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ABSTRACT

This paper introduces an adaptation of polar coordinates called
“root polar plotting” that we have developed for our networkpixel
map—a computer security visualization capable of representing
tens of thousands of hosts at a time. Root polar coordinates over-
come two important problems of normal polar coordinates: plot
density distortion and severe occlusion near the origin. Wediscuss
several approaches we took while investigating this problem and
provide empirical data from experiments we conducted comparing
root polar coordinates against both normal polar and Cartesian co-
ordinates. In any application where a polar plot would be useful
but distortion of the data must be avoided, or where it is important
to avoid some markers from being occluded by others, root polar
coordinates may be useful.

Our approach provides: (1) a novel adaptation of polar coordinates
that overcomes plotting distortion, (2) a means of plottingnetwork
data in near real-time without complex layout optimization, (3) an
algorithm that reduces occlusion of plotted points while maintain-
ing consistent placement, and (4) an empirical comparison of Carte-
sian vs. polar plots.

CR Categories: C.2.0 [General]: Security and protection—
Software; K.6.m [Miscellaneous]: Security—Security visualiza-
tions; H.5.2 [User Interfaces]: Graphical user interfaces(GUI)—
Visualizations; I.3.6 [Methodology and Techniques]: Graphics data
structures and data types—Polar Coordinates;

Keywords: Internet Protocol, root polar plot, overlap, occlusion,
plot density, pixel-oriented visualizations

1 PROBLEM STATEMENT

We are building the basis for a large-scale visualization ofInternet
Protocol (IP) addresses for computer security. Part of thateffort
involves plotting all the hosts recently involved in communication
with a set of “home” network hosts. We especially wish to make
communications between external and internal network hosts vis-
ible so that an administrator or security officer may quicklyfind
unusual communication patterns such as high fan-out, high fan-in,
and normality/abnormality of connections.

We want to display tens of thousands of IP addresses using pixel-
oriented visualization techniques. Each IP version 4 address is
thirty-two bits long and is written as w.x.y.z where w, x, y, and z
are eight-bit unsigned integers called octets. Our first attempt was
to plot each IP address in Cartesian coordinates using the first two
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octets of the address as the abscissa and the other two as the ordi-
nate. While this method allowed users to relatively easily locate the
general position of a given IP address on the plot, it did not lend
itself to the idea that some of the hosts are locally administered,
home hosts. Home was wherever your IP address mapped to on the
plot. Using polar coordinates, it is more natural to locate home in
the center of the plot. In interviews with our user community[4]
and a recent usability study of a prototype security awareness tool
[5] we learned that system administrators see the world of machines
as falling into two basic trust categories, “us” and “them.”[1] These
trust categories may be broken down into any number of arbitrary
categories from most to least trusted. With polar coordinates, a nat-
ural representation of trust levels would be nested circleswith the
most trusted level at the center.

Unfortunately, we encountered two major problems with normal
polar coordinates: distortion and severe occlusion. This paper de-
scribes our efforts to overcome these problems and make the best
possible use of the display space.

1.1 Assumptions

In our application of information visualization techniques to com-
puter security, we seek to represent tens of thousands of hosts si-
multaneously and allow the user to display communication patterns
between arbitrary locations. In this part of the application (the net-
work pixel map), we do not concern ourselves with the communi-
cations between hosts, only about their relative placementon the
plot. We assume only that we know an IP address (whether real
or spoofed) for the host and that we can determine the relationship
of a host to the home network based on this address and on recent
experience with traffic from the host. In this section, we discuss the
attributes of this data and our assumptions about the problem space.

First, we assume the existence of a known set of hosts that canbe
thought of as the “home” set; that is, machines that the user believes
are benign and well-managed. We assume nothing about the size
of the home set except that there are probably fewer hosts in the
home set than outside it. Although the majority of traffic observed
on a given network is local-only, over time the majority of the IP
addresses seen will likely be from outside the home set.

Second, we assume data is collected within the home set and isbi-
ased toward it. Network data is gathered using packet “sniffers,”
hosts that collect traffic on the network. Especially in wired net-
works, the traffic visible to a single sniffer is highly localized. Data
on other network segments cannot be sniffed without port mirroring
or other techniques. For this stage of our study, we assume only a
few sniffers provide the data we will visualize, and all the sniffers
are located within the home set. This biases the data collected by
limiting it to traffic originating on the home network, destined for
it, or passing through it. Thus we would expect not to see traffic
from one external host to another, but we do expect to see external
to internal and internal-only traffic. These kinds of trafficpatterns
fit the polar layout more naturally than the Cartesian.

Third, we assume communication seen within the home set is
mostly internal. From the perspective of the home set, thereare



three kinds of traffic:

1. Internal↔Internal: Traffic whose source and destination are
within the home set

2. Internal↔External: Communication between home and non-
home hosts (regardless of the originator)

3. External↔External: Traffic from outside the network bound
for another external location but passing through the home
network infrastructure.

