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Abstract

The cognitive process of sensemaking refers to acquiring,
representing, and organizing information in order to under-
stand that information. The organization component nat-
urally supports the introduction of clusters, an important
enabler for grouping objects such that similar objects are
placed in the same cluster. This paper explores the benefits
and limitations of introducing clusters into systems for ex-
ploratory data analysis. We consider these issues for tasks
that the system may support, methods for visualizing and
interacting with data in the system, and algorithms that are
encoded into the system. We discuss the use of clusters in
these systems with respect to cognition and computation,
and we call out future areas of research in this area.
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Introduction

Sensemaking refers to a cognitive process for acquiring,
representing, and organizing information in order to ad-
dress a task, solve a problem, or make a decision [31, 22].
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Figure 1: In the Sensemaking
Process, intelligence analysts
transform raw information into
reportable results through
organizational stages that filter,
extract, and structure pieces of
data. There are several natural
leverage points for clustering in this
process.

A number of models with varying levels of information gran-
ularity have been proposed for approaching and solving
sensemaking problems [30, 31, 29]. These models rep-
resent strategies for addressing a variety of sensemaking
problems. For example, Pirolli and Card’s Sensemaking
Process [30] is designed for sensemaking problems faced
by intelligence analysts. Despite the specific challenge
addressed by each of these models, they all highlight the
need to organize the data. For example, an intelligence an-
alyst may work to understand the actors and motivations by
grouping documents by location, by person, or by subplot.

A fundamental behavior in sensemaking is the act of group-
ing similar observations' in order to understand their prop-
erties, effectively forming a cluster. This organizational
strategy is true both in paper-based sensemaking tasks [14,
42] and in tasks performed on electronic displays [4, 15].
Clusters therefore have a natural connection to sensemak-
ing. Clusters can also help to reduce clutter in a workspace,
compressing similar observations into a group that re-
quires less physical or screen space [27]. Simplifying the
workspace leads to further cognitive benefits, as humans
struggle to think about more than a small number of obser-
vations or dimensions at one time [33]. Thus, using groups
of items to perform analysis tasks can lead to improved
memory and recall by providing a simplified method of un-
derstanding the data [12].

However, clusters are inherently subjective structures, mak-
ing the identification of clusters by humans a challenging
process that is often problem-specific. Previous research

"In this work, we employ the convention of referring to the features
(columns) of a dataset as dimensions, individual data items (rows) as ob-
servations, and the features of those observations (cells) as attributes.
Node is used to indicate the glyph representing an observation in a visual-
ization.

has shown that humans use a variety of organizational prin-
ciples to cluster information [13], even when addressing the
same task [4]. In order to identify clusters computationally,
hundreds of clustering algorithms have been implemented,
each with strengths and weaknesses. As a result, there

is no universally optimal clustering algorithm. Instead, the
best clustering algorithm to solve a problem is often deter-
mined experimentally [17].

Our contribution in this work is an overview of the cogni-
tive and computational benefits and limitations of clustering
for sensemaking in exploratory data analysis. Rather than
providing a complete survey of this field, we discuss the
features of several representative visualization techniques
designed to explore datasets. We begin with a discussion of
common sensemaking tasks that can be supported by clus-
ters in these techniques. Given these tasks, we describe
visualizations and interactions that can be implemented on
those clusters, and conclude with a discussion of clustering
algorithms that support these visualizations and interac-
tions for sensemaking. In these sections, we discuss both
the cognitive benefits and limitations of clustering, as well
as the computational benefits and limitations of clustering.
We also raise a number of research questions that can be
addressed as exploration into this design space continues.

Tasks

In this section, we discuss the different types of tasks that
clustering supports using the list of clustering tasks de-
fined by Wenskovitch et al. [40], and how they connect to
the low-level analysis tasks by Amar et al. [3]. These tasks
directly support different steps in the Sensemaking Process
by Pirolli and Card [30], and therefore reflect more cognitive
benefits of clustering rather than computational. However,
a benefit that is reflected both cognitively and computation-
ally is scalability. By clustering observations, an analyst can



Task Research Questions:

1. Are there any tasks

that are inherently hin-
dered by the inclusion
of clustering, regardless
of implementation or
visualization?

