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ABSTRACT

This paper introduces an adaptation of polar coordinatdedca
“root polar plotting” that we have developed for our netwgikel
map—a computer security visualization capable of reptasgn
tens of thousands of hosts at a time. Root polar coordinates o
come two important problems of normal polar coordinatest pl
density distortion and severe occlusion near the origin.diseuss
several approaches we took while investigating this probded
provide empirical data from experiments we conducted comga
root polar coordinates against both normal polar and Qarten-
ordinates. In any application where a polar plot would befulse
but distortion of the data must be avoided, or where it is irtgrd
to avoid some markers from being occluded by others, rodairpol
coordinates may be useful.

Our approach provides: (1) a novel adaptation of polar doatds
that overcomes plotting distortion, (2) a means of plottiegwork
data in near real-time without complex layout optimizati8) an
algorithm that reduces occlusion of plotted points whildntein-
ing consistent placement, and (4) an empirical compari$Qacde-
sian vs. polar plots.

CR Categories:  C.2.0 [General]: Security and protection—
Software; K.6.m [Miscellaneous]: Security—Security \afna-
tions; H.5.2 [User Interfaces]: Graphical user interfa@@b/l)—
Visualizations; 1.3.6 [Methodology and Techniques]: Griap data
structures and data types—Polar Coordinates;

Keywords: Internet Protocol, root polar plot, overlap, occlusion,
plot density, pixel-oriented visualizations

1 PROBLEM STATEMENT

We are building the basis for a large-scale visualizatiomtsrnet
Protocol (IP) addresses for computer security. Part of effatt
involves plotting all the hosts recently involved in comriaation
with a set of “home” network hosts. We especially wish to make
communications between external and internal networkshast
ible so that an administrator or security officer may quicfhd
unusual communication patterns such as high fan-out, taighrf,
and normality/abnormality of connections.

We want to display tens of thousands of IP addresses usimdr pix
oriented visualization techniques. Each IP version 4 aidis
thirty-two bits long and is written as w.x.y.z where w, x, ndaz
are eight-bit unsigned integers called octets. Our firsgnapt was
to plot each IP address in Cartesian coordinates using gtefio
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octets of the address as the abscissa and the other two aglthe o
nate. While this method allowed users to relatively easitate the
general position of a given IP address on the plot, it did eadl
itself to the idea that some of the hosts are locally adnenést,
home hosts. Home was wherever your IP address mapped to on the
plot. Using polar coordinates, it is more natural to locatenk in
the center of the plot. In interviews with our user commurjdty
and a recent usability study of a prototype security awaeheol

[5] we learned that system administrators see the world chinas

as falling into two basic trust categories, “us” and “thefd] These
trust categories may be broken down into any number of aritr
categories from most to least trusted. With polar coordisz nat-
ural representation of trust levels would be nested ciraiéls the
most trusted level at the center.

Unfortunately, we encountered two major problems with redrm
polar coordinates: distortion and severe occlusion. Thjsep de-
scribes our efforts to overcome these problems and makeetste b
possible use of the display space.

1.1 Assumptions

In our application of information visualization technigu® com-
puter security, we seek to represent tens of thousands tf ks
multaneously and allow the user to display communicatidtepas
between arbitrary locations. In this part of the applicafjthe net-
work pixel map), we do not concern ourselves with the communi
cations between hosts, only about their relative placeraerthe
plot. We assume only that we know an IP address (whether real
or spoofed) for the host and that we can determine the rakttip

of a host to the home network based on this address and ortrecen
experience with traffic from the host. In this section, wecdss the
attributes of this data and our assumptions about the proffmce.

First, we assume the existence of a known set of hosts thaiean
thought of as the “home” set; that is, machines that the ueenes

are benign and well-managed. We assume nothing about the siz
of the home set except that there are probably fewer hostsein t
home set than outside it. Although the majority of traffic eved

on a given network is local-only, over time the majority oétiP
addresses seen will likely be from outside the home set.

Second, we assume data is collected within the home set &nd is
ased toward it. Network data is gathered using packet ‘&xsiff
hosts that collect traffic on the network. Especially in wlirget-
works, the traffic visible to a single sniffer is highly lotadd. Data
on other network segments cannot be sniffed without pontariirg
or other techniques. For this stage of our study, we assutgeaon
few sniffers provide the data we will visualize, and all théffers
are located within the home set. This biases the data cetldmy
limiting it to traffic originating on the home network, destid for
it, or passing through it. Thus we would expect not to seditraf
from one external host to another, but we do expect to seengkte
to internal and internal-only traffic. These kinds of traffiatterns
fit the polar layout more naturally than the Cartesian.