Internal↔Internal traffic is is usually the majority observed at any
interior point in the home set. While this kind of traffic has se-
curity significance, it is only of secondary importance to our study.
Internal↔External traffic is of highest interest because we are seek-
ing to show communication patterns that are most likely to have
security implications. External↔External traffic is usually con-
sidered irrelevant since it typically comes no closer than aborder
router. We use a polar layout with the home set near the origin
to help highlight Internal↔External and Internal↔Internal traffic
flows.

Finally, we assume that network security analysts prefer toex-
amine network data as close to real-time as possible. As a re-
sult, the presentation of data for our application must not rely
on time-consuming preprocessing or computationally expensive
space-optimized layout. Instead, we use the known characteristics
of a host (e.g., IP address, trust category,etc.) to place it directly
on the plot. In case of collision with an already plotted hostmarker,
we move the new marker to a nearby empty space. Once a marker
is plotted, it will stay where it was placed until traffic to and from it
disappears from the network.

1.2 Problems with Polar Plots

In many cases, a polar mapping of data may be more suitable than a
Cartesian plot. Whenever there is a single point of reference and the
notion of relevance to that point, polar coordinates may be useful.
Examples of this kind of application are query results from asearch
engine, relevance rankings of documents in a collection to agiven
document, and social networks. However, polar coordinate plots
have several serious problems including distortion, occlusion, and
reduced area.

Problem 1: Distortion in polar plots. A casual glance at
Figure 1 will show how the normal polar plot tends to distort the
data by compacting it near the center and spreading it out at the
edges. This characteristic has been useful in certain applications
such as retinal emulation for robotic vision [10], but for our appli-
cation the distortion destroys the picture we are trying to show. We
wish to plot the home set of IP addresses at the center of the plot,
but we also want to accentuate the individual members of the home
set. Although the home set is much smaller than the set of external
addresses, we want to give the home set equal space.

The distortion due to polar coordinates can be quantified. Uni-
formly spaced (n points at intervals of2

32−1
n−1 ) unsigned integer data

plotted in a rectilinear plot has a constant plotting density. That is,
the variance of the density,σ2

D, approaches zero as the regularity of
the grid approaches perfect uniformity. However, scaling the data
to fit it on a 1000× 1000 pixel screen introduces round-off error
that will never allow us to attain perfect uniformity.

In contrast to the near uniformity of a Cartesian plot, a polar plot
of uniformly spaced data is visibly more dense near the center and
more sparse near the periphery. Thus,σ2

D is two to three orders
of magnitude larger for polar plots than for Cartesian. However,

we were surprised to find thatσ2
D for root polar plots was only one

order of magnitude greater. To refine our observations, we con-
ducted a study using our network pixel map displaying the same set
of uniformly spaced IP addresses on Cartesian, polar, and root po-
lar coordinates. We then compared several plots of the same data,
measuring the density variance of each graph. We foundσ2

D for the
normal polar plot was consistently higher, by an order of magni-
tude or more, than the same data plotted on either a Cartesianor
root polar plot with the same area.

Problem 2: Occlusion in polar plots. The central clus-
tering of polar coordinates causes a second problem: occlusion.
With large numbers of points, a polar plot may have many layers of
markers at the center, most of them hidden by more recently plotted
markers. Occlusion is a general problem that happens in all kinds
of graphs, but the problem is exacerbated in polar coordinates near
the origin. We can fix occlusion by detecting collisions and moving
the markers around, but this makes the perceived density near the
center of the polar plot appear worse (see the normal polar plots in
Figure 1). With collision resolution, the ”solid” central area looks
twice the diameter of the same plot without collision resolution.
This shows how much overplotting is happening in a normal polar
plot.

Problem 3: Smaller area of polar plots. One intrinsic
problem with polar coordinates plots is that they have onlyπ

4 the
area of a square Cartesian plot whose sides are the length of the
polar plot’s diameter. We can mitigate the effect of the smaller plot
space for our application by placing some markers (for the least
trusted hosts) in the otherwise empty corner areas. Not all applica-
tions can make sensible use of the corner spaces, so they are either
constrained to a smaller area or are subject to being clipped. In our
study, to make the comparison between polar and Cartesian coor-
dinates more clear, we have elected to compare our polar plots to
Cartesian plots of identical area.

Although we handicap Cartesian coordinates by reducing their al-
lowable area to that of a polar plot, Cartesian plots still have po-
tentially higher capacity because displays are all rectangular arrays
of square pixels. However, the difference is small enough that we
did not think further handicapping Cartesian coordinates by setting
the capacities equal to that of a polar plot would make a significant
difference.

2 POTENTIAL SOLUTIONS

2.1 Solution 1: Fixing the Distortion of Polar Plots

After first discovering how useful polar plots could be for our appli-
cation, our next discovery was how badly they distorted the plotting
density of the data we were trying to display. In this section, we ex-
amine some of the ways we tried to overcome our problems with
polar coordinates and how we finally arrived at the root polarap-
proach.

