepared using sagej.cls



10 Unpublished XX(X)

data to the visualization and communicating user interactions
back to the rest of the pipeline. Defining our implementations
in this manner allows us to create separate visualizations for
each pipeline instance, which enables easy experimentations
with different UI components, visual encodings, and
semantic interactions. Finally, we made use of a web
framework that enables us to create separate visualizations
and associate URLs with them.

Combining these solutions together with our new semantic
interaction pipeline led us to identify common structural
components that are necessary within each implementation,
and hence to define four key components of our pipelines:
a Data Controller, a series of Models, a Connectorand
a Visualization. Figure 10 illustrates these components
and how they interconnect. Each of these components are
further described in the following subsections, along with a
description of how the components communicate with each
other and how our pipeline is constructed.

Data Controller
The Data Controller serves as the main access point to the
underlying data that is being visualized. Its key purpose
is to serve as a method to retrieve the raw data and any
possible metadata. This can enable analysts to view the raw
data directly or allow the pipeline to pull additional data to
process and visualize. A variety of Data Controllers can be
developed to work with different types of data, enabling fast
prototyping with different types of data by merely switching
to a different Data Controller. For example, a pipeline that
is designed to analyze numerical data can be changed to
analyze textual data just through the creation of a new Data
Controller. Thus, the remaining pipeline components would
not have to be changed. Additionally, the Data Controller can
perform any data preprocessing, such as data normalization,
or leave this step for a Model to perform.

Models
Between the Data Controller and the Connector is at least
one Model. However, multiple models can be chained
together in a sequence to enable more complex visualizations
and/or interactions. Each model is comprised of a forward
computation and an inverse computation. The forward
computation uses a set of parameters to manipulate the
data, which either originates from the Data Controller or
from a previous Model in the pipeline. That is, each
Model’s forward computation operates in sequence, defining
a specific method for how the data is processed as it works
its way from the Data Controller to the Visualization.

In contrast, the inverse computation of each Model
interprets the analyst’s interactions and updates the
parameters that the Model’s forward computation uses
accordingly. To do so, the inverse computations operate in
the opposite order of the forward computations, starting
with the inverse computation of the Model closest to the
Visualization and working towards the Data Controller.
Thus, the sequence of inverse computations determine how
the analyst’s interaction is interpreted. These updates to the
Model parameters are then used by the forward computations
of each of the models, ultimately reflected in an updated
Visualization. In the case of our pipeline implementations,

we suppose a wide variety of inverse computations,
include precise mathematical inverses6, heuristic inverses27,
probabilistic inverses4, and even identity function inverses
in which no computation occurs (for example, see our
discussion of the Term Frequency inverse computation in the
Elasticsearch pipeline in the next section).

Connector
With the goal of putting our Visualizations on the Web, we
designed the Connector with two distinct components: the
Pipeline Connector and the Visualization Connector. The
Visualization Connector is a Node.js web server, listening to
messages from the Visualization and sending messages to the
Visualization. Only the Visualization Connector has direct
communication with the Visualization itself. The details
of the implementation of the Visualization Connector are
discussed in the Web Framework subsection.

In contrast, the Pipeline Connector is part of the Python
pipeline. Instead of communicating with the Visualization,
it communicates with the Visualization Connector. When
the Visualization Connector receives a message from the
Visualization that necessitates a change in the pipeline, it
sends a message to the Pipeline Connector. These messages
between the Visualization Connector and Pipeline Connector
come in three forms:

• The Update message signals that the analyst has
performed some interaction that warrants an execution
of the pipeline, starting with the inverse computation
of the Model closest to the Pipeline Connector. An
Update message may make its way through the entire
pipeline back to the Data Controller, or it may get short
circuited by one of the Models along the way.

• A Get message is sent in response to an analyst’s
request for more information about an observation.
These are sent to the Data Controller for retrieving
raw data or metadata directly, which is then returned to
the Pipeline Connector to forward to the Visualization
Connector and, eventually, the Visualization.

• A Reset message that signals all the Models and the
Data Controller of the pipeline must reset back to their
initial state.

A more detailed description of inter-pipeline communica-
tion and the role of the Connector is provided in the Com-
munication within the Pipeline subsection, after all of the
components have been introduced and the web framework
has been more thoroughly discussed.

Visualization
Each Visualization we have created is a D328 interface
that communicates with the pipeline through the socket.io
JavaScript library25. To communicate with the pipeline
appropriately, the Visualization first creates all necessary
visualization components and defines when to send socket.io
messages to the pipeline or when to respond to socket.io
callbacks. The Visualization sends messages when an analyst
performs an interaction that requires a response from
the pipeline and defines callbacks for how to respond
to information coming from the pipeline. For example,

Prepared using sagej.cls



Dowling et al. 11

Figure 10. An instance of our concrete implementation of the semantic interaction pipeline shown in Figure 8 consists of a Data
Controller, series of Models, and Connector. The Visualization is a separate entity from the pipeline, communicating with the
pipeline through the Connector. The solid arrows between the models indicate the forward and inverse flow in the pipeline, while
dotted arrows within the Models indicate the ability to short circuit. The features of model composition, pipeline bidirectionality, and
model inversion are still apparent in this concrete implementation of the pipeline.

Component Description

Connector

Serves to connect the pipeline Models to the Visualization so that they can operate independently.
It is comprised of two pieces: a Pipeline Connector written in Python that interfaces with the
Pipeline, and a Visualization Connector that interfaces with the Visualization as the Node.js24

server using socket.io25. These pieces use ZeroRPC26 to pass messages between each other.

Data The content that acts as input to the pipeline to generate the Visualization.

Data Controller

The pipeline component that accesses and interfaces with the underlying data that is being
visualized. This is not a “Controller” in the MVC software architectural pattern as it does not
control the messages that are passed through the pipeline. Rather, it is only responsible for
retrieving raw data as requested by a Model or by a Get message from the Pipeline Connector.
Data Controllers that are implemented in our example applications include:

• CSV Data Controller: A Data Controller that reads and parses a CSV file.

• ElasticSearch Data Controller: A Data Controller that connects to an ElasticSearch text
search engine for dynamic datasets.

Model

A single unit of mathematical manipulation that is comprised of a forward computation and an
inverse computation. The forward computation is used to manipulate the data on its way to the
Visualization, while the inverse computation defines how an interaction in the Visualization is to
be interpreted. Models that are implemented in our example applications include:

• Relevance Model: Acts as a filter to determine which observations should be included in
the Visualization.

• Similarity Model: Creates low-dimensional coordinates for high-dimensional observations
using a “proximity ≈ similarity” metaphor.

– Andromeda Model: An extension of the Similarity Model that also supports
parametric interaction.

• Term Frequency Model: Performs entity extraction and computes entity term frequencies.

Pipeline The Python pipeline components, including the Data Controller, Models, and Pipeline Connector.

Visualization The visual output of the Pipeline that supports user interaction.
Table 2. Description of the components in our semantic interaction pipeline. To differentiate between a pipeline component and a
general term defined in Table 1, we capitalize the pipeline components (e.g. “Model” vs “model”)

an Update message is sent to the pipeline when an
analyst performs V2PI in our Web Andromeda interface
(as described in the Pipeline Implementations section). The
pipeline processes this message and returns data to the
Visualization, which is handled by a socket.io callback that
uses the incoming data to move, create, or delete DOM
objects in the webpage.

Web Framework

We also want to implement the Visualizations on a
web framework, which allows for rapid development and
distribution of these Visualizations. Additionally, we saw
an opportunity to move visualization research to the Web,
using mature web-based graphical frameworks that enable
complex visualizations in the browser28–30. This mirrors
the recent trend of transitioning from native applications to
web applications31;32. Utilizing these frameworks requires
a server to handle the Visualization itself. Combined with

Prepared using sagej.cls



12 Unpublished XX(X)

Figure 11. The Visualization Connector can mediate
communication between multiple pipelines and Visualization
clients. A single Visualization can be mirrored across multiple
clients.

the communication requirements for the Pipeline Connector,
this resulted in the creation of the Visualization Connector
to act as the server and handle communication between the
Visualization and the rest of the pipeline.

The Visualization Connector is implemented in Node.js24

and handles web components such as managing analyst
sessions as well as communicating with both the Visualiza-
tion and the Pipeline Connector. Communication with the
Pipeline Connector is accomplished using ZeroRPC26, but
communication with the Visualization is accomplished via
WebSockets30.† Using WebSockets has additional benefits
such as allowing Visualizations to be mirrored to multiple
analysts simultaneously. This enables new areas of research
on multiple analysts collaborating within a single Visualiza-
tion to be addressed33.

Figure 11 illustrates how the Visualization Connector
allows for multiple analysts to be connected to different
instances of the pipeline. To accomplish this, each pipeline
instance is tied to a single ZeroRPC connection within
the Visualization Controller. Additionally, each analyst is
also connected to the Visualization Connector via a single
WebSockets session. Within the Visualization Connector,
each WebSockets session is associated with a particular
Visualization type, then paired with a particular pipeline
instance. This enables a many-to-many relationship between
user sessions and pipeline instances.

The flexibility of our implemented pipelines demonstrates
how adaptable our new visual analytics pipeline is. This
adaptability provides many benefits towards creating visual
analytics tools. As seen in the prototypes in the next section,
we are able to create many different prototypes by swapping
out individual components. This makes rapid prototyping
simple and provides us with the ability to quickly implement
new ideas in the pipeline.

Communication within the Pipeline
Due to the separation between the Visualization and
the Models, the Connector is responsible for handling
messages between the two. For the Pipeline Connector,
this communication is accomplished using ZeroRPC26.
ZeroRPC is a Remote Procedure Call implementation
of ZeroMQ34, an asynchronous messaging library for
distributed applications. The Pipeline Connector creates a
ZeroRPC server with RPC bindings for the Update, Get, and

Reset messages. The Visualization Connector then connects
to the Pipeline Connector as a ZeroRPC client, establishing
communication between the two.