Third, we assume communication seen within the home set is
mostly internal. From the perspective of the home set, theee



three kinds of traffic:

1. Internak=Internal: Traffic whose source and destination are
within the home set

2. Internal~External: Communication between home and non-
home hosts (regardless of the originator)

3. External-External: Traffic from outside the network bound

we were surprised to find tha:% for root polar plots was only one
order of magnitude greater. To refine our observations, we co
ducted a study using our network pixel map displaying theesset
of uniformly spaced IP addresses on Cartesian, polar, astpm
lar coordinates. We then compared several plots of the saitae d
measuring the density variance of each graph. We fm&ﬂ)r the
normal polar plot was consistently higher, by an order of miag
tude or more, than the same data plotted on either a Cartesian

for another external location but passing through the home root polar plot with the same area.

network infrastructure.

Internak-Internal traffic is is usually the majority observed at any
interior point in the home set. While this kind of traffic has s
curity significance, it is only of secondary importance to study.

Internal-External traffic is of highest interest because we are seek-

ing to show communication patterns that are most likely teeha
security implications. ExternatExternal traffic is usually con-
sidered irrelevant since it typically comes no closer thdoaler

router. We use a polar layout with the home set near the origin

to help highlight Internal-External and InternakInternal traffic
flows.

Finally, we assume that network security analysts prefeexto

Problem 2: Occlusion in polar plots. The central clus-
tering of polar coordinates causes a second problem: donlus
With large numbers of points, a polar plot may have many kapér
markers at the center, most of them hidden by more recerdtiepl
markers. Occlusion is a general problem that happens inralsk
of graphs, but the problem is exacerbated in polar cooreénagar
the origin. We can fix occlusion by detecting collisions ana/mg
the markers around, but this makes the perceived densitythea
center of the polar plot appear worse (see the normal patas i
Figure 1). With collision resolution, the "solid” centrales looks
twice the diameter of the same plot without collision retiolu
This shows how much overplotting is happening in a normaipol

amine network data as close to real-time as possible. As a re-plot.

sult, the presentation of data for our application must redy r
on time-consuming preprocessing or computationally espen
space-optimized layout. Instead, we use the known chaistate
of a host €.g., IP address, trust categomstc.) to place it directly
on the plot. In case of collision with an already plotted hostker,

Problem 3: Smaller area of polar plots. One intrinsic
problem with polar coordinates plots is that they have djilthe
area of a square Cartesian plot whose sides are the lenghte of t
polar plot's diameter. We can mitigate the effect of the $engdlot

we move the new marker to a nearby empty space. Once a markerspace for our application by placing some markers (for thstle

is plotted, it will stay where it was placed until traffic tocafrom it
disappears from the network.

1.2 Problemswith Polar Plots

In many cases, a polar mapping of data may be more suitalii@tha
Cartesian plot. Whenever there is a single point of refexremcl the
notion of relevance to that point, polar coordinates may seful.
Examples of this kind of application are query results frosearch
engine, relevance rankings of documents in a collectiongiven
document, and social networks. However, polar coordinaits p
have several serious problems including distortion, @toly and
reduced area.

Problem 1: Distortion in polar plots. A casual glance at
Figure 1 will show how the normal polar plot tends to distéw t
data by compacting it near the center and spreading it outeat t
edges. This characteristic has been useful in certain cgtigihs
such as retinal emulation for robotic vision [10], but for appli-
cation the distortion destroys the picture we are tryinghims We
wish to plot the home set of IP addresses at the center of tte pl
but we also want to accentuate the individual members of dheeh
set. Although the home set is much smaller than the set ofrealte
addresses, we want to give the home set equal space.

The distortion due to polar coordinates can be quantifiedi- Un

formly spacedi points at intervals o%) unsigned integer data
plotted in a rectilinear plot has a constant plotting dgndihat is,
the variance of the densitgq%, approaches zero as the regularity of
the grid approaches perfect uniformity. However, scallmg data
to fit it on a 1000x 1000 pixel screen introduces round-off error
that will never allow us to attain perfect uniformity.

In contrast to the near uniformity of a Cartesian plot, a pplat
of uniformly spaced data is visibly more dense near the cemte
more sparse near the periphery. Thaé, is two to three orders
of magnitude larger for polar plots than for Cartesian. Hesve

trusted hosts) in the otherwise empty corner areas. Noppliaa-
tions can make sensible use of the corner spaces, so theiftae e
constrained to a smaller area or are subject to being cligpealir
study, to make the comparison between polar and Cartes@n co
dinates more clear, we have elected to compare our polas ot
Cartesian plots of identical area.

Although we handicap Cartesian coordinates by reducinig #te
lowable area to that of a polar plot, Cartesian plots stillehpo-
tentially higher capacity because displays are all rectm@rrays
of square pixels. However, the difference is small enougth e
did not think further handicapping Cartesian coordinatesditing
the capacities equal to that of a polar plot would make a Segmit
difference.