. Are there any tasks that
are supported exclusively
by clustering, that cannot
be addressed by any
other algorithm, visualiza-
tion, or interaction?

perform sensemaking tasks with bigger datasets while still
retaining the ability to interpret the visualization.

To begin our evaluation of the exploratory data analysis
tasks supported by clustering, we first turn to the list of
representative clustering tasks listed by Wenskovitch et

al. [40]. We use these to analyze which tasks are most or
least commonly supported amongst exploratory techniques
that leverage clustering of high-dimensional data. For ex-
ample, identifying clusters, seeing their relative positions,
and determining cluster structure are clearly the most com-
mon tasks supported [32, 23, 2, 18, 11, 41, 21, 8, 25], as
they should be for tools such as these which are designed
to provide insights into clusters of a dataset. In comparison,
support for tasks to explore the data are more varied, with
changing cluster membership of observations being the
most common task of this type supported [23, 11, 41]. The
next most commonly supported task in this category is cre-
ating or removing clusters [23, 11]. Although direct support
for repositioning clusters in the projection space isn’'t com-
mon [11], this is more often indirectly supported through
other tasks, such as manipulating a parameter of the clus-
tering algorithm [23, 41]. Understanding the data via the
tasks of labeling clusters [18, 28, 21, 8] is a less commonly
supported task.

In comparing the clustering tasks defined by Wenskovitch
et al. [40] with the low-level analysis tasks defined by Amar
et al. [3], we note that these tasks overlap. Of course, there
is the obvious, broad overlap in that one of Amar’s analy-
sis tasks is clustering itself. For exploratory data analysis
techniques, clustering also typically implies computing de-
rived values for each cluster (e.g., most salient dimension
or topic within each cluster) [23, 10, 21, 8]. Given that find-
ing a high or low extrema attribute within a given cluster is
directly supported by these computed derived values, clus-

tering techniques that compute derived values generally
support this analysis task as well. Similarly, techniques that
show cluster structure directly support characterizing the
distribution within that structure [32, 23, 2, 18, 11, 41, 21,
8, 25]. This information can help to uncover correlations
between clusters or observations as well as to find anoma-
lies. Other tasks such as retrieving values are commonly
supported [23, 2, 10, 41, 8], which may additionally help de-
termine ranges [10]. Filtering [10] and sorting [23, 10, 28]
are occasionally supported analysis tasks in exploratory
data technique that utilize clustering.

Beyond these general categories of tasks that are sup-
ported by clustering, some exploratory data analysis tech-
nigues are designed to support specific tasks. Many of
these techniques highlight support for refining the clus-
tering results themselves [23, 40, 21, 8], which is a task
that is supported mathematically through a combination
of visualization and clustering techniques. As another ex-
ample, iVisClustering [23], Termite [10], ClustVis [28], and
UTOPIAN [8] all afford tasks such as understanding which
dimensions or terms best describe a given cluster. This
task is dimension-centric, as opposed to understanding
cluster structure, which is an observation-centric task. Ad-
ditionally, the technique described by Wenskovitch and
North [41] supports the task of determining which dimen-
sions describe the differences between the clusters at a
global level.

All of the tasks supported by these exploratory data analy-
sis techniques demonstrate how clusters can be leveraged
to improve sensemaking. That is, these tasks directly sup-
port sensemaking tasks. For example, in Pirolli and Card’s
Sensemaking Process, clustering in general supports or-
ganizing of tasks (which helps the analyst in the “Evidence
File” step) or skimming of the data (proceeding from the



Visualization Research Ques-
tions:

1. If the number of clusters
in a dataset can vary
widely, how can a visu-
alization be designed to
naturally transition from
one cluster membership
representation to an-
other when the original
encoding is no longer
effective?

2. What preattentive fea-
tures (aside from color
and position) can be
used to visualize clus-
ters efficiently in future
applications?

3. After clustering has been
introduced, is there a limit
to the size of a dataset
that can be visualized?

“Shoebox” step to the “Evidence File” step). Similarly, clus-
tering provides an overview of the data and imposes struc-
ture, which helps the analyst proceed from the “Evidence
File” step to the “Schema” step. Filtering and sorting may
assist with these two steps of the sensemaking loop in
addition to enabling searching for specific types of data
(proceeding from the “External Data Sources” step to the
“Shoebox” step). Thus, any additional task supported by
an exploratory data analysis technique that leverages clus-
tering, including those described previously, only further
enhances its ability to support sensemaking.