Separately, the Visualization Connector establishes com-
munication with the Visualization by acting as a Node.js24

server. The Visualization then connects as a client to this
server, using socket.io25 to pass messages between itself
and the Visualization Controller. These messages mirror the
Update, Get, and Reset messages used in the RPC bindings
in the Pipeline Connector, making translating the socket.io
messages to RPC messages easy.

Thus, updates to the Models are driven by interaction
with the Visualization. This results in the Visualization
sending socket.io messages to the Visualization Connector
when the analyst performs an interaction the requires an
update or response from the Python-implemented portions
of the pipeline (represented by the outer “Pipeline” box in
Figure 10) . The Visualization Connector then translates
these socket.io messages to RPC messages to send to the
Pipeline Connector. The Pipeline Connector interprets this
message to either get information directly from the Data
Controller or to forward the message to the Model closest
to the Pipeline Connector in the Pipeline. If the message
is passed to a Model, such as in the case of semantic
interactions like V2PI, the message progresses clockwise
around the Models shown in Figure 10. Each Model’s inverse
computation then determines how the interaction should be
interpreted, deciding to short-circuit when no other Models
are needed to process the interaction.

After all necessary inverse computations have been
completed, the forward computations of each of the Models
begin to run in the opposite order as the inverse computations
were performed. These forward computations may spatialize
the data, filter based on relevance, assign observations to
clusters, or any other number of computations necessary to
generate the desired Visualization.

Within the Pipeline itself, communication is accomplished
using a global JSON-like object that is shared among
these pipeline components. This communication object is
initialized when a new Pipeline is created and stores all
aspects of the data as it is process for the Visualization. If
two Models must share data or modify the same data, this
can be accomplished by having both Models operate on the
same elements, or keys, within the communication object.

To ensure that the different components of the pipeline
can communicate with each other appropriately, each
Model specifies requirements for its forward and inverse
computations. These requirements are specified as keys
within the communication object, and then are checked
against the output of the previous Model (or the Data
Controller in the case of the first Model in the pipeline).
If the input requirements of all computations are met, then
the pipeline is valid. Checking for a valid pipeline prevents
unwanted behavior caused by incorrectly constructed
Models.

Figure 12 illustrates how communication in the Pipeline
works using a single Model as an example. The forward

†Further details on how we use ZeroRPC and WebSockets are provided in
the next subsection.

Prepared using sagej.cls



Dowling et al. 13

computation of this WMDS model is given the set of
dimension weights that is applied to a dataset of animals,
as well as the source data (the animals and their attributes).
The Model’s forward computation calculates a set of low-
dimensional coordinates to position those animals in the
projection. The inverse computation is given the analyst-
modified screen coordinates of a set of animals, as well as
the same animals and attributes source data, and computes
a new set of dimension weights to apply to the projection.
This allows each Model to contain only the logic required
for transforming the data, and not the logic necessary to
communicate with other pieces of the pipeline.

When the Pipeline has completed processing the message
sent by the Connector, the Pipeline Connector retrieves
portions of the communication object that the Visualization
needs to know about (e.g. the final coordinates of the
datapoints) and passes them to the Visualization Connector.
In turn, this information is forwarded back to the
Visualization, which uses the new data to update itself.
Thus, the analyst is automatically provided an updated
visualization based on their interaction.

Adding a New Feature to an Existing Pipeline
Adding a new feature to an existing pipeline requires modifi-
cation to the pipeline, but the location of these modifications
is dependent upon the complexity of introducing the new
feature. For example, introducing a new color mapping to
the Visualization requires only an update to the Visualization
itself. In contrast, adding a new semantic interaction to
the Visualization requires modification to the Visualization
to support that interaction as well as to the Model will
interpret that interaction and making the necessary changes
to the model parameters. If no Model exists that naturally
addresses the new interaction, an entirely new Model may be
introduced. Finally, adding support for a different data type
may require changes at the Data Controller level, and Model
level, and the Visualization Level of the pipeline in order to
retrieve, process, and display the new data.

Visualization Variations The role of the Visualization is to
accept data from the pipeline and render it, and also to send
messages to the pipeline in response to user interactions.
To add a new feature, some modification needs to be made
to each of these actions. After the forward computations
of the pipeline have fired and data has been passed to the
Visualization, some encoding must be implemented to map
the data to features of the Visualization.

When developing a new Visualization or modifying an
existing Visualization, a programmer must therefore:

• Specify a visual encoding for the data coming from the
pipeline.

• Implement some interaction on that visual encoding.

• Format a message to fire down the pipeline in response
to an interaction.

Model Modifications As shown in Figure 12, each Model
receives messages and data into both the forward and
inverse computations. Messages in either direction can be
passed from another Model, or can originate with the Data

Controller in the case of the forward computation or the
Connector in the case of the inverse computation.

When a new feature has been added to a Visualization, the
programmer must either modify an existing Model or create
a new Model to respond to user interactions on that feature.
In either case, implementation must be created or modified
on a forward computation and/or an inverse computation.

More specifically, in developing a new Model or
modifying an existing Model a programmer must:

• Define the forward computation that accepts data from
the Data Controller or a previous Model and sends data
to the Connector or the next Model.

• Define the inverse computation that receives an
interaction message from the Connector or a previous
Model.

• Determine under which conditions the inverse com-
putation should short circuit vs. which conditions
the inverse computation should continue sending the
message and JSON-like object along the pipeline to
another Model or to the Data Controller.

• Specify how the new or modified Model will modify
the JSON-like object before passing it along to the next
Model in the sequence both directions.

Data Controller Differences If the new feature requires
support for an additional format of data, then a new Data
Controller may need to be introduced. The Data Controller
must retrieve data from an external location and reformat it to
be interpreted by the rest of the pipeline. This may not always
be possible, and so a modification to the Data Controller
may also require changes to the Models and Visualization. In
general, developing a new Data Controller or modifying an
existing Data Controller requires the following programmer
tasks:

• Define a method of retrieving the data from the file,
database, or other source.

• Define a method for structuring and inserting the data
into the communication object in a way such that the
existing Models and Visualization can interpret the
new data.

• If the previous step is impossible due to the scale
of the change, alter the Models and Visualization as
necessary to support the new data.

Pipeline Applications
With this pipeline, the interesting research challenges
are shifted to discovering the mathematical techniques
for investigating various combinations of data types,
computations, visual representations, and user interactions,
rather than creating a system for doing so. In this section,
we illustrate five visual analytics applications that have been
developed using this visual analytics pipeline. Our goal with
these applications is to further explore the design space of
visual analytics tools that enable semantic interactions using
a variety of data types, models, interaction techniques, and

Prepared using sagej.cls



14 Unpublished XX(X)

Figure 12. Forward and inverse computation examples detailing how a Model can modify the JSON-like object passed through the
pipeline, in this case showing how the WMDS computation in our Similarity Model modifies the projection of a dataset of animals35

that we also show in our Web Andromeda use case. In the forward computation, the data blob contains both the set of global
weights applied to the projection and the collection of animals with their associated attributes. After running the forward
computation, the MDS algorithm has computed a set of low-dimensional coordinates to place the animals in the projection. In the
inverse computation, the data blob still contains the collection of animals with their associated attributes, but now includes some
analyst-modified low-dimensional coordinates that represents the requested relationships in the data. After running the inverse
computation, the MDS-1 algorithm has computed a new set of global weights to apply to the projection on the next iteration through
the forward pipeline.

visualizations. These applications handle different types of
data (numerical and text), and are constructed from two Data
Controllers and four Models in various combinations. Each
of the prototypes are discussed in the following format:

• Motivation: We begin by motivating the creation of
the application, describing why such a tool is useful
and what we could learn from it.

• Pipeline: We discuss the components required for
each model, illustrating the flexibility and reusability
of the pipeline components to create new applications.

• Use Case: We provide a use case for each of the
applications to demonstrate how semantic interactions
are afforded in each.

We focus these descriptions on the semantic interaction
components of each of the applications. The applications
themselves have further capabilities that may also be
mentioned when appropriate (e.g., viewing raw data).

Web Andromeda
Motivation The first pipeline demonstrated is a web-enabled
version of Andromeda, a visual analytics tool discussed
earlier in this paper. We will refer to our implementation
as “Web Andromeda” to differentiate it from the original
Andromeda created by Self et al15. Due to the simplicity
of its single-model pipeline, we use Web Andromeda as
a baseline to evaluate the differences between our various
pipeline implementations.

Pipeline The pipeline for Web Andromeda is shown in
Figure 13. As this is our first implementation, we introduce
the CSV Data Controller, the Similarity Model, and the
Andromeda Model here.

CSV Data Controller: Web Andromeda uses data
uploaded from a CSV file, which is z-score normalized
before being handed to the Similarity Model. For the initial
WMDS projection, all attributes are weighted equally (1/p).
This Data Controller responds to Get messages from the
Pipeline Connector, and sends the raw data associated with
the requested observation directly back to the Pipeline
Connector.