2 POTENTIAL SOLUTIONS

2.1 Solution 1: Fixingthe Distortion of Polar Plots

After first discovering how useful polar plots could be for appli-
cation, our next discovery was how badly they distorted thtipg
density of the data we were trying to display. In this sectioa ex-
amine some of the ways we tried to overcome our problems with
polar coordinates and how we finally arrived at the root palar
proach.

2.1.1 Log and Exponential Polar Plots

Our first attempt at fixing the artificial central clusteringssto con-
vert the polar coordinate®, 6) to (In(p + 1), 0) in an attempt to
smooth the distribution of the points. Log-polar samplifigneage
data is used in computer vision to reduce the amount of data th
must be processed by a robot in real time. The log-polar fmans
mation samples heavily near the focal point and very littkha pe-
riphery. This sampling approach mimics human and animabwis
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Figure 1: A series of plots of identical uniformly spaced IP address data. We color the markers using a Keim's HSI rainbow gradient [6] with
lower numbers at the red end of the spectrum and the higher numbers toward the violet end. Plots on the right allow points to overlap. Those
on the left use collision resolution to fix any overlap. The first two plots use Cartesian coordinates, the second two use normal polar coordinates
and the third set are root polar plots. Note the large differences in the variance of the plotting density (0[2)) between the graph types.



and is most useful in active vision where the point of refeeeis
constantly changing [2]. Log-Polar mapping is also usedgital
imagery to create more secure watermarks of copyrightegéma
that are resistant to image transformations [8]. Howewgydolar
plotting exacerbated our original problem, squeezinghalfoints
into a space less than halir{2.0)2 = 0.48) the original plot area
(see Figure 2).

Realizing that we had inadvertently accomplished the oppo-
site of our intent, we tried the inverse, convertirig,0) to
(exp(p — 1), 0). This pushed all the points out of the center leaving
a hole. After experimenting with several different loganitic and
exponential bases, we became convinced that these twaslabs
functions, however they were modified, would never do what we
intended. However, we note that the hole left in the centethiby
exponential plot could be used to an advantage later. Wel dosgt
another (non-exponential) polar plot in the center reprisg only

the home IP address space.

Figure 2: Polar plots using coordinates (In(p+1),0) and (exp(p —
1),0). The logarithmic plot exacerbates the central density distortion,
while the exponential plot leaves a hole in the middle. Using different
logarithmic bases does not correct the uneven density distortion.

2.1.2 Adaptive Density Polar Plots

Our second attempt involved predicting the optimal densftthe
plot a priori and adaptively adjusting the plotting density in the
hopes of matching the optimal density. Givemarkers of radius
and a plot radius oR we compute the optimal density 2. We
sort the IP addresses in ascending order so we can plot th@lcen
ones first. This allows us to sample the density of the alrpéatied
area only once since no later data is placed closer to thercan
what was already plotted. We then plot points on a horizog rin
expanding from the origin. We calculate the plotting dgnatteach
ring by dividing the number of points plotted by the areadesihe
horizon ring. We then adjust the plotting density to appmade the
optimal density.

Our adaptive algorithm determines the target polar coatds of

a marker,(p, 0), and adjustg to be at least the current distance
of the horizon from the origin. At each new horizon ring, wetpl
points near their targeéd’s until the density approaches the optimal
density. In case of a collision with a plotted point, our altion
adjustsf by a small valueg, calculated at each ring. We iteratively
adde to 0 at each subsequent collision until either an empty space
is found or we have adjustel by greater than 2 radians (360
degrees). If the algorithm does not find a noncolliding spafter
going all the way around, it adjusts bgthand the horizon by the
diameter of a marker and tries again. To decrease the derfishig
plot we increase the size of essentially trying less hard to fill each
ring. Conversely, to increase the plotting density, we eases,

making the algorithm try more places to fit a marker in the Zai
ring before expanding it.

The adaptive density approach produced plots that were fhessh
congested at the center than normal polar coordinates,éfdund

it very hard to adjust the density on the fly in a stable mandsu-
ally the algorithm would plot too densely near the center tgh
at about 90% of the plot radius it would have to adjust dra#itic
leaving the rest of the space only sparsely filled. The regadtan
uneven density graph interspersed with very sparse rimgsihde
it appear concentric. We found that the adaptive densityrahlgn
was inefficient because of the repeated density estimatiopsred.
The collision resolution approach often required manytjpigtat-
tempts before an empty space was found. Finally, we founekit v
difficult to stabilize the density adjustment even for unificandom
data. Real IP data, with its discontinuities was practjcatipos-
sible to plot well using the adaptive algorithm. Althoughpirave-
ments in the algorithm may somewhat mitigate the problenss, w
abandoned the approach in favor of a more natural solutmot, r
polar coordinates.