2.1.1 Log and Exponential Polar Plots

Our first attempt at fixing the artificial central clustering was to con-
vert the polar coordinates(ρ,θ ) to (ln(ρ + 1),θ ) in an attempt to
smooth the distribution of the points. Log-polar sampling of image
data is used in computer vision to reduce the amount of data that
must be processed by a robot in real time. The log-polar transfor-
mation samples heavily near the focal point and very little at the pe-
riphery. This sampling approach mimics human and animal vision



Figure 1: A series of plots of identical uniformly spaced IP address data. We color the markers using a Keim’s HSI rainbow gradient [6] with
lower numbers at the red end of the spectrum and the higher numbers toward the violet end. Plots on the right allow points to overlap. Those
on the left use collision resolution to fix any overlap. The first two plots use Cartesian coordinates, the second two use normal polar coordinates
and the third set are root polar plots. Note the large differences in the variance of the plotting density (σ2

D) between the graph types.



and is most useful in active vision where the point of reference is
constantly changing [2]. Log-Polar mapping is also used in digital
imagery to create more secure watermarks of copyrighted images
that are resistant to image transformations [8]. However, log-polar
plotting exacerbated our original problem, squeezing all the points
into a space less than half ((ln2.0)2 = 0.48) the original plot area
(see Figure 2).

Realizing that we had inadvertently accomplished the oppo-
site of our intent, we tried the inverse, converting(ρ,θ ) to
(exp(ρ −1),θ ). This pushed all the points out of the center leaving
a hole. After experimenting with several different logarithmic and
exponential bases, we became convinced that these two classes of
functions, however they were modified, would never do what we
intended. However, we note that the hole left in the center bythe
exponential plot could be used to an advantage later. We could inset
another (non-exponential) polar plot in the center representing only
the home IP address space.

Figure 2: Polar plots using coordinates (ln(ρ + 1),θ ) and (exp(ρ −
1),θ ). The logarithmic plot exacerbates the central density distortion,
while the exponential plot leaves a hole in the middle. Using different
logarithmic bases does not correct the uneven density distortion.

2.1.2 Adaptive Density Polar Plots

Our second attempt involved predicting the optimal densityof the
plot a priori and adaptively adjusting the plotting density in the
hopes of matching the optimal density. Givenn markers of radiusr
and a plot radius ofR we compute the optimal density asnr2

R2 . We
sort the IP addresses in ascending order so we can plot the central
ones first. This allows us to sample the density of the alreadyplotted
area only once since no later data is placed closer to the center than
what was already plotted. We then plot points on a horizon ring
expanding from the origin. We calculate the plotting density at each
ring by dividing the number of points plotted by the area inside the
horizon ring. We then adjust the plotting density to approximate the
optimal density.

Our adaptive algorithm determines the target polar coordinates of
a marker,(ρ,θ ), and adjustsρ to be at least the current distance
of the horizon from the origin. At each new horizon ring, we plot
points near their targetθ ’s until the density approaches the optimal
density. In case of a collision with a plotted point, our algorithm
adjustsθ by a small value,ε, calculated at each ring. We iteratively
addε to θ at each subsequent collision until either an empty space
is found or we have adjustedθ by greater than 2π radians (360
degrees). If the algorithm does not find a noncolliding spaceafter
going all the way around, it adjusts bothρ and the horizon by the
diameter of a marker and tries again. To decrease the densityof the
plot we increase the size ofε, essentially trying less hard to fill each
ring. Conversely, to increase the plotting density, we decreaseε,

making the algorithm try more places to fit a marker in the horizon
ring before expanding it.

The adaptive density approach produced plots that were muchless
congested at the center than normal polar coordinates, but we found
it very hard to adjust the density on the fly in a stable manner.Usu-
ally the algorithm would plot too densely near the center andthen
at about 90% of the plot radius it would have to adjust drastically,
leaving the rest of the space only sparsely filled. The resultwas an
uneven density graph interspersed with very sparse rings that made
it appear concentric. We found that the adaptive density algorithm
was inefficient because of the repeated density estimationsrequired.
The collision resolution approach often required many plotting at-
tempts before an empty space was found. Finally, we found it very
difficult to stabilize the density adjustment even for uniform random
data. Real IP data, with its discontinuities was practically impos-
sible to plot well using the adaptive algorithm. Although improve-
ments in the algorithm may somewhat mitigate the problems, we
abandoned the approach in favor of a more natural solution, root
polar coordinates.

2.1.3 Root Polar Plots

What we needed was a function ofρ that grew more rapidly than
linear at first and smoothly slowed its growth rate to the edgeof
the plot (atρ = 1). A simple function that behaves this way is
the square root function (see Figure 3). The early rapid growth of
f (ρ) =

√ρ causes the points near the center to be spread out more.
The later slow growth (relative to linear) causes the point density
to increase near the periphery. This shape naturally counteracts the
density distortion that arises from plotting in polar coordinates.