Through this section, we described the cognitive benefits of
clustering for sensemaking, but an open question remains:
Are there any tasks that are inherently hindered by the
inclusion of clustering, regardless of implementation or
visualization? It is certainly true that specific implementa-
tions of clustering visualizations can prevent tasks such as
identifying extrema and determining range from being com-
pleted, but other visualizations can still support these tasks.
Are there any cases where a task is universally harmed by
the inclusion of a clustering algorithm? In a similar vein,
are there any tasks that are supported exclusively by
clustering, that cannot be addressed by any other al-
gorithm, visualization, or interaction? In other words, is
clustering required to accomplish some tasks, or is there
always another way to accomplish the task?

Visualization

The variety of methods for visualizing clusters is nearly as
broad as the variety of clustering algorithms. Among others,
these techniques include encoding cluster membership in
color, in position, and in distinctly-separated groups. Such
visual encodings assist with tasks such as identifying clus-
ters. In cases where position is used, tasks such as seeing
relative positions of clusters, determining cluster structure,

finding correlations, and finding anomalies can also be sup-
ported. Here, we discuss several example systems that
encode cluster membership using these three techniques.

Using color to indicate cluster membership has been demon-
strated in a number of tools and prototypes. Saket et al. [32]
demonstrated three different methodologies for using color
in this manner: coloring nodes, coloring nodes in node-link
diagrams, and coloring regions of node-link diagrams. The
iVisClustering tool [23] demonstrates this first methodology
of using color. Linesets [2] uses colored nodes in node-

link diagrams as well as colored links when connecting
nodes with the same cluster membership. Lastly, coloring
regions of node-link diagrams can be found in GMap [18],
which renders a geographic-like map for clusters. Bubble
Sets [11] shows an interesting mixture of the Linesets and
GMap visualizations by drawing isocontours around nodes
and links to form clusters.

Leveraging color encodings to indicate cluster member-
ship affords preattentive recognition of these clusters [20].
However, there are also cognitive limits to using color to en-
code cluster membership. For example, the human eye has
trouble distinguishing between more than 10 distinct colors
in a visualization [34]. As such, color encodings are bet-

ter suited for visualizations with a small number of clusters.
A natural follow-up research question is if the number of
clusters in a dataset can vary widely, how can a visu-
alization be designed to naturally transition from one
cluster membership representation to another when the
original encoding is no longer effective?

Position can also be used to encode cluster information us-
ing a variety of methods. The Termite system [10] visualizes
the relationship between words and topics in a Term-Topic
Matrix, a 2D matrix indexed by computed topics on one axis
and words on the other. When sorted using their seriation
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Figure 2: Saket et al. evaluate
three options for encoding cluster
membership, relating each to the
effectiveness of performing node-
and group-based tasks.
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Figure 3: Wenskovitch and North
use the k-means algorithm on a
dimension-reduced projection to
cluster observations.

technique, cluster of terms appear as vertical stripes of
larger nodes across the words in the matrix. A related tech-
nique is seen in the heatmap view of ClustVis [28], which
displays dendrograms along the heatmap axes to display
the hierarchical cluster structure. The rows and columns of
the heatmap are thus positioned based on the ordering of
the clustering tree. Cognitively, position is not a preatten-
tive feature, though it can be used to complement closure
(discussed next). However, node size is a preattentive fea-
ture [20], which is also demonstrated by Termite [10].

A third method for visualizing cluster information is via dis-
tinct separation boundaries (i.e., closure), which is another
preattentive feature that can be exploited [20] for fast cog-
nitive recognition of clusters. For example, Wenskovitch
and North [41] work to combine dimension reduction and
clustering algorithms in the same projection space. In this
projection, cluster memberships are encoded by drawing
convex hulls around each cluster (see Figure 3). Because
k-means is limited to finding convex clusters, a convex hull
is a natural visual representation for the output of this algo-
rithm. The scatterplot view from ClustVis [28] contains clear
boundaries between clusters by drawing ellipses encom-
passing the observations categorized within each cluster,
and the space-filling group encoding studied by Saket et
al. [32] has similar, clearly-delineated regions.