2.1.3 Root Polar Plots

What we needed was a function pfthat grew more rapidly than
linear at first and smoothly slowed its growth rate to the edfge

the plot (atp = 1). A simple function that behaves this way is
the square root function (see Figure 3). The early rapid traf

f(p) = /P causes the points near the center to be spread out more.
The later slow growth (relative to linear) causes the poamsity

to increase near the periphery. This shape naturally coasttethe
density distortion that arises from plotting in polar cdoades.
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Figure 3: Graph of x, In(x+1), exp(x—1), /X, and X showing their
relative behaviors in the interval [0,1]. Note how /X crosses X at
x=0, grows rapidly at first (causing relative sparseness near the
center), and gradually tapers off until the plots meet again at x=1.
The growth pattern naturally counteracts the density distortion of
normal polar coordinates in this interval.

Since we could constraip to be between zero and one, we did
not have to worry about taking square roots of negative nusabe



The resulting “root polar” coordinates worked very well bhat re-
moving the artificial clustering at the center and smootlingthe
variance of the distribution of markers throughout the pRxot po-
lar plots are also not greatly affected by the plotting ordemov-
ing the reliance ora priori knowledge of the data or pre-sorting.
To precisely measure the distortion differences, we us#dnany
spaced data. On a rectilinear plot, this data looks like @ketg-
ular, slanted lines, while the polar version produces aatp#ny
deviation from the regularity of the Cartesian plot is thasyeto
notice and measure. It is also relatively easy to informa#igess
the regularity of the distance between the lines. With th pm-
lar plot, it is easy to see that the spiraling lines are mogelleely
spaced over the length of the lines than a normal polar plthef
same data (see Figure 4).

Normal Polar Root Polar

Figure 4: Normal and root polar plots of 5,000 uniformly spaced IP
addresses with a marker radius of 2.5 pixels. Note the regularity of
the distance between the spiral lines in the root polar plot over the
length of the lines. This produces very low density variance. Note
also the relative sparseness and reversed spiral direction at the center
of the root polar plot. This indicates that the root polar plot does
spatially distort the data near the center.

The root polar plot is not without its problems though. Asp-
proaches zero, the slope @fo approaches infinity. This leaves us
with a very sparse center, but the result does not appregcadigict
the density distribution of the rest of the points on the prafp re-
lated feature arising from the steep slopg/Gf nearp = 0.0 causes
the central spirals to reverse directipr< 0.25, where the slope is
> 1. The reversal implies that root polar plots induce soméapa
distortion. Thus, polar plots reduce density distortiothatcost of
distorting the relative positions of markers near the aeif@@ae can
see this by comparing a normal and root polar plots of unifdata
(see Figure 4).

2.2 Solution 2: Fixing occlusion in polar graphs

There are two basic approaches to resolving occlusion, ared

non-grid based approaches. In both approaches, if a newemark

plots to a position overlapping existing markers we movdsee
where. Using a grid simplifies the matter by constrainingpaH
sitions to a finite number of non-overlapping slots. The giid-
plifies the calculation of the new position at a potentialtadshot
packing markers quite as tightly as a non-grid approach migtr
our purposes we consider only grid-based approaches.

Alternative 1: Nearest neighbor. The simplest way to po-
sition a new point that would occlude one or more other paeits
to move it to a nearby, unused grid location. We calculatedhe
get rank,p = [% +0.5J. We keep track of which ranks we fill
completely so we can select the lowest non-full rank gretatar or
equal top as the actual rank). Then we calculate the target slot,

6 = {% |21 | +O.5J. I this slot is occupied, we try the slots to

the left and right 0B, wrapping around at zero if needed. The first
empty slot we find on rang becomes the actual sld,

In this application it is important to consider what moviriget
marker from(p, 6) to the unoccupied positiof, 8) will mean
to the user. In our visualization we chose to place lesseduatl-
dresses further from the center (by increagingbut the radial co-
ordinate ) means nothing to us. So all the points at the s@me
are at the same level regardlesstof Therefore, when a collision
occurs, we resolve it by changirfly increasingd only if there are
no slots open at the rank

We found that although the root polar plotting method worlithw
out regard to the plotting order, plotting the points soiitedonde-
creasingo-order is helpful both to avoid collisions and to guarantee
that our nearest-neighbor collision resolution algoritwiti never
place markers with largep values closer to the origin than any
marker with a smallep value. If points are not plotted in nonde-
creasingp-order it is possible that collision resolution will cause
some markers to be placed out @forder as shown in Figure 5.
The seriousness of this out-of-order plotting depends an fudi

the plot already is. The worst case happens when markerdaire p
ted in nonincreasing-order. Because the plotting order of recently
seen IP addresses cannot be known in advance, it seemshaear t
collision resolution will result in some out-of-order pliog.

Figure 5: When IP addresses are plotted in random order collision
resolution can force some out-of-order plotting. We plotted the same
set of 8,513 real IP addresses with both root and normal coordinates
in the same random order. Serious out-of-order plotting is evident in
the normal polar plot (left) by the red points that appear far from
the center, out of spectral (and thus numeric) order. The root polar
plot (right) naturally spreads the data out better, so it is more robust
with randomly ordered data.