Figure 3: Graph of x, ln(x+ 1), exp(x−1),
√

x, and x showing their
relative behaviors in the interval [0,1]. Note how

√
x crosses x at

x = 0, grows rapidly at first (causing relative sparseness near the
center), and gradually tapers off until the plots meet again at x = 1.
The growth pattern naturally counteracts the density distortion of
normal polar coordinates in this interval.

Since we could constrainρ to be between zero and one, we did
not have to worry about taking square roots of negative numbers.



The resulting “root polar” coordinates worked very well both at re-
moving the artificial clustering at the center and smoothingout the
variance of the distribution of markers throughout the plot. Root po-
lar plots are also not greatly affected by the plotting order, remov-
ing the reliance ona priori knowledge of the data or pre-sorting.
To precisely measure the distortion differences, we used uniformly
spaced data. On a rectilinear plot, this data looks like a setof reg-
ular, slanted lines, while the polar version produces a spiral. Any
deviation from the regularity of the Cartesian plot is thus easy to
notice and measure. It is also relatively easy to informallyassess
the regularity of the distance between the lines. With the root po-
lar plot, it is easy to see that the spiraling lines are more regularly
spaced over the length of the lines than a normal polar plot ofthe
same data (see Figure 4).

Figure 4: Normal and root polar plots of 5,000 uniformly spaced IP
addresses with a marker radius of 2.5 pixels. Note the regularity of
the distance between the spiral lines in the root polar plot over the
length of the lines. This produces very low density variance. Note
also the relative sparseness and reversed spiral direction at the center
of the root polar plot. This indicates that the root polar plot does
spatially distort the data near the center.

The root polar plot is not without its problems though. Asρ ap-
proaches zero, the slope of

√ρ approaches infinity. This leaves us
with a very sparse center, but the result does not appreciably affect
the density distribution of the rest of the points on the graph. A re-
lated feature arising from the steep slope of

√ρ nearρ = 0.0 causes
the central spirals to reverse directionρ ≤ 0.25, where the slope is
≥ 1. The reversal implies that root polar plots induce some spatial
distortion. Thus, polar plots reduce density distortion atthe cost of
distorting the relative positions of markers near the center. One can
see this by comparing a normal and root polar plots of uniformdata
(see Figure 4).

2.2 Solution 2: Fixing occlusion in polar graphs

There are two basic approaches to resolving occlusion, gridand
non-grid based approaches. In both approaches, if a new marker
plots to a position overlapping existing markers we move it else-
where. Using a grid simplifies the matter by constraining allpo-
sitions to a finite number of non-overlapping slots. The gridsim-
plifies the calculation of the new position at a potential cost of not
packing markers quite as tightly as a non-grid approach might. For
our purposes we consider only grid-based approaches.

Alternative 1: Nearest neighbor. The simplest way to po-
sition a new point that would occlude one or more other pointsis
to move it to a nearby, unused grid location. We calculate thetar-
get rank,ρ̇ =

⌊ ρ
2r +0.5

⌋

. We keep track of which ranks we fill
completely so we can select the lowest non-full rank greaterthan or
equal toρ̇ as the actual rank,̂ρ. Then we calculate the target slot,

θ̇ =
⌊

θ
2π b2πρ̂c+0.5

⌋

. If this slot is occupied, we try the slots to

the left and right ofθ̇ , wrapping around at zero if needed. The first
empty slot we find on rank̂ρ becomes the actual slot,θ̂ .

In this application it is important to consider what moving the
marker from(ρ̇ , θ̇) to the unoccupied position(ρ̂, θ̂) will mean
to the user. In our visualization we chose to place less trusted ad-
dresses further from the center (by increasingρ), but the radial co-
ordinate (θ ) means nothing to us. So all the points at the sameρ̂
are at the same level regardless ofθ . Therefore, when a collision
occurs, we resolve it by changinĝθ , increasingρ̂ only if there are
no slots open at the rank̇ρ.

We found that although the root polar plotting method works with-
out regard to the plotting order, plotting the points sortedin nonde-
creasingρ-order is helpful both to avoid collisions and to guarantee
that our nearest-neighbor collision resolution algorithmwill never
place markers with largerρ values closer to the origin than any
marker with a smallerρ value. If points are not plotted in nonde-
creasingρ-order it is possible that collision resolution will cause
some markers to be placed out ofρ-order as shown in Figure 5.
The seriousness of this out-of-order plotting depends on how full
the plot already is. The worst case happens when markers are plot-
ted in nonincreasingρ-order. Because the plotting order of recently
seen IP addresses cannot be known in advance, it seems clear that
collision resolution will result in some out-of-order plotting.