A visualization is not limited to choosing only one tech-
nique; dual-encoding [19] is a frequently used technique

to reinforce cluster membership. For example, both Topi-
cLens [21] and UTOPIAN [8] use position (via modified ver-
sions of t-SNE [25]) and color to encode clusters of docu-
ments. Since dual-encoding aids in visualizing clusters, an-
other open research questions is, What other preattentive
features can be used to visualize clusters efficiently in
future applications?

In addition to cognitive benefits, there are computational
benefits to clustering in visualizations as well, particularly
as the datasets grow large. For example, consider a visu-
alization system that is given millions of observations to vi-
sualize. Visualizing all observations will be computationally
slow and cognitively overwhelming. Clustering observa-
tions and only visualizing the clusters at some level in the
hierarchy reduces the workload on both the computer and
the visual system of the analyst. An implementation of this
strategy can be found in ASK-GraphView [1]. Given that
clustering data into a hierarchy has been shown to benefit
scalability, an open research question is: After cluster-
ing has been introduced, is there a limit to the size of a
dataset that can be visualized (assuming that hardware
can support that dataset)?

However, a major trade-off in only visualizing the clusters is
that tasks such as determining cluster structure [40], deter-
mining range, or characterizing distribution [3] are no longer
readily supported through the visualization. Thus, creating
such a visualization imposes a cognitive limitation for the
analyst in addition to the aforementioned cognitive benefit.

Another limitation is that visualizations must have a default
initial display of the observations and clusters. Presenting
an analyst with this initial projection could produce a cogni-
tive limitation by biasing their exploration towards patterns
or structure that they notice. This could lead to a further
difficulty if the initial projection is misleading by creating
cluster memberships that bias the analyst’s investigation
towards a similar solution instead of enabling any solution.
Some techniques for exploratory data analysis recognize
these drawbacks, attempting to compensate for them by
using randomized initial displays or by providing interaction
methods to learn how to cluster the entire dataset based on
a few user-driven observation classifications [41].



Interaction Research Ques-
tions:

1. How can systems for
exploratory data analysis
learn to interpret analyst
interactions as updates to
clustering parameters?

2. What types of interac-
tions do analysts natu-
rally want to perform on
clusters?

Interaction

Simply presenting an analyst with a visualization may be
sufficient for the analyst to perform tasks such as identify
clusters, seeing relative positions of clusters, determin-

ing cluster structure, find anomalies, or find correlations.
However, Malone shows that categorizing information is
an important factor in organization to improve the cognition
of data [26]. Additionally, sensemaking naturally requires
exploring the data beyond the initial projection to draw fur-
ther insight from updated visualizations. For example, tasks
such as retrieving a value or computing a derived value is
typically not information displayed for every cluster when a
dataset is first visualized. Other tasks such as reposition-
ing clusters, changing cluster membership, and creating or
moving clusters are not supported at all. Thus, interaction
is a necessary component of exploring clusters during data
analysis. Although a number of taxonomies and studies
have been generated for interacting with high-dimensional
data [7, 38, 44], our focus in this sections is primarily on
interaction strategies and mechanisms found in the visual-
izations that we discussed in the previous section.

To begin, most previously mentioned exploratory data anal-
ysis techniques afford an interaction to provide the analyst
with more information about an observation or about a clus-
ter in order to better understand the layout and grouping of
the observations. These interactions are almost universally
details-on-demand via mouseover [23, 41, 21, 8], though
there are other methods that support the acquisition of con-
textual information. For example, Termite [10] allows an-
alysts to click on a term to view its distribution across the
entire dataset, as well as to click on a topic to view its rep-
resentative documents. TopicLens [21] provides a resizable
mouseover lens that dynamically divides the overlaid subset
of observations within the lens into subclusters, enabling an
analyst to see finer-grained structure among the observa-

tions. Analysts are also able to filter contextual information
to only the most salient observations [10].