Alternative 2: Space-filling curves. Keim mentions the use
of space-filling curves [6], especially the Peano-Hilbent ahe
Morton curves, as an alternative to nearest neighbor planem
Space-filling curves are a method of mapping one-dimenkitata
into a two dimensional space. In this application a spatiagfil
curve would plot the points along a singddine and then fold this
p line into a regular two-dimensional, recursive patterr fitla the
plot space and attempts to keep therder of the points, within rea-
son. Keim found these curves produced good clustering afakee
but were difficult for users to interpret because the arrareye was
not intuitive. We prefer a nearest-neighbor algorithm hiseait is
not nearly so complex for dynamic layout as a space-fillingyeu
would be.

Alternative 3: Keim’s Gridfit. Keim goes on to describe
his Gridfit algorithm [7] that optimizes the placement of mlark-
ers by hierarchically partitioning the data space into egians. We



would like to try this method in future implementations arahe
pare it with our current nearest-neighbor approach. Neasigh-
bor is more straightforward to implement, is nearly as speitie
cient, and does not requiegpriori knowledge of the data as Gridfit
does. We were also concerned about the potential complekity
using Gridfit in a near-realtime environment because of titerp
tial for cascading movement of markers that might occur. tRer

meantime we chose to use the simplest method since the fécus o

this research is on the polar vs. Cartesian plots ratherdhathe
packing algorithms.

2.3 Solution 3: Fixingthesmaller area of polar plots

The most difficult intrinsic problem with polar coordinatissthat
given a square plotting area, a polar plot has dhiymes as much
usable space as as an equivalent Cartesian plot. An addition
itation is that a polar grid is a set of nested rings arouncbtigin
rather than tightly packed rows. Given the plot radiRsand the
radius of a marker,, the number of enclosing ranks,in the plot is
[REC] —1. We have a single marker at the origii{{) = 1), and at
theith ring we have 2mi | slots. Thus the total number of markers
in an area circumscribed by rings f(i) = f(i—1) + |2mi|. Ex-
panding this recursive formula yieldgk) = z};ﬂzmj We were
unable to derive a closed form for this sum, because of the floo
function. However, we can provide a reasonably tight upjoemid
forit, f(k) < |mk(k+1)].

In the circumscribed square whose sides are lenBthv@ can fit
more markers, a fullk? of them. In our application, we can mit-
igate the smaller area of polar plots by allowing our polaitl
to exceed their normal bounds but constraining the pogitgpof
these points to the circumscribed rectangular region. riisdly,
we can fill in the corners with the overflow. This approachwa#io
us to approach the capacity of a Cartesian plot.

3 EMPIRICAL COMPARISON OF PLOT TYPES

We implemented a prototype network pixel map to compareeCart
sian, polar, and root polar plots of IP addresses. We usedthinwi
groups, full factorial design with four factors:

1. Plottype, 3 levels: Cartesian, polar, or root polar

2. Number of IP addresses (n), 6 levels: 1K, 2.5K, 5K, 10K,
25K, and 50K

3. Collision resolution (CR), 2 levels: on or off
4. Marker radius (r), 2 levels: 0.5 or 2.5 pixels

We ran all 72 possible iterations with uniformly spaced dataer
than actual IP data as a control so we could measure diffesenc
the variance of densitwé, without introducing artificial density
distortions that occur in real data. The experimental digrh are
summarized in Table 1.

When collision resolution is on, we constrain marker plagem
with a grid, and allow no two markers to occupy the same slot.
The effect is to spread out the more densely populated grask;

ing the overflow into adjacent sparse areas. When collisgso-r
lution is off, we simply plot all markers at their true (raththan
grid-constrained) coordinates. Marker radius interadth wolli-
sion resolution because larger markers take up more spdderach

to cause more collisions. Large marker radius dramaticatiyces
the capacity of the plot area from about 455K to 18K nonoyerla
ping markers.

Group | Exp. Set| CR | r n
1-3 off | 05| 1K
4-6 Ooff | 0.5 | 25K
| 7-9 off | 0.5 | 5K
10-12 | Off | 0.5 | 10K
13-15 | Off | 0.5 | 25K
16-18 | Off | 0.5 | 50K
19-21 [ Off | 25 | 1K
22-24 | Off | 25 | 25K
I 25-27 | Off | 25 | 5K
28-30 | Off | 25 | 10K
31-33 | Off | 25 | 25K
34-36 | Off | 25 | 50K
37-39 | On | 05 ] 1K
40-42 | On | 0.5 | 25K
m 43-45 | On | 05 | 5K
46-48 | On | 0.5 | 10K
49-51 | On | 0.5 | 25K
52-54 | On | 0.5 | 50K
55-57 | On | 25| 1K
58-60 | On | 25 | 25K
Y, 6163 | On | 25 | 5K
64-66 | On | 25 | 10K
67-69 | On | 25 | 25K
70-72 | On | 25 | 50K

Table 1: Experimental design table. Each group (I-1V) of exper-
iment sets holds the collision resolution and marker size constant.
Comparisons between groups are not valid.