Similarity Model: The role of the Similarity Model
is to spatialize documents according to their similarity.
This is done using Weighted Multidimensional Scaling
on the high-dimensional data passed down the pipeline.
The Similarity Model stores a set of dimension weights,
one for each dimension in the high-dimensional data. The
forward computation uses these weights to project the
high-dimensional data to 2D. This dimension reduction is
performed by optimizing the location of each point in the
low-dimensional space so that it minimizes a stress function
between all pairs of points. Stress in this case is defined
as the difference between the distance of two points in
high-dimensional space and in low-dimensional space. This
optimization is specified as:

d = argmin
d1,...,dn

n−1

∑
i=1

n

∑
j>i

(distL(di,d j)−distH(W,Di,D j))
2 (1)

This computation is distance function agnostic; any
distance function can be used in the model. Analysts
can directly manipulate the WMDS projection of the
observations by clicking and dragging nodes in the
observation panel (V2PI). Once an analyst has moved their
desired nodes, clicking “Update Layout” triggers the inverse
WMDS computation, which seeks to optimize the weights to
best reflect weighted high-dimensional distances in the user-
modified projection. This optimization, described by Self et

Prepared using sagej.cls



Dowling et al. 15

Figure 13. The pipeline for Web Andromeda includes a CSV Data Controller, an Andromeda Model (which inherits from a
Similarity Model), a Connector, and the Visualization. This pipeline is structurally identical to the pipeline for Andromeda shown in
Figure 5. From that pipeline, the WMDS and WMDS-1 computations have been combined into the Similarity Model, Parametric
Interaction is handled by the Andromeda Model subclass (which inherits from the Similarity Model), the Data and Weights are
loaded by the CSV Data Controller and maintained in the JSON-like object, and the Visualization renders the projection (with the
Connector to enable communication to the Visualization).

al.6, is specified as:

W = argmin
W1,...,Wp

n−1

∑
i=1

n

∑
j>i

(
distL(d∗i ,d

∗
j )−distH(W,Di,D j)

)2 (2)

This new set of weights is then used on the next forward
projection of the data. When this interaction occurs, the
Similarity Model short circuits the pipeline to immediately
update the visualization based on the new similarity weights.

Andromeda Model: The Andromeda Model inherits from
the Similarity Model and handles Parametric Interactions.
When the analyst adjusts an attribute slider, the weight for
that attribute is directly altered. Upon doing so, Equation 1 is
recomputed, and the nodes in the observation panel transition
to their new locations.

Visualization: As seen in Figure 14, Web Andromeda
is a web based interface that is designed using D328. This
interface consists of two interactive panels: one for a WMDS
projection of the observations of the high-dimensional data,
and one for the sliders that represent the dimension weights
used in WMDS. Analysts can specify how important an
individual attribute is to them by interacting with the sliders.
This interaction is the same PI described by Self et al.6 and
is interpreted as a desired weight for that attribute in the
WMDS algorithm.

Analysts can directly interact with the projected observa-
tions as a form of V2PI. Analysts can drag nodes within the
WMDS projection and use the “Update Layout” button to
trigger the inverse model computation. When the computa-
tion is complete, the visualization updates to display the new
WMDS projection, and the attribute sliders are also updated
to reflect the learned dimension weights. Also, by hovering
or clicking on a node in the WMDS projection, points appear
along the attribute sliders to give analysts an idea of what
attribute values are associated with the given observation.
This interaction is exemplified in Figure 14-c.

Messages: The most important messages that are sent
between the Visualization and the Connector are those
that communicate the user interactions of PI and V2PI.
Both of these interactions are communicated using an
Update message. For PI, the Update message parameters
indicate which attribute was manipulated. The Pipeline

Connector forwards this message to the Similarity Model,
which directly changes the parameters used in its
forward computation to reflect this interaction; no inverse
computation is needed for this interaction. For V2PI, the
Update message specifies the coordinates of the moved
nodes. The Pipeline Connector forwards this message to
the Similarity Model, which changes the parameters used
in its forward computation via its inverse computation.
After either of these interactions, the Similarity Model’s
forward computation is rerun, with the new low-dimensional
coordinates and dimension weights sent back through the
Connector to be reflected in the Visualization.

Another interaction is hovering or clicking on a node in
the visualization. This triggers a Get message sent directly
to the Data Controller to obtain the raw data associated with
the given node. This data is then passed back directly to the
Pipeline Controller and is then forwarded to the Visualization
Controller to be visualized.

Use Case In Web Andromeda, semantic interaction comes
solely in the form of V2PI. Here, we demonstrate how V2PI
can be used to gain new knowledge from an animal dataset35.

After initially projecting the data (Figure 14-a), analysts
can interact with the projection to learn more about the
animals within the dataset. Perhaps the analyst is interested
in learning more about what separates cats from dogs (a
sensemaking task) and, based on how this difference is
defined, what other animals can be considered similar to
cats and dogs (a foraging task). After dragging cats to one
side of the Visualization and dogs to another, (Figure 14-b),
the analyst can click the “Update Layout” button to trigger
an inverse computation in the Similarity Model. As a result
of this interaction, the system determines that the “Claws”
attribute best describes the difference between cats and dogs.
This answers the analyst’s sensemaking-related question.
With the high weight of this attribute, the entire dataset
is reprojected using the forward direction of the pipeline
(Figure 14-c). From this new projection of the dataset, the
analyst can see that animals such as Raccoon, Otter, Mole,
and Beaver are similar to dogs and animals such as Grizzly
Bear, Polar Bear, and Bat are similar to cats. Thus, the V2PI
interaction answers the analyst’s foraging-related question

Prepared using sagej.cls



16 Unpublished XX(X)

Figure 14. In Web Andromeda, the analyst can use V2PI to perform sensemaking tasks. After the initial projection (a), the analyst
can move points (b) and click the “Update Layout” button to trigger this inverse computation in the Similarity Model. After
determining the weights of the attributes that best describe the pairwise distances between the moved points, the entire dataset is
reprojected (c). From this new projection of the data, the analyst can perform both foraging and sensemaking tasks.

Prepared using sagej.cls



Dowling et al. 17

as well, demonstrating the use of semantic interaction in
sensemaking tasks with visual analytics tools.

Cosmos
Motivation The Cosmos pipeline was created to explore how
the Similarity Model from the previous Web Andromeda
subsection might be used for text analytics. To accomplish
this, we combined aspects of the relevance-based retrieval
model from StarSPIRE7 with the Similarity Model. With
this pair of models, analysts can query for new documents,
view the raw text associated with a document, manipulate
a document’s relevance, and directly manipulate the
visualization of the documents themselves. This V2PI
interaction is represented in the transition between panels c
and d in Figure 16.

In this new tool, we also introduce a relevance measure.
By visually representing how relevant a document is to an
analyst, we can also allow analysts to interact with this
representation. If a document is considered more relevant,
then other similar documents should also be considered more
relevant and all these documents should be placed closer
together in the Visualization. An example of this effect is
shown in the transition from panel a to panel b in Figure 16.
In this prototype, we chose to enable this interaction through
a Relevance Slider.

Pipeline The Cosmos pipeline is shown in Figure 15. Note
that this pipeline is similar to the Web Andromeda pipeline.
The differences between the two pipelines are reflected in
alteration to the CSV Data Controller and the addition of
the Relevance Model. Thus, this pipeline demonstrates the
plug-and-play functionality of our pipeline. In this section,
we discuss the modified CSV Data Controller and the new
Relevance Model introduced in the Cosmos pipeline. We also
briefly discuss the Cosmos visualization and the semantic
interactions supported by this pipeline.

CSV Data Controller: For this pipeline, we modified the
CSV Data Controller from Web Andromeda to work with
text documents. To do so, we first assume that the entire
document set exists as a set of flat files on the server. We
also assume that the CSV file that is used contains the TF-
IDF values for entities extracted from the document set. On
load, this Data Controller reads the data from the specified
CSV file, preprocesses the data in the same manner discussed
in Web Andromeda’s CSV Data Controller, and sends the
data along the pipeline to the Models. Additionally, this Data
Controller adds references to the flat files on the server,
necessary for some defined interactions. Aside from these
changes, this Data Controller works in the same fashion as
Web Andromeda’s Data Controller.

Relevance Model: We drew inspiration from StarSPIRE
to create our Relevance Model. The Relevance Model uses
the same set of dimension weights that the Similarity Model
does, but in a different manner. In the forward computation,
this model computes the relevance of a document given
a set of dimension weights as a linear combination of
those weights and the document’s TF-IDF values. This is
represented by the equation:

ri = DT
i W, (3)

This simple relevance calculation combined with a threshold
determines which documents are passed on to the Similarity
Model. That is, the Relevance Model can act as a filter that
determines which documents are visualized.

The Relevance Model also has an inverse computation.
An analyst can specify that they wish a document to have
a certain relevance, and this inverse step determines what set
of weights would give that document the desired relevance.
Say an analyst changes the relevance of document i (i.e., Di)
from (ri)old to (ri)new. The new dimension weights resulting
from this interaction would be calculated using:

(Wi)new = (Wi)old +Di
((ri)old− (ri)new)

DT
i Di

. (4)

Intuitively, this equation rescales the weight vector by
another vector proportional to the feature vector for the
document whose relevance is being changed. Following this
determination, the forward computation is used to compute
the relevance for all displayed documents.

The Relevance Model is also responsible for querying for
new documents to display. Using the dimension weights, the
Relevance Model finds the top n most relevant documents
that are above the relevance threshold. This ensures that
only highly relevant documents are displayed while also
guaranteeing that the analyst will not be overwhelmed by
too many documents appearing in the Visualization at once.
However, this querying only occurs if the interaction dictates
that a query is necessary.

Visualization: As shown in Figure 16, the Cosmos
Visualization remains a web interface with two panels:
one for an interactive WMDS projection of the documents
(represented as nodes), and one that displays the details
for a single document. This second panel takes the place
of the attribute sliders in Web Andromeda. Unlike Web
Andromeda, the WMDS panel is initially empty, requiring
the analyst to search for a term. After documents nodes
are placed on the screen, their relevance calculations are
mapped to the sizes of the nodes. The analyst can then use the
interactions described below to manipulate the Visualization.

