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ABSTRACT 

In an era with exploding amounts of data, educating students 
about data analysis techniques becomes increasingly important. 
However, many students find it challenging to understand 
complex analytical methods and in turn have an unenthusiastic 
attitude about learning from them. This paper describes Be the 
Data, an immersive analytical approach for teaching abstract data 
analytical concepts, such as dimension reduction. In particular, we 
present the design and development of a novel system to engage 
students in exploring alternative 2D projections of high 
dimensional data. In our system, each student embodies a virtual 
data point visualized in a collocated physical space. The 
coordinates of students on the floor represent coordinates on a 2D 
projection of the high-dimensional data they embody. Students 
can explore alternative projections by physically moving 
themselves, and hence the corresponding data points, in the space. 
Students receive visual feedback about the data variables that 
would produce their projection. Therefore, students can pose 
hypotheses about the data and further explore and understand it. 
Our goal is to encourage and foster students’ interest in data 
analysis by engaging them in an immersive experience.  

Keywords: immersive analytics, dimension reduction, multi-
dimensional scaling. 

Index Terms: H.5.2 [Information Interfaces and Presentation 
(e.g., HCI)]: User Interfaces 

1 INTRODUCTION 

Big Data. Big Data. Big Data. In the news, online, and at work, 
we are constantly hearing the buzz phrase, “Big Data”. With the 
advances in technology, the amount of analyzable data is growing 
rapidly at low cost. Within these large datasets is information that 
we hope to derive scientific discoveries. However, as noted in the 
book Illuminating the Path [1], datasets are just tables of numbers 
without humans to discover, process, reflect, and communicate 
information in the data. 

There is a clear need to promote education in knowledge 
discovery from big data. In practice, learning from data requires 
comprehensive critical thinking skills which (1) extend beyond 
the application of quantitative statistical or computational 
methods and (2) include qualitative forms of thought, such as 
formalizing potential biases, communicating personal judgment, 
exploring multiple solutions, assimilating new information with 
old, and assessing implications of discoveries. Unfortunately, 
current approaches in teaching data analytics focus primarily on 
its quantitative aspects to train students to master quantitative 

theory and methods. Students without strong math prerequisites 
may be excluded from the analytical classes. Even worse, the 
complexity of quantitative aspects scare students away from 
learning. Students normally have an unenthusiastic attitude 
towards learning data analytics if they do not have a strong 
mathematical background [2].   

Immersive data exploration has the potential to motivate and 
reinforce quantitative and qualitative aspects of data analyses. To 
promote STEM outreach and attract students to learn data 
analytical skills, we designed and developed a novel combination 
of physical, virtual, and social worlds for immersive data 
exploration. Specifically, we propose a novel concept, Be the 
Data, which means an individual person embodies a unique 
virtual data point in a high-dimensional data set. As a proof of 
concept, we developed a system that immerses students as data 
points in a physical space (Figure 1). In our system, students enter 
a physical space to become individual data points, and the room 
becomes the low-dimensional projection. For example, if we 
consider a high-dimensional dataset about animals (Table 1), each 
student becomes an animal data point. Their positions on the 
ground represent the two-dimensional projection of the high-
dimensional data. That is to say, coordinates in the room are 
coordinates in a two-dimensional plane to which the high-
dimensional data are projected.  

Be the Data is developed to promote interactive data 
exploration under an immersive and collaborative learning 
context. In a collocated physical space, students are able to 
explore alternative projections by physically moving themselves, 
and hence their data points, in the space. Therefore, they can 
collaboratively experiment on the various structures of data by 
rearranging themselves to discover hidden relationships in the 
data. This environment facilitates active participation in exploring 
data, critical thinking about alternative projections, and multiple 
perspectives on the same data. It helps foster both the quantitative 
and qualitative aspects of data analysis.  
 
Table 1: A segment of the animal dataset (20 animals X 31 
dimensions). The table only shows 4 animals and 5 dimensions. 
 
