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Abstract—The nascent field of Explainable AI seeks to unmask the underlying details of black
box learning algorithms, enabling these algorithms to explain their state and results to human
analysts. However, to truly enable interactive AI, we argue that there exists a second black box
representing the cognitive process of the user, containing information which must be
communicated to the algorithm. Using this “Two Black Boxes” problem as motivation, we
present a symmetric, collaborative human-AI model using Semantic Interaction as a design
philosophy to connect human and machine. We discuss challenges associated with each phase
of communication between the pair of cooperatively-learning entities and the benefits that
emerge from combining the expertise of the human and the AI.

IN DATA analytics, the “black box” problem
denotes the challenge that artificial intelligence
(AI) algorithms in general, and neural network
models in particular, suffer from opaqueness.
These algorithms can supply useful results, such
as finding novel latent structure in otherwise
difficult to comprehend data. However, they typi-
cally do not provide any justification or rationale
for their output. Users of these algorithms are
therefore faced with the decision of whether to
accept the results at face value, without the ability
to question or understand the underlying process.
This problem has resulted in the “Explainable AI”

(XAI) research agenda, which seeks to open the
black box of these algorithms and explain their
results to human analysts. Analysts can thereby
inspect the algorithms and gain insight into how
the analytical results were discovered by the al-
gorithm, the process trail, analytical provenance,
and supporting data. This is represented by the
right-pointing arrow in Figure 1.

However, this is only half the problem in
human-AI interaction for data analytics. We posit
that there is another black box in the equation
— the black box of human cognition. Analysts
conduct cognitive sensemaking activities, and as a
result of these thought processes, also want to be
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Figure 1. The two black boxes of interactive AI, human cognition and AI algorithm, are connected via two
communication channels that can be mediated by Semantic Interaction (SI) systems (#1). Explainable Cognitive
Intelligence (XCI) transmits information from the human to the AI (#2–3), while Explainable Artificial Intelligence
(XAI) transmits information from the AI to the human (#4–5).

able to influence the algorithms to produce results
of interest to their sensemaking. However, from
the perspective of the algorithm, the human mind
is a black box that is equally (or perhaps even
more) difficult to interpret. How can the human
“explain” herself to the algorithm, so that the
algorithm can respond to her internal thought pro-
cesses, goals, motivations, expert domain knowl-
edge, and intents? How can the machine learn
from user interaction? To parallel XAI, we refer
to this communication channel as “Explainable
Cognitive Intelligence” (XCI), represented by the
left-pointing arrow in Figure 1. We refer to both
communication challenges together as the “Two
Black Boxes” problem.

A goal of research in this area is to optimize
the strengths and mitigate the weaknesses of the
human and the machine. The human is skilled
at conducting cognitive sensemaking such as ab-
ductive reasoning, inference, making judgements,
and bringing domain expertise to bear, while the
machine can efficiently discover implicit knowl-
edge or hidden patterns in large-scale data. Many
intelligent systems are designed so that humans
can focus on the high-level analysis, supple-
mented by the low-level details provided by the
machine. A truly hybrid human-AI co-learning
system will perform this task while also fostering
increased trust and communication between the
two entities, enabling the human to understand
and apply the analyses of the machine (XAI)
while the machine learns and adapts from the
human cognition (XCI), thereby enabling bigger

and better analysis.
Our contribution in this work is a discus-

sion of five notable challenges that must be
addressed to create such hybrid human-AI co-
learning. These challenges are focused on the
communication channels between the human and
the AI. As shown in Figure 1, the black boxes
of the human and the AI can be accessed by
interactive analytical systems, but the actions
of contextualizing, externalizing, and interpreting
the knowledge of both entities are challenges that
must be addressed. Throughout this article, we
use Semantic Interaction [1] as a running example
to discuss these challenges within the context of
interactive sensemaking of textual information.

An Overview of Semantic Interaction
Semantic Interaction (SI) is a design philoso-

phy featuring a means to directly interact with
modeled representations of data in interactive
systems. Often also referred to as demonstrational
interaction, the high-level goal of SI is to shield
the user from the complexity of tuning underlying
computational models and maintaining their focus
on the data while still benefiting from those mod-
els. To do so, the user performs actions within the
visual representation to communicate a desired
outcome, and the system attempts to learn an
update to those underlying models that will create
that outcome. As a result, the system can infer the
intent of the user from a sequence of interactions.

For example, the StarSPIRE [2] and Cos-
mos [3] systems enable analysts to spatially or-
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ganize collections of textual documents. These
systems model the human sensemaking process
as two sub-processes: a foraging process and a
synthesis process (see Pirolli and Card [4] for a
thorough discussion of this sensemaking process).
As analysts organize important documents, the
AI provides support by foraging relevant doc-
uments onto the screen and synthesizing those
documents into the structure of the user. Indeed,
using computational support in the background to
support the analysis of the user has been shown
to enhance the capabilities of the user in several
performance measures [5].