Figure 5: When IP addresses are plotted in random order collision
resolution can force some out-of-order plotting. We plotted the same
set of 8,513 real IP addresses with both root and normal coordinates
in the same random order. Serious out-of-order plotting is evident in
the normal polar plot (left) by the red points that appear far from
the center, out of spectral (and thus numeric) order. The root polar
plot (right) naturally spreads the data out better, so it is more robust
with randomly ordered data.

Alternative 2: Space-filling curves. Keim mentions the use
of space-filling curves [6], especially the Peano-Hilbert and the
Morton curves, as an alternative to nearest neighbor placement.
Space-filling curves are a method of mapping one-dimensional data
into a two dimensional space. In this application a space-filling
curve would plot the points along a singleρ line and then fold this
ρ line into a regular two-dimensional, recursive pattern that fills the
plot space and attempts to keep theρ order of the points, within rea-
son. Keim found these curves produced good clustering of thedata
but were difficult for users to interpret because the arrangement was
not intuitive. We prefer a nearest-neighbor algorithm because it is
not nearly so complex for dynamic layout as a space-filling curve
would be.

Alternative 3: Keim’s Gridfit. Keim goes on to describe
his Gridfit algorithm [7] that optimizes the placement of allmark-
ers by hierarchically partitioning the data space into subregions. We



would like to try this method in future implementations and com-
pare it with our current nearest-neighbor approach. Nearest neigh-
bor is more straightforward to implement, is nearly as spaceeffi-
cient, and does not requirea priori knowledge of the data as Gridfit
does. We were also concerned about the potential complexityof
using Gridfit in a near-realtime environment because of the poten-
tial for cascading movement of markers that might occur. Forthe
meantime we chose to use the simplest method since the focus of
this research is on the polar vs. Cartesian plots rather thanon the
packing algorithms.

2.3 Solution 3: Fixing the smaller area of polar plots

The most difficult intrinsic problem with polar coordinatesis that
given a square plotting area, a polar plot has onlyπ

4 times as much
usable space as as an equivalent Cartesian plot. An additional lim-
itation is that a polar grid is a set of nested rings around theorigin
rather than tightly packed rows. Given the plot radius,R, and the
radius of a marker,r, the number of enclosing ranks,k, in the plot is
⌈R+r

2r

⌉

−1. We have a single marker at the origin (f (1) = 1), and at
the ith ring we haveb2πic slots. Thus the total number of markers
in an area circumscribed by ringi is f (i) = f (i−1)+ b2πic. Ex-
panding this recursive formula yieldsf (k) = ∑k

i=1b2πic We were
unable to derive a closed form for this sum, because of the floor
function. However, we can provide a reasonably tight upper bound
for it, f (k) ≤ bπk(k +1)c.
In the circumscribed square whose sides are length 2R we can fit
more markers, a full 4k2 of them. In our application, we can mit-
igate the smaller area of polar plots by allowing our polar plots
to exceed their normal bounds but constraining the positioning of
these points to the circumscribed rectangular region. Essentially,
we can fill in the corners with the overflow. This approach allows
us to approach the capacity of a Cartesian plot.

3 EMPIRICAL COMPARISON OF PLOT TYPES

We implemented a prototype network pixel map to compare Carte-
sian, polar, and root polar plots of IP addresses. We used a within-
groups, full factorial design with four factors:

1. Plot type, 3 levels: Cartesian, polar, or root polar

2. Number of IP addresses (n), 6 levels: 1K, 2.5K, 5K, 10K,
25K, and 50K

3. Collision resolution (CR), 2 levels: on or off

4. Marker radius (r), 2 levels: 0.5 or 2.5 pixels

We ran all 72 possible iterations with uniformly spaced datarather
than actual IP data as a control so we could measure differences in
the variance of density,σ2

D, without introducing artificial density
distortions that occur in real data. The experimental conditions are
summarized in Table 1.

When collision resolution is on, we constrain marker placement
with a grid, and allow no two markers to occupy the same slot.
The effect is to spread out the more densely populated areas,push-
ing the overflow into adjacent sparse areas. When collision reso-
lution is off, we simply plot all markers at their true (rather than
grid-constrained) coordinates. Marker radius interacts with colli-
sion resolution because larger markers take up more space and tend
to cause more collisions. Large marker radius dramaticallyreduces
the capacity of the plot area from about 455K to 18K nonoverlap-
ping markers.

Group Exp. Set CR r n

I

1–3 Off 0.5 1K
4–6 Off 0.5 2.5K
7–9 Off 0.5 5K

10–12 Off 0.5 10K
13–15 Off 0.5 25K
16–18 Off 0.5 50K

II

19–21 Off 2.5 1K
22–24 Off 2.5 2.5K
25–27 Off 2.5 5K
28–30 Off 2.5 10K
31–33 Off 2.5 25K
34–36 Off 2.5 50K

III

37–39 On 0.5 1K
40–42 On 0.5 2.5K
43–45 On 0.5 5K
46–48 On 0.5 10K
49–51 On 0.5 25K
52–54 On 0.5 50K

IV

55–57 On 2.5 1K
58–60 On 2.5 2.5K
61–63 On 2.5 5K
64–66 On 2.5 10K
67–69 On 2.5 25K
70–72 On 2.5 50K

Table 1: Experimental design table. Each group (I-IV) of exper-
iment sets holds the collision resolution and marker size constant.
Comparisons between groups are not valid.