Name Flys Hands Lean Smelly Speed
Bat 95.9 5.28 45.69 30.33 80.96
Giraffe 4.44 0 68.82 22.09 31.86
Gorilla 0 61.5 12.68 42.6 37.06
Skunk 64.86 8.33 16.88 100 30.21
 

2 BACKGROUND AND DESIGN MOTIVATION 

2.1 Immerse In the Data 

In the presence of large datasets, research in immersive analytics 
is devoted to facilitating the comprehension of data by bringing 
data and the data analysis process into the physical world. We are 
seeing immersive interfaces develop quickly to immerse analysts 
in the data for natural methods of data exploration and 
collaboration.  
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Interactive surfaces enable direct interaction with data which is 
easier and more intuitive than using a mouse on a desktop display 
[3]. These interfaces are also increasingly developed into large 
high-resolution displays (or high-pixel tiled display walls) [4, 5]. 
The combination of higher pixel count and multi-touch interaction 
allow embodied physical navigation that outperforms virtual 
navigation, especially when dealing with large datasets [6].  

Emerging stereoscopic 3D display technologies, complemented 
with virtual reality techniques, immerse users in computer-
generated scenes. For example, the design of CAVE2 [7] allows 
users to “walk through” and “fly-over” the hybrid reality scenes. 
Users in the AVIE interface are able to walk inside a 360-degree 
stereographic interface to manipulate digital archives in forms 
text, photos, images, and sound [8]. With tools embracing multi-
modalities (e.g., audio, haptic, gestural), immersive analysis is not 
only about a visual experience, but becomes an integrated multi-
sensory experience [9, 10, 11].  

In addition to bringing users to the hybrid reality environments, 
attempts are being made to bring the virtual data into the physical 
world. Digital data are now made accessible in graspable and 
manipulative artifacts whose physical attributes (e.g., geometry, 
materials) encode data [12]. For instance, Professor Richard 
Burdett presented his Maps of City Population in wooden 3D 
models in which height property encodes population density [13]. 
It was an engaging way to represent mass statistical information 
that invited people to explore. As digital fabrication technologies 
made it possible and easy to create physical representations of the 
data (even large datasets), researchers increasingly investigate 
how to leverage a human’s perception skills in exploring data in 
physical forms [14, 15].  

By means of touching virtual data on an interactive surface, 
walking inside computer-generated scenes of data, or exploring 
physical representations of data, existing immersive analytical 
approaches place users in their data. We call it “Be In the Data”.  

2.2 Be the Data – A New Perspective 

We propose a new facet of immersive data analytics that seeks 
to take immersion to the extreme. Unlike existing approaches that 
immerse users in the data, we immerse users to actually become 
data points. We call this new perspective “Be the Data”.  

Be the Data shares many similarities as Be In the Data. Users 
navigate and explore a physical-virtual hybrid space to analyze 
data. Users take advantages of collaborative work in a 3D space. 
However, Be the Data differs from Be In the Data in the 
perspective that the user is taking. Instead of looking into the data 
points, users are the data points.  In our system, after students 
embody data points, they are able to take an egocentric role in 
conjecturing various relationships among the data. For example, 
for being a skunk, I may naturally separate myself from other 
animals because obviously I am very smelly. Students are able to 
discuss/negotiate with their neighbors to determine the positions 
of themselves based on their prior knowledge about animals and 
based on the context of specific problems. Data exploration 
naturally becomes a social process of users collaboratively 
reorganizing themselves in the room.  

Research in virtual environments suggests that learning benefits 
from embodiment of an avatar. The activities performed by 
avatars inside virtual worlds render situated or authentic learning 
experiences as users would solve problems contextualized in real 
life situations. Similar to the idea of an “avatar”, here users 
become a “datatar” as we focus on data. We seek to explore if and 
how people interact with data in embodied ways through the 
“datatar” could render an engaging, collaborative, and effective 
experience, which could lead to deep insights about data and 
analytical processes.  