Although V2PI and double-clicking document nodes
occur directly within the WMDS projection, double-clicking
a node populates the panel to the right of this projection with
information specific to that document. This includes the label
of a document node as well as the raw text of a document and
associated notes. The analyst also has the ability to delete a
document node by clicking a button on this panel.

Messages: A number of interactions are supported in
Cosmos. Here, we address a subset of three interactions:
(1) V2PI, (2) an analyst’s query, and (3) manipulating the
Relevance Slider associated with a particular document.

1. V2PI: As in Web Andromeda, V2PI is communicated
to the Similarity Model via an Update message,
which triggers the inverse WMDS algorithm. The
results of this are provided to the Relevance Model
to perform implicit querying on behalf of the analyst.
The relevance of existing documents and any new
documents are recalculated via the Relevance Model’s
forward computation. These documents are then sent
to the Similarity Model to recompute appropriate low-
dimensional coordinates.

Prepared using sagej.cls



18 Unpublished XX(X)

Figure 15. To transform the Web Andromeda pipeline into Cosmos, we introduce a Relevance Model, modify the CSV Data
Controller, and create a new Visualization. The Relevance and Similarity models each handle a different component of generating
the visualization, and are chained together in sequence, following our Model Composition requirement. The shaded,
vertically-striped blocks represent entirely new components, while the shaded, horizontally-striped blocks represent components
that previously existed but were modified from the Web Andromeda implementation.

2. Analyst’s Query: An Update message containing the
search terms is sent to the Relevance Model. The
Relevance Model increases the weights of these terms,
queries for new documents accordingly, recomputes
relevance values for the resulting documents via the
forward computation, and passes the top n relevant
documents on to the Similarity Model.

3. Manipulating the “Relevance” Slider: An Update
message, containing the document ID and relevance
parameter, is sent to the Relevance Model that triggers
its inverse relevance computation, followed by forward
re-execution of the pipeline.

Use Case Using the synthetic intelligence analyst dataset
mentioned when StarSPIRE was introduced, we demonstrate
semantic interactions on a document collection with Cosmos.

As in StarSPIRE, Cosmos initializes to a blank
Visualization, requiring the analyst to search for information.
The analyst knows that there is a suspicious person by the
name of “Ramazi” and wishes to learn more about him.
Searching for “Ramazi” brings 5 document nodes onto the
screen, shown in Figure 16-a. By double-clicking on the
nodes, the analyst can read their contents in the data panel
to the right of the WMDS projection.

After reading the documents, the analyst decides that
the document labeled “cia11” contains the most interesting
information, describing Ramazi’s connection to the Taliban
and explaining that he is traveling under an alias. Wanting
more information like this, the analyst increases the value
of the Relevance Slider for this document, which triggers an
inverse computation in the Relevance Model as well as an
implicit query. As a result, more documents are brought onto
the screen (shown in Figure 16-b).

While the node for “cia11” has moved to the bottom of
the screen separated from other nodes, the analyst can begin
investigating the new nodes brought onto the Visualization,
starting with the nodes closest to “cia11.” Though the
closest node (“cia2”) contains only a vague threat, the next
closest node (“cia6”) describes how there are missing Stinger
missiles that belonged to the Taliban. Since “cia6” contains
information like what the analyst is looking for and “cia2”
doesn’t, the analyst can express interest in distinguishing
between these kinds of documents by dragging “cia11” and
“cia6” closer together and dragging “cia2” farther away (as
depicted in Figure 16-c). After clicking “Update Layout,”
the inverse computation in the Similarity Model is executed

and another implicit query is triggered. The result of this
interaction (shown in Figure 16-d brings “cia4” onto the
screen and positions it close to “cia11.” Investigating this
document reveals the name and alias of another suspicious
person.

This example demonstrates semantic interactions for
sensemaking with text. Although these interactions are
simple for the analyst to perform, the complexity in how
Cosmos interprets these interactions helps the analyst forage
for information through explicit querying (searching for a
term like “Ramazi”), implicit querying (caused by dragging
observations or increasing the relevance of a document),
or discovering potentially useful information through node
position and size. Synthesizing information is also supported
through the visualization of document nodes, reflecting how
documents relate to each other based on analyst interactions.

Elasticsearch
Motivation The two examples presented thus far demon-
strate analysis of data sets stored locally. While this can be
useful for experimenting with different visual encodings, this
does not reflect many real world analysis scenarios. Here,
we present a pipeline for analyzing text documents stored
in an external database. Such a pipeline enables researchers
to investigate methods to bring Big Data into semantic
interaction-enabled applications, and will also drive modi-
fications to Models to handle larger datasets. For example,
the inverse WMDS algorithm in our Similarity Model has
a time complexity of O

(
n2 p2

)
for n observations and p

attributes. This time complexity severely limits the number
of observations and attributes that can be processed.

To build this new pipeline, we began with the
Cosmos pipeline, exchanged the CSV Data Controller for
an Elasticsearch Data Controller, and added the Term
Frequency Model to the pipeline. The Relevance and
Similarity Models required minor modifications to support
new assumptions with respect to the data. The details of these
changes are described next.

Pipeline The pipeline for this Elasticsearch prototype is
shown in Figure 17.

Elasticsearch Data Controller: Enabling Elasticsearch
required a new Data Controller to connect to the external
search engine rather than loading local data on startup. In
order to have complete control over this search engine,
we implemented our own basic text search engine using
Elasticsearch36. After connecting to our Elasticsearch

Prepared using sagej.cls



Dowling et al. 19

Figure 16. With semantic interaction, analysts can use Cosmos to assist their sensemaking tasks. After an initial search for
“Ramazi,” an analyst views the matching documents (shown in panel (a)). After determining that the document “cia11” is the most
relevant document to the investigation, the analyst drags up the “Relevance” slider. This results in an inverse computation in the
Relevance Model and an implicit query (results shown in panel (b)). After viewing the new documents that were brought into the
Visualization, the analyst drags document nodes to differentiate documents like “cia11” and “cia6” from documents like “cia2”
(shown in panel (c)). After clicking “Update Layout,” an inverse computation is triggered in the Similarity Model, and another implicit
query is performed (results shown in panel (d)).

Prepared using sagej.cls



20 Unpublished XX(X)

Figure 17. To transform the Cosmos pipeline into Elasticsearch, we add an Elasticsearch Data Controller and a Term Frequency
Model to enable the connection to an external search engine and to calculate term frequencies dynamically. The shaded,
vertically-striped blocks represent entirely new components.

instance, the Data Controller could retrieve documents in two
ways. The first method operates through simple text queries;
if a text query interaction arrives at the Data Controller,
this query will simply be forwarded to the search engine
to retrieve new documents. The second method is through
a set of dimension weights sent from the Relevance Model.
These dimension weights determine which entities are most
relevant, which in turn are used to query the search engine.

Working with an external service eliminates the static
data assumptions used by Web Andromeda and Cosmos; the
Elasticsearch Data Controller enables adding new documents
into the external store while the pipeline is running.
Interactions that occur after these documents are added may
then pull these new documents into the Visualization. For
the purposes of our examples discussed here, we do not
highlight this feature. Instead, we focus on the flexibility of
the pipeline, which allows us to easily switch the CSV Data
Controller with the Elasticsearch Data Controller.

In contrast to the CSV Data Controller, the Elasticsearch
Data Controller is only responsible for retrieving new
documents either in response to a query or in response to
a Get message. Data preprocessing is instead handled by the
new Term Frequency Model.

Term Frequency Model: Because the Elasticsearch Data
Controller only passes raw text data to the pipeline, no
preprocessing has occurred on the data. The Term Frequency
(TF) Model is required to perform entity extraction and
compute entity term frequencies. To compute TF, we use the
raw counts for a given term for each document normalized
by the maximum number of times that word appears in any
of the documents (simple, but sufficient for the purposes
of creating a working prototype). These TF values are then
used as the attribute values for each document, and are
passed down the pipeline to the Relevance Model. Because
the Term Frequency Model represents a straightforward data
conversion and does not have parameters to learn, it does
not have a meaningful inverse computation. Thus, this model
uses a simple no-op as its inverse.

Use Case Since Elasticsearch reuses the same Visualiza-
tion, the same semantic interactions are enabled in this
pipeline as well. Thus, with the same synthetic intelligence
analyst dataset uploaded into Elasticsearch, an analyst can
perform an identical analysis with this Elasticsearch pipeline
as with the Cosmos pipeline. The Cosmos Use Case shown in
Figure 16 therefore depicts how this Elasticsearch prototype
works as well.

Cosmos Radar
Motivation Ruotsalo et al. propose the Intent Radar22 as a
mapping for similarity and relevance in a visualization for
data foraging. Within this interface, documents are mapped
onto the Radar based on their relevance to analyst searches
and to their similarity to each other. More relevant documents
will be closer to the center of the Radar, while similar
documents will have a similar angle around the Radar. After
performing a user study, Ruotsalo et al. found that this
new interface enabled analysts to search through the data
more quickly and efficiently than interacting with a list of
keywords or traditional query searching. To demonstrate the
applicability of our pipeline to the field, we re-implement
Ruotsalo et al.’s Intent Radar using our pipeline, requiring
only a relatively small change to the Cosmos pipeline.

Pipeline Our Cosmos Radar pipeline is shown in Figure 18.
We discuss the changes to the Similarity Model and
Visualization here.

Similarity Model: Since we use only one dimension
to denote similarity instead of two dimensions as in
Cosmos, we altered the WMDS Similarity Model to reduce
dimensionality to 1D rather than 2D.

Visualization: We modified the Visualization from
Cosmos to map similarity to the angle around the Radar
and relevance to distance from the center of the Radar, as
suggested by Ruotsalo et al. These are trivial changes to how
similarity and relevance are visually encoded.