The visual interface of StarSPIRE consists of
documents (or glyphs representing documents)
within an open workspace. By manipulating these
documents through interactions such as high-
lighting words, annotating notes on a document,
and changing the position of documents in the
workspace, the system can infer both documents
the user may be interested in and why those
documents appear to be interesting. Using this
inference, the system can search for additional
relevant documents, restructuring the workspace
to better match the needs of the user. In a simi-
lar manner, the AxiSketcher system [6] permits
a user to sketch a path over a workspace; in
response, the system forms the axes that best
combine attributes of the data to simplify that
path.

Challenge 1: What is the Loop?
Several phrases are used in visual analytics

to describe the roles of humans and AI in the
workflows of interactive systems. “Human in
the Loop” describes interactive systems that are
commonly designed so that analytic algorithms
occasionally consult humans for expert feedback.
In other words, the human is one step away from
being a bystander in the computational process,
only occasionally chiming in to provide course
correction or to respond to system inquiries.

At the other extreme is “Machine in the
Loop,” in which the human is primarily in charge
of the analysis process, occasionally consulting
the machine for suggestions or assistance in prob-
lems that require computational prowess [7]. Such
a model is useful for creative exercises driven by
human agency, in which occasional tasks such as
sorting or otherwise arranging a large collection

of documents by some priority metric support a
larger human activity.

Each of these extremes can be appropriate for
certain classes of problems, but are not univer-
sally applicable. The amount of automation and
the amount of human intervention required in an
arbitrary workflow is dependent upon factors such
as the data, tasks, and users. Work by Chen and
Ebert [8] argues that building data intelligence
workflows to consider these factors necessitates
an optimization-based design strategy.

For the case of sensemaking, the “Human
is the Loop” approach proposed by Endert et
al. [9] emphasizes understanding the underlying
cognitive sensemaking processes of users, and
then fitting computational support into the exist-
ing workflow. Thus, the focus is on sensemaking
loop [4], modeled and augmented with AI meth-
ods for the foraging and synthesis sub-loops.

Understanding the best method for integrating
AI into existing human-centric processes is a
challenge, but we argue that the challenge goes
one step deeper. The AI should not just assist the
user, but should also improve its understanding
of the goals and processes of the user in order to
provide better assistance over time. Such sense-
making is not just a human-centric process, but
should also be a goal of the machine, forming a
cooperative learning loop. The “Machine Learn-
ing from User Interactions” (MLUI) Workshop1

is a venue focused in this area of computationally
understanding the behaviors of a user.

Considering again the examples of StarSPIRE
and Cosmos, we see that both systems are de-
signed so that the human and the machine coop-
erate in exploring and making sense of document
corpora. An iteration of the learning process
begins with a human interaction in the synthesis
phase, performing some action to better under-
stand the on-screen information. The AI detects
this action and incrementally learns the interests
of the user based on a sequence of such actions.
From this learning, the AI can then forage for
other relevant documents to present to the user.
This synthesis-driven foraging [5] then leads to an
updated layout structured around the interests and
goals of the human, in which the new information
is placed in context. The human can then ingest

1https://learningfromusersworkshop.github.io/
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this new information and situate it appropriately
into their mental model before beginning the next
step in their analysis. Overall, this interaction
loop works in such a way that the AI learns the
interests of the human, providing computational
support to aid the human cognitive process.

For this cooperative learning loop to function
optimally, both the human and the AI need to
understand the other. If the human black box
remains closed to the AI, the AI cannot provide
the best computational assistance. Likewise, if the
AI black box remains closed to the human, the
human may not trust the suggestions that they re-
ceive. In order to open both black boxes fully, we
need to address four additional communication
challenges: extracting cognition from the human,
presenting that cognition in a meaningful way to
the AI, extracting information from the AI, and
presenting that information in a meaning way to
the human.

Challenge 2: Externalizing Cognition
In the XCI communication channel, extracting

the cognitive state of the human is a major
challenge that must be addressed. Without knowl-
edge of the thoughts and conclusions made by
the human, the AI has no information to draw
upon in order to learn and improve. Distributed
cognition [10], the process of externalizing and
sharing cognitive resources in order to extend
individual cognitive limits, serves as one means of
extracting such information. Humans often make
use of physical notes, diagrams, and lists to exter-
nalize knowledge, reveal relationships, and recall
information. Converting such artifacts to digital
form provides a mechanism for the machine to
learn the thoughts of the human.