Be the Data is an extension of a desktop-based application 
called Andromeda [16] that explores high dimensional-data in a 
professional manner. The desktop-based platform has its 
educational limitations. It is difficult to imagine that a novice 
student would engage in such an advanced interface. Moving data 
points on a screen could turn into a tedious and meaningless task. 
Also, it is challenging to conceptualize an abstract mapping from 
the virtual data to the virtual visualizations. The key concepts and 
insights are veiled behind small screen portals and simplistic 
interaction mechanics suggested by mouse and keyboard. 
Therefore, we invented Be the Data for immersive analytics. 
Within the physical space, students have an intuitive and 
egocentric spatial perception to judge the physical distance: 
walking toward people that seem similar to me while staying 
away from people that seem different from me. The physical 
metaphor “near is similar” matches the conceptualization of the 
underlying mathematical model. The concrete experience 
provides a physical medium for students to reason about the 
abstract Euclidean distance. Moreover, the shared space brings 
multiple learners for collaboration and the sharing of ideas.  

3 SYSTEM DESCRIPTION 

We exploit a multi-media physical cube to implement Be the 
Data. Relying on advanced interactive technologies for physical-
virtual cross-overs, our system is comprised of a collocated 
physical space (Cube), a motion tracking system, several trackable 
hats, a backend software layer, and an overhead large display. 

3.1 Motion Tracking System 

Be the Data uses an OptiTrack motion tracking system, which 
includes 24 Oqus cameras, reflective markers, and the Qualisys 
Track Manager (QTM) software. QTM is used to collect and 
process motion capture data from the cameras. We retrieve data 
from the QTM server over a UDP/IP connection in real-time by 
following the Open Sound Control (OSC) protocol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: In our system, students become individual data points. A 
bird’s eye view of their locations in the room is displayed on the 
large display above their head.  



3.2 Trackable Hats 

To simultaneously track multiple individuals and differentiate 
them from each other, we made our trackable hats (Figure 2a). 
Each hat is a rigid body that has its own particular and definite 
space. It is defined by a particular placement of 4-6 reflective 
markers (Figure 2b).  Each rigid body in 3D space has six degrees 
of motion freedom (Figure 2c). We determine the 2D coordinates 
of individuals in the room by streaming the x and z values of the 
rigid body in real time. The current implementation of the 
tracking system and the trackable hats allow for accurate tracking 
and differentiation of more than 50 objects. 
 
 
 
 
 
 

 
 
 
 

 

Figure 2: (a) A trackable hat. Its unique structure is defined by the 
placement of reflective markers on it. (b) A rigid body presentation 
of the hat in 3D views. (c) The two-dimensional coordinates are 
from x and z values in the rigid body.  

3.3 Backend Software Layer 

Be the Data is supported by the backend software layer called 
Andromeda [16], a desktop-based application for professional 
data analysis. By applying Visual to Parametric Interaction (V2PI) 
[17], Andromeda allows users to communicate their ideas about 
the high-dimensional data by manipulating data points in the 
visualization, which is a 2D projection of the high-dimensional 
data. For example, users can drag data points to change the 
pairwise Euclidian distances among them. Users convey the 
judgment that data points are similar by pulling them closer and 
data points are different by pushing them further apart. In turn, the 
system runs the inverted MDS algorithm to provide visual 
feedback: a set of weights that describe the visualization.  

V2PI shields users from the technicalities of mathematical 
models so that users may focus on exploring data based on what 
they know, hypothesize, or learn from the data in an iterative way. 
Be the Data integrates the Andromeda software to immerse users 
as movable data points in a physical immersive environment. 
With Be the Data, users employ their whole body as portable 
input that works from any location within the defined area in the 
Cube. The inputs to the system are users’ positions in the Cube 
captured in real time via the trackable hats. The outputs are 
interactive visualizations as described in the next section. 