Analysts can also supply contextual information for their
own use as they explore the data, such as labeling clus-
ters [23]. Contextual information is not limited to the labels
and contents of observations and clusters. Some systems
supply cluster similarity information [23], as well as sort-
ing [23, 10, 28] and coloring [28] mechanisms to support
other tasks such as characterizing distributions. No change
is made to clustering assignments or observation layout
with any of these interactions; instead, these interactions
are simply providing the analyst with contextual information
about the observations and clusters.

Many systems also provide analysts with standard GUI wid-
gets such as dropdown menus, slider bars, and checkboxes
to alter layout and clustering parameters in the visualiza-
tion. In ClustVis [28], these parametric interactions allow

an analyst to alter the clustering method, linkage method,
and the sorting order of the rows and columns in the matrix
independently. ClustVis also allows an analyst to change
which principal components are used for the axes in its
scatterplot view. UTOPIAN [8] uses these controls in a side-
bar to enable an analyst to modify both the dimension re-
duction and clustering algorithm parameters, as well as in

a popup to alter the term importances that define the clus-
ters. iVisClustering [23] also provides parameter sliders to
manipulate the cluster algorithm parameters, allowing the
analyst to directly adjust cluster assignments. These inter-
actions afford cognitive benefits by enabling tasks such as
changing cluster membership of observations. However,
these benefits rely on the analyst’s ability to understand the
clustering algorithm used and how the interactions affect
the projection of the data. For example, some algorithms
like t-SNE [25], are difficult for novice analysts to under-



stand due to the intricacies of the algorithm and its parame-
ters [39]. Thus, only analysts who understand the clustering
algorithm receive these cognitive benefits. Because effi-
cient and correct use of a clustering algorithm also depends
on understand its behavior, these analysts miss out compu-
tational efficiency and benefits as well.

Some exploratory data analysis techniques also give ana-
lysts the ability to directly manipulate the observations and
clusters, thereby affording additional tasks. For example,
observations can be selected and dragged to reposition-
ing them within clusters or to relocate them to other clus-
ters [11, 41]. Clusters can also be selected and moved [11],
joined and split [8, 23], created [8, 41, 23], removed [2, 23],
and increased in prominence or importance [2]. A cognitive
advantage of these interactions is that algorithms can be
created which will re-cluster all data based on how the an-
alyst changes cluster memberships. Effectively, the system
will tune clustering parameters on behalf of the analyst.

All of these interaction techniques are centered around one
research question: How can systems for exploratory
data analysis learn to interpret user interactions as up-
dates to clustering parameters? In each of the interac-
tions described, the analyst directly manipulates either the
visualization (e.qg., labeling clusters) or some parameter for
the clustering algorithm (e.g., manipulating a slider). How-
ever, not all of the aforementioned exploratory data analysis
techniques use these interactions to alter cluster parame-
ters; only certain interactions, including the aforementioned
repositioning of observations within the visualization, are
used in this manner, which provide intuitive yet powerful
methods for exploring the data. Thus, a natural supporting
research question is, What types of interactions do ana-
lysts naturally want to perform on clusters? The answer
to this question indicates what interactions should be af-

forded and, based on the analyst’s expectations are, what
the results of the interactions should be (i.e., how the inter-
action should be interpreted).

Algorithms

Behind each of these visualizations and interactions lies
one or more clustering algorithms to organize and structure
the data, both initially as well as based on user interactions.
Other works have surveyed the design space of clustering
algorithms [9, 43]. We focus on a few representative ex-
amples, both common clustering algorithms and those that
were used in tools that we discussed in previous sections.

Perhaps the most commonly-used clustering algorithm is
k-means, which partitions a dataset into k clusters accord-
ing to a distance between each data item and the nearest
cluster centroid. Cognitively, this implies that k-means will
identify clusters based on nearest neighbors via some dis-
tance measure and that clusters will consist of very similar
observations. Finding an optimal solution via k-means is
an NP-hard problem, resulting in the creation of algorithms
that yield heuristic clustering solutions. The running time of
Lloyd’s algorithm, for example, is O(nkdi) for a dataset with
n items of d dimensions each, & clusters, and ¢ iterations
before convergence [24]. Thus, this algorithm is linear in
terms of both the size of the dataset and the intended num-
ber of clusters. Though efficient, the fundamental limitation
is that it can only detect convex clusters, and often will con-
verge to a non-optimal solution when noise is present.