Embodied interactive systems provide means
for humans to use virtual spaces to externalize
their thoughts. For example, the “Space to Think”
study [11] discovered how large, high-resolution
displays (Figure 2) support human sensemaking
processes by becoming a part of the distributed
cognitive process. In addition to demonstrating
how the large display served as an external mem-
ory, these studies also uncovered the semantic
layers of the space. Analysts used order, prox-
imity, and alignment to encode pairwise rela-
tionships, create clusters and lists, and generally
express mental associations in a digital space. The

Figure 2. Large displays can be used to externalize
the thoughts and conclusions drawn by a human.

space provides the interaction medium by which
the human naturally and efficiently externalizes
their cognition.

The space not only helps human cognition,
but also can provide AI a window into human
cognition. The semantic relationships that an an-
alyst externalizes can be utilized to model the
cognition of the human via SI. This technique has
been demonstrated in StarSPIRE [2], where the
“space to think” was modeled as a metric learn-
ing and dimension reduction process. Distributed
cognition spaces can serve as the common ground
between the two black boxes.

Other structural metaphors exist to enable
humans to externalize their cognition. Trees and
related hierarchical structures such as file sys-
tems enable users to interactively categorize
and form associations between groups of doc-
uments. Smaller-scale interactive spaces enable
users to interact with both documents and high-
dimensional quantitative data in virtual large
spaces [3], [12], [13] rather than relying upon the
physically large spaces seen in “Space to Think.”
Sketching interactions represent a more complex
medium to externalize a thought process, such as
demonstrating a desired axis in AxiSketcher [6].
Additionally, future research can extend these
techniques into augmented reality (AR) and vir-
tual reality (VR) spaces, providing even richer
“space to think.”

The key to enabling AI to learn from these
metaphors is discovering how cognition reveals
itself in particular interactions and scenarios,
making use of human-computer interaction (HCI)
techniques such as think-aloud studies and semi-
structured interviews. Discover the natural way
that humans want to perform an action rather
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than forcing them into an artificial externalization.
Would a user rather drag two documents closer
together to demonstrate a degree of similarity, or
should they select both documents, open a dialog
box, and drag a slider?

Challenge 3: Cognitive Input into AI
The XCI process is not complete without con-

verting the externalized cognition of the human
into a form understandable by a machine. In
other words, the high-level interactions performed
by the human must be transformed into a set
of parameter and value updates that reflect the
intentions underlying the interactions. The AI can
then learn about the needs and interests of the user
from these parameter updates.

An important usability challenge is that typi-
cal machine parameters are low-level and require
premature formalization, both mismatches for hu-
man cognition. A common example is the k-
means clustering algorithm, which requires prior
specification of the parameter k, the number of
clusters, well before the human analyst has cogni-
tively formalized how many clusters she is inter-
ested in. Similarly, model parameters such as term
weights are too low-level, as human sensemaking
emphasizes higher-level concepts and events. In-
stead, a design goal is to contextualize the inputs
within the cognitive space to think by recasting
natural sensemaking interactions (e.g. moving,
highlighting, annotating, searching) into underly-
ing parameter manipulations via methods such as
heuristic interpretation or machine learning.

Identifying the appropriate mapping between
interaction and parameter is a problem-specific
process, as each system will have a set of unique
interactions and unique parameters to connect. To
continue the StarSPIRE example from previous
sections, the system maps a “relevance” weight to
the words contained within each document. As a
user performs interactions on those words such as
highlighting, this weight is increased, demonstrat-
ing increased user interest in that term (Figure 3).
Similar interactions also exist at the document
level, including opening and closing documents
and overlapping them. These interactions inform
the importance of each term, which further drives
the foraging process.

The goal of the SI paradigm is to shield users
from the complexity of these low-level param-

Figure 3. Clustering documents, highlighting, and
annotating are actions that an analyst would ordinarily
perform while exploring a document collection. SI
uses these actions to learn the interests of the human,
converting them into model updates.

eters, making use of existing interactions that
users will perform in their natural sensemaking
process. In doing so, a human can naturally
interact with the system while supported by the
AI in an unobtrusive manner. The mathematical
underpinnings of this technique are summarized
in Visual to Parametric Interaction (V2PI) [14].
As the human will be performing such actions
during their sensemaking process, making use of
them to drive AI support is effectively a “cost-
free” extension of those interactions.

A parallel can also be drawn to research
in the area of adaptive search algorithms. Such
algorithms change their behavior based on new
information available as they continue to run,
providing better results over time as they optimize
based upon their knowledge. Indeed, StarSPIRE
improves its understanding of the search interests
of a user as they continue to interact with the
system, providing additional relevant documents
to the user as their interactions iteratively provide
new information to the algorithm.