3.4 Interactive Visualization 

The interactive visualization for Be the Data includes two 
essential parts: (1) a WMDS plot and a dimension chart, 
organized left and right respectively on the large display (Figure 
3), and (2) a dynamic clustering plot on the top of the WMDS plot 
(Figure 4).  

3.4.1 WMDS Plot 

The WMDS plot reflects the current physical layout in the Cube 
(from a bird’s eye view). The dimension chart lists the dimensions 
in alphabetical order and reveals their current weight values. To 
interpret the plot, the relative distances between data points reflect 
their similarity or difference: near suggests relatively similar 

while far suggests relatively different in the dimensions that are 
emphasized (i.e., variables that are weighted more). All weights 
are set equal and ordered alphabetically in the default layout 
(Figure 3a). As users change the layout by rearranging themselves 
in the room, the weights get updated to explain users’ choice of 
positions (Figure 3b). The length of the dimension bar reflects its 
relative weight as compared to other bars: longer means a higher 
weight. For example, as demonstrated in Figure 3a and 3b, the 
Tiger moves closer to the Pig, thus the Tiger is now considered 
more similar to the Pig than the remaining animals in the up-
weighted dimensions, such as Flipper, Hibernate, and Size.  
 

 

Figure 3: (a) A clear image shown on the overhead large display to 
visualize students’ locations in the room. (b) When students move 
in the room, they are changing the two-dimensional coordinates of 
the WMDS plot and relative weights of dimensions.  

The underlying algorithm of the WMDS plot relies on 
Weighted Multi-Dimensional Scaling (WMDS) [18] to visualize 
high-dimensional data on a two-dimensional plane. WMDS plots 
a low-dimensional spatialization of the data in 2D Euclidean 
space to represent how the data spread in the high-dimensional 
space. The 2D layout is determined by weight parameters of p 
dimensions   p ,...,, 21

, which reflects the relative 

importance of each dimension in a visualization. The coordinates 
r of a WMDS plot for high-dimensional data d is determined by 
minimizing a stress function: 
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The system employs the inverse WMDS algorithm [17] to map 
layout changes to new values for weights. That is, the inverse 
algorithm solves weight   given adjusted two-dimensional 
coordinates r*,  
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Because the algorithm considers the relative distance, not the 
absolute distance between data points, the size of the Cube does 
not affect the performance of the algorithm. The inverted 
algorithm runs fast enough to get results in real time. 

In Be the Data, students adjust their low-dimensional 
coordinates by rearranging themselves in the Cube. In turn, they 
are provided with new weights for the dimensions that explain 
their choice of locations. When students move several times, they 
are effectively exploring data from multiple perspectives that is 
defined by different 2D projections and the updated weights. This 
is a clear advantage of our system that students are shielded from 
the technicalities of mathematical models and may focus on 
exploring and learning from data based on their domain-specific 
questions. 

3.4.2 Dynamic Clustering 

Although the WMDS plot reveals up-weighted dimensions that 
characterize users’ choice of grouping, it does not show 
information about how groups distribute on these dimensions. 
Therefore, we implement dynamic clustering to visualize clusters 
of data on top of the WMDS plot (Figure 4a). That is to say, given 
the projected coordinates on the two-dimensional plane, the 
system automatically reveals clusters of data points based on their 
Euclidean distance in real time. We focus clustering on the 2D 
view space, not the high-dimensional space.  

Dynamic clustering is calculated by an optimized k-means: the 
number of clusters (k) is determined at scene. We apply the 
heuristic elbow method [19] to automatically refine k to improve 
the quality of clustering. The elbow method plots an error 
measure (also called percentage of variance) against k. The error 
measure decreases as the number of clusters k increases; but 
starting with some k, the decrease suddenly flattens and the 
appropriate k is the one that hits this “elbow”.  