Density-based clustering algorithms such as DBSCAN [16]
and OPTICS [5] overcome this issue by seeking out clus-
ters in areas that have higher density. By doing so, sparse
regions clearly identify and separate clusters, and the oc-
casional observations between are treated as noise. Cog-
nitively, these algorithms locate dense regions of obser-



Algorithm Research Ques-
tions:

1. Which clustering algo-
rithms should be chosen
to support the desired
interaction and visualiza-
tion techniques?

2. How do we make the pa-
rameters of the clustering
algorithms understand-
able to the analyst?

3. How should we design
an interface to enable un-
derstandable parameter
tuning?

4. How should clustering
algorithms learn from
complex interactions?

vations, leading to an interpretation that the number of
observations in a region is more important than individ-

ual similarity relationships located by k-means. Because
density-based algorithms can learn the number of clusters
dynamically, no k parameter for number of clusters sought
is necessary; however, these algorithms require a distance
threshold to determine the location of the cluster boundary.

Dirichlet process clustering [36, 35] has gained popularity
in the recent past with statisticians. Rather than return-
ing a hard clustering assignment, this is a probabilistic
method that computes a probability that an observation
under consideration belongs to each cluster. Cognitively,
this algorithm replaces the hard clustering assignment of
the previously-discussed algorithms. Like density-based
clustering, Dirichlet Process clustering learns the number
of clusters dynamically, but it does not require a distance
threshold. It does, however, require the specification of a
probability distribution for the observations in each cluster.
Despite these computational advantages, the runtime of
this algorithm scales poorly as the number of observations
increases, a clear computational challenge.

Dimension reduction algorithms are used for embedding
high-dimensional data into a 2D (or occasionally 3D) pro-
jection such that similarities in the structure of the high-
dimensional data such as clusters and outliers are pre-
served in the low-dimensional projection. Cognitively, this
aids an analyst in thinking in a more familiar spatial layout
than an incomprehensible n-dimensional space, but the
projection could result in the introduction of false neighbors
(which could propagate into false clustering assignments)
as information is naturally lost when reducing from n dimen-
sions to two dimensions. One such dimension reduction
algorithm is t-distributed Stochastic Neighbor Embedding
(t-SNE) [25], which constructs probability distributions in

the high-dimensional and low-dimensional spaces and min-
imizes distances between them. Both TopicLens [21] and
UTOPIAN [8] use a modified version of the original t-SNE
algorithm to project their clusters into 2D visualizations.

Latent Dirichlet Allocation (LDA) [6] is a topic modeling al-
gorithm, an area of research that works to discover abstract
“topics” that are present in a collection of documents based
on keywords contained in those documents. Each topic

can therefore be thought of as a cluster, which contains
documents most relevant to that topic. The iVisClustering
tool [23] uses LDA for topic modeling, and hence for docu-
ment clustering.

One computational advantage of clustering is the improve-
ment it provides on the runtime of other algorithms. For
example, many dimension reduction algorithms have run-
times of O(n?) or even O(n?) for n observations to project.
Grouping observations into clusters and only visualizing the
clusters can easily greatly reduce the runtime of the dimen-
sion reduction algorithms. For example, grouping these

n observations into clusters with an average size of 10
presents a ~100x performance boost for O(n?) dimension
reduction algorithms or ~1000x for O(n?3) algorithms.

A major clustering limitation is that many algorithms rely

on one or more input parameters, such as the set number
of clusters in k-means, the distance threshold in density-
based clustering, and the probability distribution in Dirichlet
process clustering. This means that, at the very least, the
initial projection must choose a default for these parame-
ters. Attempting to dynamically determine these parameters
is possible but also computationally expensive, which will
cause delays in displaying the visualization. Using k-means
again as an example, a frequently used technique is to run
the algorithm repeatedly with various values of k, and then
selecting the optimal value based on diminishing returns in



the reduction of variance as k increases (otherwise known
as the “elbow method” [37]). Of course, running a clustering
algorithm m times to learn a parameter rather than once
increases the computational complexity by a factor of m.