Use Case Except for the dimensionality change in the
Similarity Model, Cosmos Radar uses the same pipeline as
Cosmos; the biggest change in this pipeline implementation
is in the Visualization. To demonstrate how this Cosmos
Radar visualization alters the manner in which analysts
perform sensemaking tasks, we use the same synthetic
intelligence analyst dataset used in Cosmos.

As with Cosmos, Cosmos Radar begins with a blank
Visualization, prompting the analyst to search for a term.
Searching for “Ramazi” produces the Visualization shown
in Figure 19-a. Since the analyst has only performed this
one interaction, Cosmos Radar considers all these Ramazi-
related documents to have similar relevance calculations,
as represented by the distance of each document from the
center of the Visualization. Similarity between documents
is represented by the angle the document node lies around
the Radar. After evaluating the documents, the analyst still
decides that “cia11” is the most interesting and increases the
Relevance Slider for this document. As a result, the inverse
computation is triggered in the Relevance Model along with

Prepared using sagej.cls



Dowling et al. 21

Figure 18. To transform the Cosmos pipeline into Cosmos Radar, the forward computation of the Similarity Model and the
Visualization required modification. The shaded, horizontally-striped blocks represent components that previously existed but were
modified from the Cosmos implementation.

implicit document querying. The resulting Visualization is
shown in Figure 19-b.

This projection of the data does not show any other
documents that are highly relevant besides “cia11.” The
analyst begins to evaluate each document to decide which
documents are most relevant to the investigation. Finding
that document “cia6” references missing Stinger missiles
that belonged to the Taliban, this document can be considered
highly important. In contrast, “cia2” does not contain any
information that seems immediately important, as it only
references a vague threat. To indicate the similarity and
relevance of “cia11” and “cia6” as opposed to “cia2,” the
analyst can drag the two similar nodes together and “cia2”
farther away, as depicted in Figure 19-c. After clicking
“Update Layout,” the Similarity Model performs an inverse
computation and an implicit query is performed. The final
resulting Visualization is shown in Figure 19-d.

Because the representation of similarity and relevance
has changed in this Visualization, we can see how this
changes the manner in which the interaction is interpreted.
Figure 19-d shows that, while new documents were brought
onto the screen, “cia2” has a higher relevance. None of
the new documents are plotted very close to “cia11” and
“cia6,” giving the analyst more options to determine which
documents should be inspected next. From this Visualization,
the most similar new document is “cia3,” which mentions
forged passports and likely aliases being used. However,
given that the angle between “cia3” and “cia6” is rather
large, the analyst may opt to investigate “cia10” instead, if
this analysis was not previously done, as “cia10” is much
closer. In either case, this is a different conclusion than
what was drawn from Cosmos, but neither conclusion is
necessarily wrong, as “cia3,” “cia10,” and “cia4” all hint to
other individuals using aliases just like Ramazi in “cia11.”
The analyst can continue taking an alternative path through
the dataset, exploring connections that were not as apparent
in Cosmos.

Cosmos Composite
Motivation After observing how the Data Context Map37

by Cheng and Mueller tags the projection of observations
with the attributes, we noted that this feature can help
analysts understand why observations were plotted in
specific locations. The Data Context Map also gives more
information at a glance about how observations relate to each
other than what Web Andromeda and Cosmos provide. We
implemented a version of this technique using our pipeline.
We refer to our implementation as Cosmos Composite.

By reusing the pipeline components from Cosmos, we
are able to extend the Data Context Map methodology with
semantic interactions, and also apply it to querying text
data. As a result, the components from the Cosmos pipeline
must be adjusted so that attributes may be visualized in this
Cosmos Composite Visualization. This required adjustments
to the Relevance Model, Similarity Model, and the Data
Controller. We describe the components of the Cosmos
Composite pipeline in detail next.

Pipeline Our pipeline for the Cosmos Composite prototype
is depicted in Figure 20.

CSV Data Controller: Since the CSV Data Controller
in Cosmos only passes data relative to documents down the
pipeline, the Data Controller must be altered to send attribute
data as well for the Cosmos Composite pipeline. This allows
Models to use this data and, ultimately, for the attributes to
be visualized with the observations in the same projection.

Relevance Model: Although we reused much of the
same functionality in the Cosmos Relevance Model, some
aspects had to be changed to support the Cosmos Composite
Visualization. Since observations are now visualized
alongside attributes, the queries that the Relevance Model
makes to the Data Controller sometimes request attribute
data as well as observation data. Like the observations, only
the top n attributes are kept. No modification were necessary
to the forward and inverse computations of the model; we
simply needed to update the message passing to support
attribute information. After running the forward computation
to determine the relevance values for the observations,
the final attribute and observation data are passed to the
Similarity Model for additional processing on their way to
the Visualization.

Similarity Model: Because we are now visualizing both
observations and attributes in the same space, the forward
computation of the Similarity Model from Cosmos must be
altered. First, the Composite Matrix is constructed following
the instructions from Cheng and Mueller37. This Composite
Matrix represents pairwise distances between observations,
between attributes, and between attributes and observations.
The dimension weights are used in the creation of this matrix
to reflect the importance of the attributes. As a result, the
Composite Matrix is a large matrix containing all necessary
pairwise distances for MDS. After running the Composite
Matrix through this forward computation, the resulting low-
dimensional coordinates are passed to the Connector and,
ultimately, to the Visualization.

While the Visualization now contains nodes for both
observations and attributes, the inverse computation only

Prepared using sagej.cls



22 Unpublished XX(X)

Figure 19. After an initial search for “Ramazi,” the same 5 document nodes appear in the Visualization (shown in panel (a)). The
nodes are now plotted by mapping relevance to the distance from the center of the Radar and similarity to the angle around the
Radar. The analyst increases the “Relevance” slider for “cia11” as before. This results in the same documents being brought onto
the screen as in Cosmos, as depicted in panel (b). However, the difference in how these documents are represented in Cosmos
Radar gives the analyst an alternative path to determine which documents to inspect next. After inspecting the documents, “cia6” is
determined to be similar to “cia11,” while “cia2” does not have the kind of information the analyst is looking for. By dragging the
nodes as shown in panel (c) and clicking “Update Layout,” new documents are brought onto the screen (shown in panel (d)).
Although this is a similar set of documents to what was displayed in Cosmos, the difference in the mapping of relevance and
similarity to the positions of the nodes continues to enable a different exploration path in the data.

Prepared using sagej.cls



Dowling et al. 23

Figure 20. To transform the Cosmos pipeline into Cosmos Composite, the Relevance and Similarity Models, the CSV Data
Controller, and the Cosmos Visualization required some modification. The shaded, horizontally-striped blocks represent
components that previously existed but were modified from the Cosmos implementation.

handles V2PI with observations. This is because V2PI with
attributes would imply a manipulation of a set of weights
on the documents. Since we do not have this set of weights,
V2PI can only be performed to determine a new set of
dimension weights. This means that the Similarity Model
ignores V2PI on the attributes. Thus, the inverse computation
in the Similarity Model works the same as in Cosmos
to compute a new set of dimension weights that display
the analyst-defined similarity between the observations.
When the forward computation is executed again, these
new dimension weights are used to recreate the Composite
Matrix.

Visualization: The Cosmos Composite Visualization is
nearly identical to the Cosmos Visualization. The only
notable differences are that the attribute nodes are a different
color than the observation nodes and that the attribute nodes
are all the same size since they do not have a relevance
calculation associated with them (Figure 21).

Messages: The most notable change in how the messages
are interpreted by the pipeline is seen when an analyst drags
data points. This interaction is still communicated to the
Similarity Model via an Update message that indicates which
document nodes (not any attribute nodes) have been moved
by the analyst. After performing its inverse computation, the
Similarity Model then passes the new dimension weights to
the Relevance Model. The Relevance Model then performs
implicit querying for the analyst. While this brings in new
documents, this is also the only case in which new attributes
are displayed onto the screen. Therefore, the Document
Controller responds to the Relevance Model’s query with
both document data and attribute data. The Relevance
Model ignores the attribute data to determine the relevance
calculations for the documents. After determining which
documents and which attributes should be passed along to
the Similarity Model, the Similarity Model recreates the
Composite Matrix. This is then sent into WMDS to calculate
the low-dimensional coordinates for the observations and
the attributes. All this information is passed through the
Controller to the Visualization, which finally plots the
observations and attributes in the same panel.

Use Case To highlight how Cosmos Composite differs
from Cosmos, we continue to use the same dataset from
the Use Case subsection in the Cosmos section. In this new
Visualization, the analyst would again begin by searching
for “Ramazi.” While the same 5 document nodes appear,
an additional node for “Abdul Ramazi” appears. This node
represents this attribute in the space and is placed closest to
the document that has the highest TF-IDF value, “fbi15.”

This is shown in Figure 21-a. Although the analyst’s
attention is initially drawn to “fbi15,” further investigation
of these documents reveals that “cia11” is still the most
interesting document to the analyst.

After the analyst increases the relevance for “cia11,” an
inverse computation in the Relevance Model is triggered
along with an implicit query. However, the result of this
interaction is that the matching documents and the most
relevant attributes are brought onto the screen, as seen in
Figure 21-b. This time, “cia6” is plotted closest to “cia11,”
which draws the analyst’s attention directly to this document
of interest. After reading this new document and wanting
to continue following clues about the Taliban from “cia11,”
the analyst decides to differentiate “cia11” and “cia6” from
“cia2,” as this document only contains a vague threat rather
than Taliban-specific information (shown in Figure 21-c).