Centralized cluster values (i.e. the mean value for a given 
dimension of all data points in a cluster) are calculated. We show 
relative centralized values on the top highest weighted 
dimensions. For example in Figure 4a, cluster 2 ranks highest on 
the Swims dimension, suggesting that cluster 2 differentiates with 
other clusters because animals in this cluster tend to be good 
swimmers. With the dynamic clustering feature, the dimension 
chart is set to be sorted based on the weights. Therefore, users are 
able to identify cluster distributions on the most up-weighted 
dimensions that characterize the clustering.  

Label switching (if cluster 1, 2, 3 change their color encoding 
from Figure 4a to 4b) affects users to track their cluster 
characteristics on the dimension chart. We let clusters 
appropriately restore the color encoding from the previous 
clustering. For example, from Figure 4a to Figure 4b, the German 
Shepard moves from cluster 1 to 3, the Skunk and Chimpanzee 
move away from their original clusters to form cluster 4, and the 
Bat becomes cluster 5. We see the current clusters 1, 2, 3 in 
Figure 4b preserve their original colors from Figure 4a. The 
German Shepard changes to blue as it merges into cluster 3. 
Clusters 4 and 5 are assigned new colors.  

 

 

 

Figure 4: (a) Dynamic clustering of 2D points. (b) Cluster 1, 2, 3 
preserve their colors while cluster 4, 5 are assigned new colors. (c) 
Color preserved by comparing current cluster centroids to previous 
centroids.  

We preserve colors from the previous clustering by comparing 
the centroids (centers) of current and previous clusters. 
Specifically, for each current cluster, we iterate its centroid over 
previous centroids, from which we find one located most closely 
to the current centroid. If more than two clusters share the same 
closest centroid, the cluster that appears closest to this previous 
centroid inherits its color. Figure 4c illustrates how colors are 
restored from Figure 4a to 4b. In Figure 4c, blue triangles are the 
centroids of current clusters as mapped in Figure 4b while black 
triangles are centroids of previous clusters as mapped in Figure 
4a. Both current cluster 3 (the blue triangle 3) and cluster 5 (blue 
triangle 5) have the previous centroid 3 (the black triangle 3) as 
their closet centroid. Because cluster 3 is closer than cluster 5 to 



the previous centroid 3, cluster 3 preserves the color from the 
previous cluster 3 while cluster 5 is assigned a new color.  

Dynamic clustering helps students reveal cluster distributions 
on important dimensions. It also provides an opportunity to verify 
themselves within and outside of a cluster. We strive for 
simplicity in our algorithms for linear algorithmic time 
complexity. Cluster detection is performed real time.  

4 DATA EXPLORATION CASE STUDY 

We presented Be the Data in several STEM outreach 
workshops, as invited by various organizations, including the 
Center for Human-Computer Interaction, the Association for 
Women in Computing, the Center for the Enhancement of 
Engineering Diversity, and the Student Transition Engineering 
Program which is a summer orientation for incoming freshmen to 
the College of Engineering.  

The goal of our workshop was to encourage and foster further 
interest in data-related disciplines. We reached over 100 students, 
ranging from 7th grade middle school, through pre-college, 
undergraduate, and graduate students. The majority of students 
participating in our workshops were new to high-dimensional data 
analysis. They had not learned the MDS algorithm before, with 
the exception of a few graduate students.  We began with enabling 
students to explore high-dimensional data about animals (Table 
1). Each student embodied one animal in the Cube. Students 
worked collaboratively to explore the data with the system. A sub-
group of students congregated in the space (clustering themselves) 
to discover virtual feedback about what made their data points 
similar to each other. Some students wandered away from others 
to identify what made her/him unique.  

Through this bi-directional process of posing queries via 
proactive movement and understanding results through reactive 
movement, students understood numerous complex and latent 
relationships in the animal data. They collectively answered many 
questions about the data, such as “what make some animals good 
to eat?”, “what makes animals more attractive to humans?”, “what 
differentiates predators, prey, neither or both”, “how are 
vegetarians, carnivores, and omnivores different and similar?”. 