3.1 Comparison of Plotting Density

The most important difference between normal and root polarplots
is in the distortion each induces on the data. The goal for theroot
polar plot was to avoid theσ2

D distortion seen in normal polar plots.
We were not concerned with theθ -distortion that occurs near the
center of root polar plots becauseθ is immaterial for our applica-
tion. Since our experiments used uniform data the plotting density
of a Cartesian plot is approximately uniform. Thus, the variance of
the plotting density for the Cartesian plots,σ2

D,Cartesian, approaches
zero.

To estimate the density, we take a number of samples by placing a
grid of constant-sized (relative to the marker radius), nonoverlap-
ping tiles over the whole plot area (see 6). We then count the num-
ber of markers that overlapped each tile and estimate the population
variance of the number of markers found over all the samples.

We found the mean density of all three plot types to be very close
for each data set since we kept the area of all plots the same, and be-
cause the same amount of data was plotted each time. We observed
the biggest difference in the comparison of the variances ofdensity
(see Figure 7). In every experiment set except 67-69 and 70-72, the
computed variance of the normal polar plot was at least an order of
magnitude higher than the variances of the corresponding Cartesian
and root polar plots.

Experiment sets 67-69 and 70-72 were pathological cases with col-
lision resolution, a large number of markers, and a large marker
radius. Thus, these plots were filled beyond capacity and forced to
be completely regular within the entire sampled plot area. Within
the sampled area, the normal and root polar plots were constrained
to be equal. In every other case,σ2

D,normal was between 2 and 269

times greater thanσ2
D,root . Except for the two cases with the largest

number of markers (50K) and the small marker size (0.5),σ2
D,root



Figure 6: An example of how we sample density on the completed
plots. Each white rectangle represents a density sample. We count
the number of markers within each rectangle and compute the vari-
ance. We use this metric to compare density distortion between plot
types.

was within one order of magnitude ofσ2
D,Cartesian. In these two

exceptional cases,σ2
D,root was within two orders of magnitude of

σ2
D,Cartesian while σ2

D,normal was five orders of magnitude greater.

Because we used uniform data with points at equal intervals,our
study does not make use of any random process. Thus, statisti-
cal comparisons are not appropriate, and we can simply declare
that our study numerically proves that root polar coordinates dis-
tort the plotting density less than normal polar coordinates do for
the tested conditions. A previous study used uniform randomdata
and showed the same results statistically. We believe our findings
are a strong indication that root polar coordinates will distort the
plotting density less than normal polar coordinates under all condi-
tions likely to occur in our application.

3.2 Comparison of Collision Rates

We define a “collision” to be whenever the marker of a data point
to be plotted overlaps one or more already plotted markers. The
mean collision rate is the expected probability that a new point on
a plot will at least partially occlude some other points. We count
collisions each time the algorithm attempts to place a new marker
where one is already plotted.

All three plot types use the same collision resolution algorithm, so
we expect the differences in mean collision rate to be all dueto
the plotting densities. We found only one experiment set where
the mean collision rate for normal polar coordinates was less than
that of root polar coordinates. All other times the collision rate
of normal polar coordinates was one to four orders of magnitude
higher than either root polar or Cartesian.

The variance of the collision rate tells how much the mean collision
rate is expected to change from place to place on the plot. To calcu-

Figure 7: Ratios of plotting density variance for normal and root polar
plots to that of Cartesian plots of identical data. Groups I and II have
collision resolution disabled; groups I and III use the small marker size.
Note that normal polar coordinates has more variation in every case
except the the last two experiments. These are pathological cases
with collision resolution and large numbers of large-sized markers.

late the variance of the collision rate, we kept running totals of the
number of collisions in each rank of each plot type. Then we calcu-
lated the variance of the number of collisions in each rank. Normal
polar coordinates distort the data so much that the collision variance
of a normal polar plot is considerably higher than for Cartesian or
root polar plots. Basically, variance of a collision rate indicates how
well the data is spread around or clustered on a given plot. Using
uniform data allows us to measure the distortion induced by each
kind of plot. We believe that the very high collision variances for
normal polar coordinates are a second evidence of theσ2

D distortion
induced by polar coordinates.

3.3 Comparison of Run Times

The run time of the plots is a much less robust measure of effective-
ness because run time (especially in scripting language implemen-
tations) is influenced by so many uncontrollable factors, such as
garbage collection and external utilization of the processor. How-
ever, recording the run times helped us to see a correlation between
collision rate and run time. When a plot becomes very densely
packed and collision resolution is enabled, the plotting algorithms
spend most of their time resolving collisions.