After moving these three nodes and clicking “Update
Layout,” an inverse computation in the Similarity Model and
an implicit query are triggered. The result of this interaction
is shown in Figure 21-d, which shows that “fbi22” is also
similar to “cia11.” Investigation of this document reveals
another individual who is also traveling under an alias. Other
documents plotted near “cia11,” such as “cia4” which was
just brought onto the screen, provides new information on
other individuals using aliases.

Discussion

Now that we have demonstrated both how our new
pipeline can represent existing semantic interaction-enabled
visualizations as well as implemented our our pipelines and
corresponding suite of visualizations, here we discuss the
implications of our new definition of a pipeline.

Rapid Prototyping to Explore Design Trade-Offs
The ability to rapidly prototype several techniques from
the visual analytics literature, and augment them with
semantic interaction, can enable researchers to explore many
design trade-offs. The differences in how the Cosmos Radar
Visualization represents document nodes and interprets user
interactions compared to Cosmos demonstrates a set of
trade-offs. In Cosmos, Similarity was represented through
the use of two spatial dimensions and thus seemed to be
better than Cosmos Radar at capturing the similarity between
documents. However, the fact that Cosmos Radar takes one
of those spatial dimensions and uses it to represent relevance
means that analysts can immediately tell which documents

Prepared using sagej.cls



24 Unpublished XX(X)

Figure 21. In Cosmos Composite, the analyst can perform the same semantic interactions as in Cosmos. However, the
Visualization displays attributes as well as observations, which gives the analyst more feedback on the given interaction. The first
example of this feedback is demonstrated by the “Ramazi” attribute being placed close to “fbi15” (actually obscuring the “fbi15”
node) after searching for this term, as shown in panel (a). The placement of this attribute can be explained by the fact that “fbi15”
has the highest TF value for this entity. Still deciding that “cia11” has the most interesting information, the analyst can then drag up
the “Relevance” slider for this document, producing the Visualization in panel (b). After evaluating new documents, the analyst can
continue to search for new information like that contained in “cia11” by dragging “cia6” closer to it (as it contains information on
another individual traveling under an alias) and dragging “cia2” farther away (depicted in panel (c)). After clicking “Update Layout,”
the final Visualization shown in panel (d) helps the analyst find additional documents containing information about individuals with
aliases, such as “fbi22” and “cia4.”

Prepared using sagej.cls



Dowling et al. 25

are most relevant, as this information is now relayed through
node position instead of just node size.

Likewise, the Cosmos Composite prototype provides
another demonstration of the flexibility of our pipeline
implementation. Although the Visualization is nearly the
same as that of Cosmos, the updates to the Similarity
Model allow the WMDS projection of the observations
to be tagged with the attributes. This provides context
to the Visualization, which helps the analyst determine
where observations of interest may lie. Thus, this tagging
of the space assists the analyst with their foraging and
sensemaking tasks. This Visualization, combined with the
semantic interactions, provides new and intuitive methods
for performing sensemaking tasks.

Introducing an Elasticsearch Data Controller (and the
related Term Frequency Model) further demonstrates the
flexibility of this modular pipeline implementation. The
Use Cases between the Cosmos pipeline and Elasticsearch
pipelines were identical, with the changes to the backend and
the storage location of the documents entirely hidden from
analysts interacting with the Visualizations.

Pipeline Evaluation
Our stricter definition of semantic interaction based on the
idea of a sequence of composable models, each containing
forward and inverse computations, that are arranged into a
bidirectional pipeline served our prototype examples well.
Each of the semantic interactions included in the tools was
enabled by an interaction afforded by the Visualization and
handled by one or more Models (and occasionally the Data
Controller). The seven principles for semantic interaction
defined by Endert et al.3 are still supported by these
interactions as well, further justifying the refined definition
of semantic interaction that we introduce in this work.
Our definition better operationalizes semantic interaction in
hopes of enabling more research and development.

The commonalities that we identified in existing semantic
interaction-enabled applications also justify our design. We
were able to replicate Andromeda15 in our Web Andromeda
tool, we used semantic interactions from StarSPIRE7 to
manipulate observations in Cosmos and its Radar and
Elasticsearch extensions, and we created an alternative visual
encoding Cosmos inspired by Intent Radar22. Though we
do not do so in this paper, we assert that the additional
applications described earlier19–21;23 can also be modeled
and implemented using our pipeline. This is due to the
underlying V2PI observation manipulation in each of these
applications, which is incorporated in the Similarity Model
described in Web Andromeda.

Our pipeline met our three requirements to support seman-
tic interaction, as well as our four additional requirements for
a web-based, rapid prototyping implementation. The imple-
mentation of our Models and model communication guide-
lines allow for chaining a sequence of Models together. To
support model inversion, each Model must contain an inverse
computation to match its forward computation, even if the
inverse computation simply passes data directly through.
Chaining the forward models together from Data to Visu-
alization and the inverse models together from Visualization
back to Data supports bidirectionality.

The additional rapid prototyping requirements are also
seen in our implementation, as well as justified by our
prototypes. By implementing each Model as a standalone
class, we were able to freely exchange components and add
new components to concrete pipelines. These are shown
by our ability to convert Web Andromeda into Cosmos
through the addition of a Relevance Model, and then into
Elasticsearch by replacing the Data Controller. The ease
of swapping components to create new Visualizations and
new prototypes is described at the Model level rather than
at the individual lines of code level, as we designed the
Models to be self-contained. Many of the modifications
made to the Models in our prototypes did not amount to
more than a few lines of code. The Connector separates the
Visualization from the remainder of the pipeline, separating
the user interactions from the details of the Models. Creating
D3 visualizations accessible from the Web met our final goal.

With our pipeline, researchers are able to define their own
Models and insert them into pipelines of new prototypes,
thereby addressing further challenges and research questions
in semantic interaction. Some proposed questions that this
pipeline could help address are described next.

Answering Research Questions on Visual
Analytics with Semantic Interactions
By continuing to build upon our current prototypes or
creating new ones, we can answer additional questions
surrounding semantic interaction in visual analytics tools.
Some future research questions that we pose are:

How can we combine multiple types of data into a single
semantic interaction-enabled pipeline and, eventually, into
a single Visualization? In our visual analytics prototypes,
numerical data (or text data that has been converted into
numerical data) is the only type of data used. However,
focusing on only one type of data in a visual analytics tool
severely limits the analyst’s ability to perform sensemaking
tasks that combine different types of data. For example, an
analyst may wish to track a particular person in an airport
through security videos of an airport and logs for flights
leaving the airport. Although the analyst can search for the
person’s name in the flight logs, it is harder to connect this
information to the security videos.

Furthermore, how would the security videos and flight
logs appear in a Visualization? In our visual analytics
prototypes, we assume that every observation can be
compared to any other observation through a similarity
metric (i.e., distance function used for WMDS in the
Similarity Model). Therefore, in order to extend our visual
analytics prototypes to handle multiple types of data, we
must update the Data Controller as well as update our
Similarity Model to compute the similarity between any
two observations (i.e., between two flight logs, between two
security videos, and between flight logs and security videos).

How can a bidirectional pipeline support streaming data?
In order to support streaming data on any level, we must
first create a Data Controller that is capable of handling
such data. This Data Controller must be able to retrieve
data as it becomes available from the data source and push
relevant data through the pipeline without being triggered by
a user interaction. This push behavior is a new mechanism

Prepared using sagej.cls



26 Unpublished XX(X)

Figure 22. A pipeline with asynchronous Models, for potential use in applications that deal with streaming data.

that must be added to the pipeline; retrieving streaming data
from a data source can be handled in a manner similar to
the Elasticsearch Data Controller that checks for updates at
regularly-timed intervals. The Connector must also support
pushing data to the Visualization. Certain approaches to
implementing a Connector may make this impossible, such
as those based on Remote Procedure Call (RPC) protocols38

that can only respond to outside requests. Therefore, a new
Connector is necessary for a streaming data pipeline.

Additionally, pushing data involves running the pipeline
over multiple threads. In order to provide simple background
processing capability, an asynchronous type of Model
could be created. The structure of a pipeline using
asynchronous models can be seen in Figure 22. A simple
background threading system results from grouping a series
of asynchronous Models followed by a series of synchronous
Models. Upon an interaction, the synchronous Models are
executed as previously described. When an asynchronous
Model is reached along the inverse path, the input data
containing the interaction and any new Model parameters
are added to a queue. The forward computations, starting
with the first synchronous Model, are then immediately run,
and the Visualization is notified of any updates. In a separate
thread, the asynchronous Models are run in a similar manner
to the original pipeline. Each inverse computation is executed
in series until the Data Controller is reached or a Model short
circuits. The forward computations are then run until the first
synchronous Model is reached. The forward computation of
this first Model is run using the data passed down through the
asynchronous Models, and the background thread then takes
the next item off the queue and iterates again.

The main drawback of this approach is the updates
from each interaction may not contain the most up to date
data. The synchronous part of the pipeline must return a
response back before the asynchronous portion completes,
meaning no new data resulting from the asynchronous
Models will be returned in the initial update. Algorithms
of an asynchronous model could be run multiple times
concurrently due to multiple pushes, or from a push and
the asynchronous background thread described previously.
An alternative approach to asynchronous Models involves
parallelization, allowing multiple Models to execute their
computations at the same time on independent processor
cores rather than using the serial behavior shown in all of our
example applications. We save this for future development.

How can the models of visual analytics tools process real-
time data in a bidirectional pipeline while allowing for user
interaction? The Models in our visual analytics prototypes
assume that any information passed to the Visualization is

either the result of initializing the Pipeline and Visualization
or from an interaction. That is, with real-time data, we
currently have no method of being able to push data to
the Visualization without an interaction to trigger this push.
Thus, we must alter our Models to enable them to push data
up to the Visualization as new data enters the pipeline.