Students exploited embodiment to analyze data. For example, in 
answering the question “What make some animals good to eat”, 
the student who embodied “skunk” immediately separated herself 
from the group because she was definitely not edible. Next, all 
students clustered themselves in two groups as they were edible or 
not. However, a student who embodied the rat did not feel herself 
belonging to either of the groups (Figure 5). She explained that 
although rat was normally not edible, it was good to eat in some 
countries. Therefore, she moved away from the non-edible group. 
She then stood between the edible and non-edible groups to 
identify what made her unique. While dimensions of “domestic, 
furry, hops, lean, and smelly” contributed the differentiation of 
edible and non-edible groups, the “buckteeth” dimension further 
identified the rat out of the two groups. In addition to this 
example, we found that students were able to produce 3-4 
different visualizations for each question. It suggested that they 
gained a deep appreciation for the many tradeoffs that could be 
weighed during data analysis.  

Students were active participants in their learning. In our 
workshop, 90% of or more of the workshop time was spent with 
students actually exploring, discovering, and experiencing data 
analysis. A middle school teacher commented “I have never seen 
my students being so engaged”. In addition, the improvement 
from pre-workshop test to post-workshop test indicated that 
students gained knowledge about WMDS related concepts.  

 

 

Figure 5: The student who embodied the rat placed herself 
between the edible group (lower left) and the non-edible group 
(upper right). 

5 DISCUSSION AND CONCLUSION 

The goal of Be the Data is to promote interactive data exploration 
for STEM education and outreach. Attracting students to learn 
data analytical skills is an important national need.  We can 
imagine that on a desktop computer, moving data points around 
would be tedious. But with Be the Data, data points are students 
who move themselves, either by their own volition or based on 
instructions from a collaborator. It engages students in an 
otherwise potentially boring data exploration. Moreover, for 
students who have no analytical experience, the concrete engaging 
experience of being a data point makes an abstract data analytical 
concept such as WMDS approachable to them, instead of scaring 
them away.  

Be the Data has the potential to benefit understanding and 
learning. It exploits users’ embodied skills as they physically 
interact with the data. It is more nuanced than interacting with 
symbolic objects. A large body of evidence from embodied 
learning suggests that people unconsciously apply bodily 
experience (e.g., distance perception, gesturing, body orientation) 
to support the cognitive process [20, 21, 22]. We expect that 
moving around would exploit students’ spatial cognitive 
capabilities [23] and in turn aid understanding in spatial 
organizations of the high dimensional data.  

Be the Data facilitates a collaborative environment which can 
be extremely beneficial for data analysis tasks [24, 25, 26]. Our 
collocated space invites students to work together in a social 
context [27]. Students deploy natural social interactions to 
communicate with the data model and with each other. They had 
the authority to determine their own position from their 
perspectives. They were able to stand out from the group to 
identify themselves.  They also converse, discuss, and negotiate 
alternative hypotheses to explore data from different aspects. 



There are many ways Be the Data can be improved and 
extended. Learned from previous user studies, showing length 
changes in dimension bars tells students that data are clustered 
based on up-weighted dimensions, but fails to provide enough 
information about how clusters distribute on the dimensions. For 
example, “is my cluster high or low in a particular dimension?” 
Therefore, we implemented the dynamic clustering feature. In 
addition, we may give students access to value details of data 
points and weight parameters with a hand-held device. We can 
further provide parametric interactions with hand-held devices. 
Students may tune weights or modify choices of distance metrics 
to see how it affects the projection. We may further project data 
on the floor, and students chase their data points as the 
mathematical model updates.  

The idea of being a data point can be applied to other data 
analytical problems, such as factorial design, classification, and 
clustering where participants have their features and move into 
different groups. There are more open-ended questions stemming 
from Be the Data. For example, does physical interaction improve 
the collaborative understanding of information over purely virtual 
interactions? What and how can other bodily actions (e.g., 
pointing, waving, jumping) be applied to interact with data?  
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