On the whole, both types of polar plots ran in about twice the time
as the Cartesian plots of the same data under the same conditions.
Normal polar plots outperformed root polar slightly, but this is not
surprising since the two share the same code with the only differ-
ence being the

√ρ coordinate transform. In a few high-density
cases the higher number of collisions incurred by the normalpolar
plots actually caused it to run slower than the equivalent root po-
lar plots. The polar and Cartesian plotting algorithms are also very
similar with only a few small implementation differences inthe way
the coordinates are calculated and the way collisions are resolved.

4 APPLICATION

Two questions remain about the application of root polar coordi-
nates to IP address plotting for near real-time security monitoring:



1. Is the root polar plotting method equally apt with real IP ad-
dress data?

2. How do we place the “home” network’s addresses in the cen-
ter?

In this section, we will answer these questions and discuss our im-
plementation approach.

4.1 Real IP Data

We searched for good samples of IP address data on the Inter-
net, but found no suitable sample. Available data had eitherbeen
anonymized (destroying the original distribution) or usedDNS
names rather than IP addresses (and in most cases names had
changed, making reverse lookup impossible). As a work-around,
we collected 8,513 unique IP addresses from a single workstation
using tcpdump over a period of two weeks. While the distribution
of this data is almost certainly not the same as the true (and unknow-
able) distribution of all IP address data, it does fit our assumption
that data collected by local sensors will be locally biased.

We found the distribution of IP addresses to be clustered into sev-
eral bands (see Figure 8). Because of the banding we incorporated
a spreading algorithm in the calculation of polar coordinates. The
spreading algorithm does rely ona priori knowledge of the distri-
bution of the data, but it is not unreasonable that this knowledge
could be part of a local profile that changes only rarely.

Figure 8: A root polar plots (with CR) of 8,513 IP addresses col-
lected from a single point via tcpdump. Major clusters appear in the
24.0.0.0/8, 60.0.0.0/5, 80.0.0.0/5, and 128.173.0.0/16 blocks (the
latter being the campus’s IP block and colored bright green). Smaller
clusters appear higher up as well. The plot on the left shows the raw
data without spreading. On the right we have applied the spreading
algorithm.

4.2 Putting Home in the Center

We have seen that root polar coordinates can effectively spread real
IP data so that the display space is much more evenly utilized. How-
ever the real advantage of root polar over normal polar plotsis clear-
est when we tackle the problem of keeping the “home” network at
the center of the plot.

To do this, we have developed the concept of trust levels. Notall
hosts on the Internet are trusted equally. In fact, most organiza-
tions have a “white list” of address spaces they administer and a
“black list” of address ranges known for previous maliciousbehav-
ior. Between the two is the murky set of addresses that are simply
unknown. Of the unknown addresses, there are probably some that
an administrator may expect to be commonly accessed by his users,

such as search engines. An administrator within the organization
may also subdivide the organization’s “whitelist” into a set of ma-
chines he administers (and thus has a personal stake in) and another
set with the rest of the enterprise’s addresses. For our application,
we define up to five trust levels: self, enterprise, safe, unknown, and
dangerous. Of course an administrator may choose to use onlythe
minimal set of trust levels: “us” and “them.” The number of levels
(as long as it stays reasonably small) is unimportant. Usingtrust
levels, we can plot the most trusted (“home”) nodes in the center to
obtain plots like those shown in Figure 9.

Figure 9: Normal and root polar plots of IP data with five arbitrary
trust levels superimposed. As before, the color gradient indicates
the relative value of the addresses plotted (spectral with lower values
toward the red end and higher values toward the violet end). Now,
however, we plot addresses from low to high value within their trust
level. All addresses within a given trust band are assumed to be
(dis)trusted equally.

Givenl trust levels, we plotl−1 rings, with theith ring atρi = Ri
l−1

from the origin. For root polar plots, we transformρi as well so
the innermost circle is disproportionately large. Each IP address
has an associated trust level assigned according to how its CIDR
block is classified by administrative policy. To place an IP address
whose trust level ist we calculate a trust modifierm = t

l−1 . Then
we plot the marker atmρ rather thanρ (whereρ has already been
subjected to coordinate transforms). This places the marker inside
the appropriate trust ring or outside all of them (for “dangerous”
hosts).

In Figure 9, the center (representing machines managed by the user)
is larger, allowing more accurate analysis of the machines the user
cares about and natural aggregation of those he cares less about. An
important difference between the plots may be seen in the green-
colored markers in the innermost trust level. In the normal plot, the
distortion coupled with collision resolution has forced these mark-
ers to circle about the origin several times. But in the root polar plot
these hosts do not even complete a single revolution even though
there are many of them.