3.1 Comparison of Plotting Density

The most important difference between normal and root paitzs
is in the distortion each induces on the data. The goal fordbée
polar plot was to avoid ths[% distortion seen in normal polar plots.
We were not concerned with th@distortion that occurs near the
center of root polar plots becaufeis immaterial for our applica-
tion. Since our experiments used uniform data the plottiemsity
of a Cartesian plot is approximately uniform. Thus, theaace of
the plotting density for the Cartesian pIo(% approaches
zero.

Cartesian’

To estimate the density, we take a number of samples by giacin
grid of constant-sized (relative to the marker radius),avenlap-
ping tiles over the whole plot area (see 6). We then count tine-n
ber of markers that overlapped each tile and estimate thal gt
variance of the number of markers found over all the samples.

We found the mean density of all three plot types to be vergeclo
for each data set since we kept the area of all plots the samidea
cause the same amount of data was plotted each time. We etiserv
the biggest difference in the comparison of the varianceensity
(see Figure 7). In every experiment set except 67-69 and27he
computed variance of the normal polar plot was at least aeraf
magnitude higher than the variances of the corresponding§an
and root polar plots.

Experiment sets 67-69 and 70-72 were pathological caséscafit
lision resolution, a large number of markers, and a largekerar
radius. Thus, these plots were filled beyond capacity arnzbébto
be completely regular within the entire sampled plot aredhiw
the sampled area, the normal and root polar plots were constt
to be equal. In every other casg,,ma Was between 2 and 269

times greater thaad . Except for the two cases with the largest
number of markers (50K) and the small marker size (008), o«



Figure 6: An example of how we sample density on the completed
plots. Each white rectangle represents a density sample. We count
the number of markers within each rectangle and compute the vari-
ance. We use this metric to compare density distortion between plot
types.

. . . 2
was within one order of magnitude ©ff cyeqqan- IN these two
exceptional casesJ o, Was within two orders of magnitude of
2 ile g2 3 i
OB Cartesian While 0F o Was five orders of magnitude greater.

Because we used uniform data with points at equal intereais,

study does not make use of any random process. Thus, statisti
cal comparisons are not appropriate, and we can simply mecla

that our study numerically proves that root polar coordinatis-
tort the plotting density less than normal polar coordisate for
the tested conditions. A previous study used uniform randata
and showed the same results statistically. We believe odinfijs
are a strong indication that root polar coordinates wiltatisthe
plotting density less than normal polar coordinates undeoadi-
tions likely to occur in our application.

3.2 Comparison of Callision Rates

We define a “collision” to be whenever the marker of a data fpoin
to be plotted overlaps one or more already plotted markete T
mean collision rate is the expected probability that a neimtpmn

a plot will at least partially occlude some other points. Vdertt
collisions each time the algorithm attempts to place a newkena
where one is already plotted.

All three plot types use the same collision resolution athar, so
we expect the differences in mean collision rate to be all wue
the plotting densities. We found only one experiment setreshe
the mean collision rate for normal polar coordinates was fban
that of root polar coordinates. All other times the collisitate
of normal polar coordinates was one to four orders of magritu
higher than either root polar or Cartesian.

The variance of the collision rate tells how much the mealisioh
rate is expected to change from place to place on the plotaltoic
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Figure 7: Ratios of plotting density variance for normal and root polar
plots to that of Cartesian plots of identical data. Groups | and Il have
collision resolution disabled; groups | and Il use the small marker size.
Note that normal polar coordinates has more variation in every case
except the the last two experiments. These are pathological cases
with collision resolution and large numbers of large-sized markers.

late the variance of the collision rate, we kept runninglsotd the
number of collisions in each rank of each plot type. Then wewca
lated the variance of the number of collisions in each ransenil
polar coordinates distort the data so much that the cafiiggmiance
of a normal polar plot is considerably higher than for Casatle®r
root polar plots. Basically, variance of a collision ratdizates how
well the data is spread around or clustered on a given plongJs
uniform data allows us to measure the distortion induceddnhe
kind of plot. We believe that the very high collision variascfor
normal polar coordinates are a second evidence aighdistortion
induced by polar coordinates.

3.3 Comparison of Run Times

The run time of the plots is a much less robust measure ofteféec
ness because run time (especially in scripting languagéemgn-
tations) is influenced by so many uncontrollable factorghsas
garbage collection and external utilization of the prooessiow-
ever, recording the run times helped us to see a correlagiween
collision rate and run time. When a plot becomes very densely
packed and collision resolution is enabled, the plottirgpathms
spend most of their time resolving collisions.