A push can originate from either the Data Controller or
from a Model as a function call. Pushed data is sent through
all or a portion of the forward pipeline, just as data would
progress during a user interaction-triggered update. Models
need not know whether they are processing push-generated
data or interaction-generated data. Once the forward pipeline
is complete, the results are pushed to the Visualization.

How can streaming data be visualized without causing
a loss of context? After enhancing our Models to enable
pushing data to the Visualization, we must consider how
to update the Visualization without causing a loss of
context. That is, if data is going to be pushed to the
Visualization automatically rather than in response to the
analyst’s interactions, we must be careful not to alter the
Visualization so much that the analyst cannot keep track
of where existing datapoints were located before a push.
For example, in our current implementation of Cosmos, the
exact position of every node in the Visualization is based on
the other nodes. Therefore, adding or removing nodes from
the Visualization alters the entire projection. Maintaining
an analyst’s mental map of a visualization during layout
adjustments is a well-studied problem39.

How can an analyst interact with streaming data that
updates the visualization? Building on the previous question,
if the Visualization is automatically updating, then not only
is it difficult to visually track where nodes are moving, but
also it is difficult to interact with these nodes. The interaction
mechanism that solves this challenge is directly dependent
upon the solution found to the previous question.

How can 2D visual analytic prototypes be extended into
3D or immersive environments? While the richness of 2D
web visualization is growing, so too are the capabilities
for interactive 3D visualizations. Extending a 2D visual
analytics prototype into 3D requires alterations to both
the Similarity Model and the Visualization. Although the
Similarity Model for the 3D Visualization is conceptually
the same as the Similarity Model used in 2D Cosmos, the
low-dimensional coordinates returned by the 3D Similarity
Model must return 3D coordinates instead of 2D coordinates
in order to map the document nodes into 3D space.

Following this alteration to the Similarity Model, we only
need to create a new 3D Visualization that can communicate
with the rest of the pipeline. Figure 23 shows an initial

Prepared using sagej.cls



Dowling et al. 27

Figure 23. A screenshot of the 3D web visualization. The
layout of the web page is based on the layout in the original 2D
visualization. With minor changes to the base implementation of
the pipeline, we are able to graph the data points represented
as spheres in 3D.

prototype of a 3D web-based visualization built in X3DOM.
In this new Visualization, the data points are represented as
spheres instead of circles, using the radius of the sphere to
encode the relevance of each document.

What semantic interactions are enabled by 3D or
immersive environments? We can also begin exploring how
we can interact with the visualizations in 3D. Our focus
in particular lies in exploring the semantic interactions
afforded by 3D environments. How does an extra dimension
of space affect how analysts interpret and interact with
the Visualization? How do we adapt interactions in 2D
Visualizations to 3D? Are there new interactions that are
enabled through en extra dimension of space?

In the 3D prototype from Figure 23, we began to
experiment with a variety of interaction options. Instead of
double-clicking a node to populate the data fields to the
right of the graph, we chose to use right-clicking. To handle
new interactions for exploring the 3D space, there are also
buttons to view the scene in multiple angles. These different
angles include the Top, Bottom, Front, Back, Left, and Right
views. The “Reset View” button resets the view to the default
viewpoint. Apart from these, all other interactions are pulled
directly from the original 2D prototype.

Limitations
Despite the power and flexibility of our proposed
semantic interaction pipeline requirements and concrete
implementation, neither is without limitations. We briefly
address several of these limitations here.

Requirements Limitations The primary limitation of our
proposed new pipeline that enables semantic interaction lies
in the requirement of providing an inverse computation for
each forward computation. We assert this requirement as
essential for enabling semantic interaction, yet we provide
no guidance for how to determine what such an inverse
computation should be. That is, the inverse computation
can be mathematically rigorous, heuristic, probabilistic,
or even an identity function. As noted previously, the
Term Frequency Model in our Elasticsearch pipeline
implementation employs an identity function as an inverse
computation since any other inverse computation does not
make sense in our context.

Similarly, our proposed generalized visual analytics
pipeline requires Models to be composable, but we provide
limited-to-no instructions for defining the communication
between models. This is in part a result of the flexibility

requirement of the pipeline; we do not want to provide a
rigorous structure such that exploration into unusual Model
combinations and orderings cannot be explored. Indeed,
these explorations motivate potential future work directions,
such as the most computationally efficient or semantically-
appropriate ordering of Models and interactions.

Implementation Limitations One limitation of our concrete
pipeline implementation of this pipeline results from our
rapid prototyping design decision. Rather than creating
fully-featured tools, we use this pipeline to quickly and
efficiently prototype visual analytics tools to explore the
semantic interaction design space. As a result of this design
decision, many of the prototypes that we implemented in the
previous section appear visually similar and only support
a limited number of semantic interactions. However, we
argue that each of our prototypes can support additional
semantic interactions with the addition of more models
to each pipeline. Furthermore, the visual similarity of our
pipelines was intentionally designed to highlight the internal
flexibility of our prototyping system, changing the input data
and interactions with only limited changes to the code.

Conclusion
In this work, we began by examining a number of visual
analytics applications that make use of V2PI. Through
this examination, and influenced by the Sensemaking
Process described by Pirolli and Card9, we proposed three
characteristics shared by semantic interaction applications:
a series of models, looping foraging and sensemaking
interactions, and inverse interactions. These characteristics
were then formulated as three matching concrete structures
in a proposed pipeline for semantic interaction: model
composition, bidirectionality, and model inversion. From
these requirements, we proposed a new visual analytics
pipeline that enables proper representation of the complexity
involved in semantic interactions such as V2PI.

We developed a modular, bidirectional pipeline for
creating visual analytics prototypes that use semantic
interaction and V2PI to aid the Sensemaking Process. Four
key pieces make up this pipeline. A Data Controller defines
what type of data is being visualized and how it is accessed.
A series of Models transform the data into a form suitable
to be visualized, as well as interpret interactions from
the visualization. Finally, a Connector controls how the
Visualization communicates with the rest of the pipeline.
Each of these pieces can easily be replaced to quickly
prototype and experiment with different types of data,
mathematical models, semantic interaction techniques, and
visual encodings.

We demonstrated the flexibility of our pipeline imple-
mentation by developing several prototypes that exemplify
how to research each of these aspects. We discussed the
motivation behind each of the prototypes, described the new
and reused components of each pipeline, and provided a use
case for each pipeline.

By enabling rapid prototyping of such tools, researchers
will be able to quickly conduct user studies on many of
these alternative methods of semantic interaction. We intend
to continue expanding on these prototypes and conduct our
own user studies. These studies will reveal how the analyst

Prepared using sagej.cls



28 Unpublished XX(X)

perceives these different visual encodings and interactions,
which methods best support the analyst’s sensemaking
process, and how to develop better visual analytics tools
in the future. We hope that our new visual analytics
pipeline will refine the traditional pipeline to emphasize its
bidirectional nature and the role of inverse algorithms to
interpret semantic interactions.

Acknowledgments
Acknowledgments removed for blind review

Funding
This research was partially funded by General Dynamics
Missions Systems; and by the National Science Foundation
[grant IIS-1447416].

Declaration of Conflicting Interests
The authors declare that there is no conflict of interest.

References

1. Endert A. Semantic interaction for visual analytics: Toward
coupling cognition and computation. Computer Graphics and
Applications, IEEE 2014; 34(4): 8–15. DOI:10.1109/MCG.
2014.73.

2. Endert A, Han C, Maiti D et al. Observation-level interaction
with statistical models for visual analytics. In 2011 IEEE
Conference on Visual Analytics Science and Technology
(VAST). pp. 121–130. DOI:10.1109/VAST.2011.6102449.

3. Endert A, Fiaux P and North C. Semantic interaction for visual
text analytics. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’12, New York,
NY, USA: ACM. ISBN 978-1-4503-1015-4, pp. 473–482.
DOI:10.1145/2207676.2207741. URL http://doi.acm.

org/10.1145/2207676.2207741.
4. House L, Leman S and Han C. Bayesian visual analytics:

Bava. Statistical Analysis and Data Mining 2015; 8(1): 1–
13. DOI:10.1002/sam.11253. URL http://dx.doi.org/

10.1002/sam.11253.
5. Leman SC, House L, Maiti D et al. Visual to parametric

interaction (v2pi). PLoS ONE 2013; 8(3): 1–12. DOI:10.
1371/journal.pone.0050474. URL http://dx.doi.org/

10.1371%2Fjournal.pone.0050474.
6. Self JZ, Hu X, House L et al. Designing usable interactive

visual analytics tools for dimension reduction. In CHI 2016
Workshop on Human-Centered Machine Learning (HCML).
p. 7.

7. Bradel L, North C, House L et al. Multi-model semantic
interaction for text analytics. In 2014 IEEE Conference on
Visual Analytics Science and Technology (VAST). pp. 163–172.
DOI:10.1109/VAST.2014.7042492.

8. Endert A, Fiaux P and North C. Semantic interaction for
sensemaking: Inferring analytical reasoning for model steering.
IEEE Transactions on Visualization and Computer Graphics
2012; 18(12): 2879–2888. DOI:10.1109/TVCG.2012.260.

9. Pirolli P and Card S. The sensemaking process and leverage
points for analyst technology as identified through cognitive
task analysis. Proceedings of International Conference on
Intelligence Analysis 2005; 5: 2–4.

10. Bradel L, Wycoff N, House L et al. Big text visual analytics in
sensemaking. In 2015 Big Data Visual Analytics (BDVA). pp.
1–8. DOI:10.1109/BDVA.2015.7314287.

11. Wang XM, Zhang TY, Ma YX et al. A survey of
visual analytic pipelines. Journal of Computer Science
and Technology 2016; 31(4): 787–804. DOI:10.1007/
s11390-016-1663-1. URL http://dx.doi.org/10.