Further, we can expand or contract the size of the central area by
applying different powers ofρ instead of

√ρ = ρ0.5. Smaller pow-
ers ofρ expand the center and larger ones contract it. This usage is
reminiscent of the “fisheye lens” [9] often used as a focus+context
approach in information visualizations. However, we use root polar
coordinates as a robust layout approach that minimizes occlusion
over the entire graph rather than simply to magnify a particular fo-
cal area.

In another study of root polar coordinates, we determined that 0.5
is the optimal root ofρ for reducingσ2

D distortion as compared to
Cartesian plots. However, using other powers ofρ may be useful
to adjust the focus during security monitoring work. Root polar
plotting with trust levels provides a simple way to place thearea
of most interest to the user centrally while avoiding the distortion
inherent in normal polar plots.



5 FUTURE WORK

This section discusses a few other important directions forour fu-
ture research in this area.

Usability studies. One important future direction we plan to
take with this research is to perform usability studies on polar vs.
Cartesian coordinates to understand the cognitive implications of
plot layout. Particularly, we wish to know whether users canfind
particular addresses and determine a host’s trust level on polar plots
as quickly and accurately as they can on Cartesian plots. Another
area for usability studies is to determine how many markers auser
can comprehend on a single plot. Our root polar plotting prototype
works well for plots of 100,000 or more markers, but that does not
mean that the plot is usable. Further studies are needed now that
the technical groundwork has been laid.

Aggregation: Making good use of occlusion. In some
cases occlusion is good. In fact, aggregation techniques are simply
controlled occlusion. Estanet al.’s AutoFocus [3] aggregates net-
work traffic into groups responsible for major amounts of observed
communication. Their purpose is to make it simpler for humans to
quickly comprehend who the most active communicators are. We
would like to investigate using localized aggregation of machines
that a user sees as a group to simplify the analyst’s job.

Showing Communication Lines. The next step for the net-
work pixel map is to put it in the larger context of end-to-endcom-
munications between hosts over the Internet (see Figure 10). We
have outlined our vision for end-to-end communications visualiza-
tion in other papers [1, 5]. The pixel map only provides a layout
for the hosts that are observed communicating on the network. It
cannot show communications between these hosts by itself. What
we plan to do next is to place mirrored network pixel maps sideby
side and draw communication lines between them. This will enable
users to see communication patterns such as fan-out and fan-in eas-
ily. From this concept, we have created a prototype of the network
view in OpenGL that allows users to manipulate the display in3D
space (see Figure 11).

Figure 10: Overview of the Network Eye application.

Perceptual issues. A variety of perceptual issues need to be
investigated to determine the best ways to help our users improve
their awareness of network events. We plan to include a fisheye lens
to aid in selection of the very small host markers. Without some
kind of magnification, pixel-oriented techniques cannot easily be
used interactively. We will enable users to zoom into the home area
and examine local-to-local traffic as well, because a some propor-
tion of security problems comes from malicious insiders. Finally,

Figure 11: OpenGL prototype of the Network View.

we need to experiment with fading out inactive markers and re-
placing them with new markers. We need to ensure that our plots
maintain spatial consistency even when hosts appear and disappear
over time.

6 CONCLUSION

We have proposed root polar coordinates as an alternative tonor-
mal polar coordinates when distortion of the data’s densitymust
be minimized. This work offers the following contributionsto the
field:

• Provided a new layout that meets all the needs identified in
the problem section. We have shown that root polar coor-
dinates meets the needs outlined in our problem statement,
namely that there are relatively few “home” hosts and a rela-
tively large number of less trusted hosts, that the presentation
may be dynamic, and that most communication seen from the
inside of an organization is internal.

• Provided a way to overcome the plotting density distortion of
normal polar coordinates We have demonstrated how root po-
lar coordinates avoid the distortion inherent in normal polar
coordinates. Particularly, square root polar coordinatesnei-
ther concentrate a large number of points near the origin, nor
do they spread points out near the periphery. We believe this
shows that root polar coordinates are most useful when occlu-
sion would garble the message of the data. In our application,
using root polar coordinates will allow the users to clearlysee
the “home” hosts and will not press other categories of data
into the home space.

• Provided a means of plotting data in near real time without
complex optimization. Root polar plots help spread the data
around naturally without having to resort to computationally
expensive optimization methods. Our study has shown that
fewer collisions and thus less work to resolve them results
when root polar plotting is used as opposed to normal polar
plotting. We have also shown that root polar plots with colli-
sion resolution are quite robust when data is plotted in random
order. Thus, we have shown that root polar plotting is a good
choice for presenting data in a polar layout under tight, near
real-time constraints.



• Provided empirical comparison of Cartesian vs. polar vs. root
polar plots. We have presented a numeric proof that the plot-
ting density distortion of root polar coordinates is less than
that of normal polar coordinates. We believe our conclusions
will help visualization specialists to decide when to use nor-
mal polar, root polar, and Cartesian coordinates.
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