On the whole, both types of polar plots ran in about twice bimet
as the Cartesian plots of the same data under the same oosditi
Normal polar plots outperformed root polar slightly, bustts not
surprising since the two share the same code with the orfigréif
ence being theg/p coordinate transform. In a few high-density
cases the higher number of collisions incurred by the nopuokir
plots actually caused it to run slower than the equivaleot pm-
lar plots. The polar and Cartesian plotting algorithms dse wery
similar with only a few small implementation differenceglie way
the coordinates are calculated and the way collisions aved.

4 APPLICATION

Two questions remain about the application of root polardieo
nates to IP address plotting for near real-time securityitndng:



1. Is the root polar plotting method equally apt with real tR a
dress data?

2. How do we place the “home” network’s addresses in the cen-
ter?

In this section, we will answer these questions and discusg
plementation approach.

4.1 Real IP Data

We searched for good samples of IP address data on the Inter-

net, but found no suitable sample. Available data had elleen
anonymized (destroying the original distribution) or udetS

names rather than IP addresses (and in most cases names ha§

changed, making reverse lookup impossible). As a work+aipu
we collected 8,513 unique IP addresses from a single waditsta
using tcpdump over a period of two weeks. While the distrdyut
of this data is almost certainly not the same as the true (akidaw-
able) distribution of all IP address data, it does fit our agsion
that data collected by local sensors will be locally biased.

We found the distribution of IP addresses to be clusterexlsat/-
eral bands (see Figure 8). Because of the banding we inaigubr
a spreading algorithm in the calculation of polar coordésatThe
spreading algorithm does rely @priori knowledge of the distri-
bution of the data, but it is not unreasonable that this kedgé
could be part of a local profile that changes only rarely.

Figure 8: A root polar plots (with CR) of 8,513 IP addresses col-
lected from a single point via tcpdump. Major clusters appear in the
24.0.0.0/8, 60.0.0.0/5, 80.0.0.0/5, and 128.173.0.0/16 blocks (the
latter being the campus's IP block and colored bright green). Smaller
clusters appear higher up as well. The plot on the left shows the raw
data without spreading. On the right we have applied the spreading
algorithm.

4.2 PuttingHomein the Center

We have seen that root polar coordinates can effectivebeshreal

IP data so that the display space is much more evenly utilided-
ever the real advantage of root polar over normal polar patear-

est when we tackle the problem of keeping the “home” netwbrk a
the center of the plot.

To do this, we have developed the concept of trust levels. alot
hosts on the Internet are trusted equally. In fact, mostrozga
tions have a “white list” of address spaces they administer a
“black list” of address ranges known for previous malicibehav-
ior. Between the two is the murky set of addresses that anglgim
unknown. Of the unknown addresses, there are probably swamhe t
an administrator may expect to be commonly accessed by &iis,us

such as search engines. An administrator within the orgtioiz
may also subdivide the organization’s “whitelist” into & séma-
chines he administers (and thus has a personal stake inpatitea
set with the rest of the enterprise’s addresses. For ouicagiph,
we define up to five trust levels: self, enterprise, safe, ankn and
dangerous. Of course an administrator may choose to usetanly
minimal set of trust levels: “us” and “them.” The number oféés
(as long as it stays reasonably small) is unimportant. Usimgf
levels, we can plot the most trusted (“home”) nodes in théezen
obtain plots like those shown in Figure 9.

Unknown

Enterprise

Self

Safe

Danger

Figure 9: Normal and root polar plots of IP data with five arbitrary
trust levels superimposed. As before, the color gradient indicates
the relative value of the addresses plotted (spectral with lower values
toward the red end and higher values toward the violet end). Now,
however, we plot addresses from low to high value within their trust
level. All addresses within a given trust band are assumed to be
(dis)trusted equally.

Givenl trust levels, we plot— 1 rings, with theth ring atp; = ,ﬁ'—l
from the origin. For root polar plots, we transforo as well so
the innermost circle is disproportionately large. Each diérass
has an associated trust level assigned according to howt® C
block is classified by administrative policy. To place an tleless
whose trust level i$ we calculate a trust modifien = ﬁ Then
we plot the marker atp rather tharp (wherep has already been
subjected to coordinate transforms). This places the mank&le
the appropriate trust ring or outside all of them (for “damyes”
hosts).

In Figure 9, the center (representing machines managechystr)
is larger, allowing more accurate analysis of the machihesuser
cares about and natural aggregation of those he cares lags Aln
important difference between the plots may be seen in thengre
colored markers in the innermost trust level. In the nornhat, phe
distortion coupled with collision resolution has forcegsk mark-
ers to circle about the origin several times. But in the radapplot
these hosts do not even complete a single revolution evergtho
there are many of them.