In these automated methods to computationally identify
these parameters, the analyst’s knowledge is not used. This
can lead to a cognitive drawback in which the analyst may
disagree with initial clustering of the data. This issue can be
alleviated by allowing analysts to change cluster member-
ship of observations. Taking this a step further, the system
can capture such interactions and learn how to cluster other
observations in the dataset, reducing the number of interac-
tions needed to produce a desirable clustering of the data.
As discussed previously, such interactivity can be accom-
plished at an algorithmic level by having the system tune
clustering parameters on behalf of the analyst.

In addition to these trade-offs of cognitive and computa-
tional effects, these algorithms are used to support certain
types of interactions, such as directly manipulating cluster-
ing algorithm parameters (e.g., the sliders in UTOPIAN [8]),
or visualizations, such as ensuring clusters are represented
by non-overlapping convex hulls (e.g., the visualization
technique by Wenskovitch and North. [41]. For example,
t-SNE clusters observations, but may result in all observa-
tions being pulled into clusters depending on the parame-
ter values used. This may result in a visualization that ob-
scures some characteristics of the data such as outliers,
thereby hindering tasks such as seeing the relative posi-
tions of clusters or finding anomalies. Thus, the chosen
clustering algorithm must be compatible with the desired
visualization and interaction techniques to support the cho-
sen tasks. This leads to another research question: Which
clustering algorithm should be chosen to support the
desired interaction and visualization techniques?

Depending on the desired interaction and visualization tech-
niques, there may be many follow-up research questions.
For example, in a visualization in which the analyst can di-
rectly manipulate clustering parameters, how can we make
the parameters of the clustering algorithm understand-
able to the analyst? In other words, how can the param-
eters of the clustering algorithm be represented in such a
way that the analyst understands how each parameter influ-
ences the clustering algorithm? While this may be a simple
question to answer when considering expert analysts, it is
more complicated for novice analysts who may know lit-

tle about the chosen clustering algorithm. Similarly, how
should we design a visualization to enable understand-
able parameter tuning? The analyst may want to perform
a specific interaction (e.g., manipulate a slider) to change

a parameter value. This natural interaction method should
be supported by the visualization and result in appropriate
changes to the clustering algorithm parameters.

For more complex interactions, the system should translate
the interaction to manipulations of model parameters on
behalf of the analyst. Thus, an open research question is,
how should clustering algorithms learn from complex
interactions? When the analyst changes the cluster as-
signment of an observation, what can the system infer from
this interaction? What parameters of the algorithm should
be manipulated to reflect this change across all clusters?
How should these parameters be manipulated?

Conclusion

Through our discussion of these techniques, we described
many of the cognitive and computational benefits of using
clustering for sensemaking. Clustering and sensemaking is
a natural pairing, as clustering provides the ability to group
observations and interact with those groups: a necessity for
the organizational component of sensemaking.



To briefly summarize, we saw cognitive benefits of clus-
tering amongst tasks, visualization methods, interaction
methods, and algorithms. These benefits include scalability,
ease of understanding patterns in the data, updating the vi-
sualization to reflect user intent, and communicating the de-
tails of the clustering to the analyst. We also saw computa-
tional benefits of clustering for tasks, visualization methods,
and algorithms. These benefits include efficient rendering,
less cluttered visualizations, and improved interactivity. Ad-
ditionally, we noted some limitations of clustering, including
the need for parameter tuning and understandability and
potentially misleading default clustering assignments. Fi-
nally, we proposed a number of future research questions in
each section, ranging from alternative methods of handling
clustering tasks to selecting a clustering algorithm.

We note one strong limitation of the analysis presented in
this work. We have not fully surveyed or taxonomized this

space to provide an exhaustive list of benefits and draw-
backs of clustering, nor have we cited an exhaustive list of
papers that use clustering for sensemaking. Instead, we
chose representative examples of clustering used in ex-
ploratory data analysis techniques combined with research
that we have undertaken. This may have biased some of
our statements and analysis throughout the preceding sec-
tions towards what we judged to be most important cogni-
tive and computational benefits of clustering in exploratory
data analysis. In the future, this survey of benefits and lim-
itations in exploratory data analysis techniques may be ex-
panded into a more thorough survey.
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