1007/s11390-016-1663-1.
12. Keim D, Andrienko G, Fekete JD et al. Visual

Analytics: Definition, Process, and Challenges. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-540-70956-5, 2008. pp. 154–175. DOI:10.1007/
978-3-540-70956-5 7. URL http://dx.doi.org/10.

1007/978-3-540-70956-5_7.
13. Pirolli P and Card S. Information foraging. Psychological

review 1999; 106(4): 643.
14. Russell DM, Stefik MJ, Pirolli P et al. The cost structure

of sensemaking. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems.
CHI ’93, New York, NY, USA: ACM. ISBN 0-89791-575-
5, pp. 269–276. DOI:10.1145/169059.169209. URL http:

//doi.acm.org/10.1145/169059.169209.
15. Self JZ, Vinayagam RK, Fry JT et al. Bridging the gap

between user intention and model parameters for human-in-
the-loop data analytics. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. HILDA ’16, New York,
NY, USA: ACM. ISBN 978-1-4503-4207-0, pp. 3:1–3:6. DOI:
10.1145/2939502.2939505. URL http://doi.acm.org/

10.1145/2939502.2939505.
16. Torgerson WS. Theory and methods of scaling. Oxford,

England: Wiley, 1958.
17. Kruskal JB and Wish M. Multidimensional scaling.

Quantitative Applications in the social Sciences Series,
Newbury Park: Sage Publications 1978; 11.

18. Sacha D, Zhang L, Sedlmair M et al. Visual interaction
with dimensionality reduction: A structured literature analysis.
IEEE Transactions on Visualization and Computer Graphics
2017; 23(1): 241–250. DOI:10.1109/TVCG.2016.2598495.

19. Brown ET, Liu J, Brodley CE et al. Dis-function: Learning
distance functions interactively. In 2012 IEEE Conference on
Visual Analytics Science and Technology (VAST). pp. 83–92.
DOI:10.1109/VAST.2012.6400486.

20. Paulovich F, Eler D, Poco J et al. Piecewise laplacian-based
projection for interactive data exploration and organization.
Computer Graphics Forum 2011; 30(3): 1091–1100. DOI:10.
1111/j.1467-8659.2011.01958.x. URL http://dx.doi.

org/10.1111/j.1467-8659.2011.01958.x.
21. Mamani GMH, Fatore FM, Nonato LG et al. User-driven

feature space transformation. Computer Graphics Forum 2013;
32(3pt3): 291–299. DOI:10.1111/cgf.12116. URL http:

//dx.doi.org/10.1111/cgf.12116.
22. Ruotsalo T, Peltonen J, Eugster M et al. Directing exploratory

search with interactive intent modeling. In Proceedings of
the 22nd ACM international conference on Conference on
information and knowledge management. CIKM ’13, New
York, NY, USA: ACM. ISBN 978-1-4503-2263-8, pp. 1759–
1764. DOI:10.1145/2505515.2505644. URL http://doi.

acm.org/10.1145/2505515.2505644.
23. Molchanov V and Linsen L. Interactive Design of

Multidimensional Data Projection Layout. In Elmqvist N,
Hlawitschka M and Kennedy J (eds.) EuroVis - Short Papers.

Prepared using sagej.cls

http://doi.acm.org/10.1145/2207676.2207741
http://doi.acm.org/10.1145/2207676.2207741
http://dx.doi.org/10.1002/sam.11253
http://dx.doi.org/10.1002/sam.11253
http://dx.doi.org/10.1371%2Fjournal.pone.0050474
http://dx.doi.org/10.1371%2Fjournal.pone.0050474
http://dx.doi.org/10.1007/s11390-016-1663-1
http://dx.doi.org/10.1007/s11390-016-1663-1
http://dx.doi.org/10.1007/978-3-540-70956-5_7
http://dx.doi.org/10.1007/978-3-540-70956-5_7
http://doi.acm.org/10.1145/169059.169209
http://doi.acm.org/10.1145/169059.169209
http://doi.acm.org/10.1145/2939502.2939505
http://doi.acm.org/10.1145/2939502.2939505
http://dx.doi.org/10.1111/j.1467-8659.2011.01958.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01958.x
http://dx.doi.org/10.1111/cgf.12116
http://dx.doi.org/10.1111/cgf.12116
http://doi.acm.org/10.1145/2505515.2505644
http://doi.acm.org/10.1145/2505515.2505644


Dowling et al. 29

The Eurographics Association. ISBN 978-3-905674-69-9.
DOI:10.2312/eurovisshort.20141152.

24. Node.js. https://nodejs.org, 2016. Accessed: 2015-
10-24.

25. Socket.io. https://socket.io/, 2017. Accessed: 2017-
05-16.

26. zerorpc. http://zerorpc.io, 2016. Accessed: 2016-02-
09.

27. Wenskovitch J and North C. Observation-level interaction
with clustering and dimension reduction algorithms. In
Proceedings of the 2nd Workshop on Human-In-the-Loop
Data Analytics. HILDA’17, New York, NY, USA: ACM.
ISBN 978-1-4503-5029-7, pp. 14:1–14:6. DOI:10.1145/
3077257.3077259. URL http://doi.acm.org/10.

1145/3077257.3077259.
28. D3. https://d3js.org/, 2016. Accessed: 2015-11-05.
29. Behr J, Eschler P, Jung Y et al. X3dom: A dom-based

html5/x3d integration model. In Proceedings of the 14th
International Conference on 3D Web Technology. Web3D ’09,
New York, NY, USA: ACM. ISBN 978-1-60558-432-4, pp.
127–135. DOI:10.1145/1559764.1559784. URL http://

doi.acm.org/10.1145/1559764.1559784.
30. Websockets. https://www.w3.org/TR/

websockets/, 2016. Accessed: 2015-11-05.
31. Hendler J. Web 3.0 emerging. Computer 2009; 42(1): 111–

113. DOI:10.1109/MC.2009.30.
32. Taivalsaari A and Mikkonen T. The web as an

application platform: The saga continues. In 2011 37th
EUROMICRO Conference on Software Engineering and
Advanced Applications. pp. 170–174. DOI:10.1109/SEAA.
2011.35.

33. Polys NF, Knapp B, Bock M et al. Fusality: An open
framework for cross-platform mirror world installations. In
Proceedings of the 20th International Conference on 3D
Web Technology. Web3D ’15, New York, NY, USA: ACM.
ISBN 978-1-4503-3647-5, pp. 171–179. DOI:10.1145/
2775292.2775317. URL http://doi.acm.org/10.

1145/2775292.2775317.
34. Zeromq. http://zeromq.org, 2016. Accessed: 2016-02-

09.
35. Lampert CH, Nickisch H, Harmeling S et al. Animals with

attributes: A dataset for attribute based classification, 2009.
36. Gormley C and Tong Z. Elasticsearch: The Definitive Guide.

1st ed. O’Reilly Media, Inc., 2015. ISBN 1449358543,
9781449358549.

37. Cheng S and Mueller K. The data context map: Fusing data
and attributes into a unified display. IEEE Transactions on
Visualization and Computer Graphics 2016; 22(1): 121–130.
DOI:10.1109/TVCG.2015.2467552.

38. Thurlow R. Rpc: Remote procedure call protocol specification
version 2, 2009.

39. Misue K, Eades P, Lai W et al. Layout adjustment and
the mental map. Journal of Visual Languages & Computing
1995; 6(2): 183 – 210. DOI:http://dx.doi.org/10.1006/jvlc.
1995.1010. URL http://www.sciencedirect.com/

science/article/pii/S1045926X85710105.

Prepared using sagej.cls

https://nodejs.org
https://socket.io/
http://zerorpc.io
http://doi.acm.org/10.1145/3077257.3077259
http://doi.acm.org/10.1145/3077257.3077259
https://d3js.org/
http://doi.acm.org/10.1145/1559764.1559784
http://doi.acm.org/10.1145/1559764.1559784
https://www.w3.org/TR/websockets/
https://www.w3.org/TR/websockets/
http://doi.acm.org/10.1145/2775292.2775317
http://doi.acm.org/10.1145/2775292.2775317
http://zeromq.org
http://www.sciencedirect.com/science/article/pii/S1045926X85710105
http://www.sciencedirect.com/science/article/pii/S1045926X85710105

	Introduction
	The Design Space of Semantic Interaction Pipelines
	Sensemaking
	Visual to Parametric Interaction (V2PI)
	StarSPIRE
	Andromeda
	Additional Examples of Semantic Interaction
	Characteristics of Semantic Interaction Tools

	Pipeline Requirements
	Refining the Definition of Semantic Interaction with a New Pipeline
	Using the Pipeline to Model Existing Semantic Interaction Systems

	Concrete Pipeline Implementation
	Implementation Specification
	Data Controller
	Models
	Connector
	Visualization
	Web Framework
	Communication within the Pipeline
	Adding a New Feature to an Existing Pipeline
	Visualization Variations
	Model Modifications
	Data Controller Differences


	Pipeline Applications
	Web Andromeda
	Motivation
	Pipeline
	Use Case

	Cosmos
	Motivation
	Pipeline
	Use Case

	Elasticsearch
	Motivation
	Pipeline
	Use Case

	Cosmos Radar
	Motivation
	Pipeline
	Use Case

	Cosmos Composite
	Motivation
	Pipeline
	Use Case


	Discussion
	Rapid Prototyping to Explore Design Trade-Offs
	Pipeline Evaluation
	Answering Research Questions on Visual Analytics with Semantic Interactions
	Limitations
	Requirements Limitations
	Implementation Limitations


	Conclusion
	Acknowledgments
	Funding
	Declaration of Conflicting Interests