Further, we can expand or contract the size of the central laye
applying different powers b instead of,/p = p%5. Smaller pow-

ers of p expand the center and larger ones contract it. This usage is
reminiscent of the “fisheye lens” [9] often used as a focusted
approach in information visualizations. However, we uss polar
coordinates as a robust layout approach that minimizessioel

over the entire graph rather than simply to magnify a pakicio-

cal area.

In another study of root polar coordinates, we determined @%
is the optimal root o for reducingo,% distortion as compared to
Cartesian plots. However, using other powergpahay be useful
to adjust the focus during security monitoring work. Rootapo
plotting with trust levels provides a simple way to place #rea
of most interest to the user centrally while avoiding thetattson
inherent in normal polar plots.



5 FUTURE WORK

This section discusses a few other important direction®fwrfu-
ture research in this area.

Usability studies. One important future direction we plan to

take with this research is to perform usability studies olapes.
Cartesian coordinates to understand the cognitive inpics of
plot layout. Particularly, we wish to know whether users iad
particular addresses and determine a host’s trust levedlam plots
as quickly and accurately as they can on Cartesian plotsth&no
area for usability studies is to determine how many markersea
can comprehend on a single plot. Our root polar plottingqiygte

works well for plots of 100000 or more markers, but that does not
mean that the plot is usable. Further studies are needed haiw t

the technical groundwork has been laid.

Aggregation: Making good use of occlusion. In some
cases occlusion is good. In fact, aggregation techniquesiaaply

controlled occlusion. Estagt al.'s AutoFocus [3] aggregates net-

work traffic into groups responsible for major amounts ofesied
communication. Their purpose is to make it simpler for hugnian

quickly comprehend who the most active communicators are. W

would like to investigate using localized aggregation ofchiaes
that a user sees as a group to simplify the analyst’s job.

Showing Communication Lines. The next step for the net-
work pixel map is to put it in the larger context of end-to-eun-
munications between hosts over the Internet (see Figure \M@)
have outlined our vision for end-to-end communicationsiaiga-
tion in other papers [1, 5]. The pixel map only provides a layo
for the hosts that are observed communicating on the netwlork

cannot show communications between these hosts by itsdiait W

we plan to do next is to place mirrored network pixel maps bigle
side and draw communication lines between them. This wilbén
users to see communication patterns such as fan-out and &as-
ily. From this concept, we have created a prototype of thevowkt
view in OpenGL that allows users to manipulate the displagin
space (see Figure 11).
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Figure 10: Overview of the Network Eye application.

Perceptual issues. A variety of perceptual issues need to be

investigated to determine the best ways to help our usersoirap
their awareness of network events. We plan to include a feskems
to aid in selection of the very small host markers. Withoutso
kind of magnification, pixel-oriented techniques canndiilgebe
used interactively. We will enable users to zoom into the damea
and examine local-to-local traffic as well, because a soropqur
tion of security problems comes from malicious insidersaHy,

Figure 11: OpenGL prototype of the Network View.

we need to experiment with fading out inactive markers and re
placing them with new markers. We need to ensure that ous plot
maintain spatial consistency even when hosts appear aappgiar
over time.

6 CONCLUSION

We have proposed root polar coordinates as an alternatiserto
mal polar coordinates when distortion of the data’s densitist
be minimized. This work offers the following contributiots the

e Provided a new layout that meets all the needs identified in

the problem section. We have shown that root polar coor-
dinates meets the needs outlined in our problem statement,
namely that there are relatively few “home” hosts and a rela-
tively large number of less trusted hosts, that the pretienta
may be dynamic, and that most communication seen from the
inside of an organization is internal.

Provided a way to overcome the plotting density distortibn o
normal polar coordinates We have demonstrated how root po-
lar coordinates avoid the distortion inherent in normalapol
coordinates. Particularly, square root polar coordinatss
ther concentrate a large number of points near the origin, no
do they spread points out near the periphery. We believe this
shows that root polar coordinates are most useful when occlu
sion would garble the message of the data. In our application
using root polar coordinates will allow the users to cleadg

the “home” hosts and will not press other categories of data
into the home space.

Provided a means of plotting data in near real time without
complex optimization. Root polar plots help spread the data
around naturally without having to resort to computatignal
expensive optimization methods. Our study has shown that
fewer collisions and thus less work to resolve them results
when root polar plotting is used as opposed to normal polar
plotting. We have also shown that root polar plots with eolli
sion resolution are quite robust when data is plotted inoand
order. Thus, we have shown that root polar plotting is a good
choice for presenting data in a polar layout under tighty nea
real-time constraints.



e Provided empirical comparison of Cartesian vs. polar vst ro
polar plots. We have presented a numeric proof that the plot-
ting density distortion of root polar coordinates is lesarth
that of normal polar coordinates. We believe our conclusion
will help visualization specialists to decide when to use-no
mal polar, root polar, and Cartesian coordinates.
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