Challenge 4: Contextual Output from AI
Explainable AI (XAI) is an active area of

research in both machine learning and visualiza-
tion [15]. Among other contributions, the goal of
XAI is to convey information about the state of
the AI to the human as a means to build trust
in the model output, demonstrate the level of
confidence vs. uncertainty in results, and show
computation in context. For our discussion, we
divide this XAI process into two components:
extracting information from the AI to display
to the human (this section) and the processes
undertaken by the human with that information
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Figure 4. StarSPIRE uses the result of interactions
such as overlapping a pair of documents (left) to
forage for related relevant documents, placing them
in context within the display (right).

(next section).
The overarching goal of SI is to shield users

from the complexity of underlying models so that
their focus can remain on the analysis task at
hand, rather than making the cognitive switch to
tuning model parameters manually. Similarly, the
XAI phase embedded within a system supporting
SI should also be non-intrusive. The relevant
information extracted from the AI should be visu-
ally integrated into the existing visual metaphor,
either into or onto the artifacts on which the
analyst is working. As a result, a system can aug-
ment the mental model of the human, providing
new information that is relevant to their interests
within the corresponding locations in their space
to think.

In StarSPIRE, information from the AI is con-
textualized into the existing workspace in three
ways. First, the visual workspace displays the
documents via a force-directed layout. With this
layout, users can pin selected documents into
specified locations, and the remainder of the doc-
uments are automatically positioned within the
display so that similar documents are positioned
close to each other, while dissimilar documents
are separated. When the system learns a new set
of weights to apply to the terms, the layout is
restructured with this new information in mind.

Second, the newly-foraged documents are in-
serted into the workspace using that same layout
algorithm, so that each new document appears in
context with the others (Figure 4). As a result,
if a user highlights the term “chinchilla” in a

pinned document, a group of new documents
relevant to chinchillas will appear in that area,
simultaneously contracting the cluster of these
documents.

Finally, the AI reveals its internal weights
by automatically highlighting terms within the
documents of investigation, mapping the color
intensity to the weight of the terms in the model.
Such contextualized output directs the analyst
to the useful detailed information within those
documents, while also enabling the user to gain
insight into what the AI has inferred is important.

Challenge 5: Understanding the
Machine

Human sensemaking is incremental, but ma-
chine learning and analysis is often batch-
oriented. A significant challenge is designing
algorithms that embrace human incremental for-
malism [16]: algorithms that learn incrementally
from iterations of human feedback and provide
incremental results. This enables the human to
absorb the AI into their cognitive process. If a
magical AI provided the correct solution up front,
the human likely would not recognize it as such.
The incremental co-learning process is important.

A challenge inherent in human-AI collabo-
ration, particularly when a human is receiving
recommendations from an AI entity when ex-
ploring a large data set, is the human leaping
to a conclusion based upon partial evidence, pre-
maturely inferring relationships and conjecturing
connections that may not be supported by other
evidence. If the most relevant documents are
provided before the supporting evidence, then the
human is drawing conclusions without knowing
the full context of the information presented.
Similarly, the AI should not conclude the interests
of the human too early in the analysis process, as
those interests may shift as new information is
presented or as new chains of evidence lead the
human towards a different conclusion than their
initial hypothesis.

This issue is addressed by StarSPIRE through
the continuous, incremental updates to the under-
lying models, layout, and displayed document set
(Figure 5). Rather than providing a number of
interesting documents for the human to consider
simultaneously, the human is required to open
each document sequentially. As they do so, the
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Figure 5. As a user interacts with StarSPIRE, they
progressively build a more thorough understanding of
the document collection they are exploring, with cor-
responding structures externalized in the workspace.

system begins to incrementally learn about the
interests of the human, updating term weights
slowly rather than drastically. Term weights also
decay over time, so that past interactions are not
judged to be as important as recent interactions.
With incremental changes to the model, the layout
updates are also incremental. Documents do not
drift far from their last position after an interac-
tion, maintaining the mental model of the human
and preventing disorientation. This incremental
formalism approach [16] considers the history of
interactions by the human to gradually construct
a user interest model.

This tight coupling between the AI incremen-
tally learning about the human and the human
incrementally learning about the data (with AI
assistance) demonstrates the co-learning relation-
ship between the human and the AI. Each provide
their skills (the deduction of the human and the
computational processing of the AI) to collabo-
ratively solve a problem.

Discussion
The combination of the XCI and XAI com-

munication channels serves to pull the algorithm
into the human cognitive space, affording a col-
laborative learning environment that improves
the performance of both participants. Algorithms
such as those in SI learn from relatively simple
interactions in the workspace rather than relying
upon complex semantics, incrementally gaining
clues about the user intent.

Because the human and AI are tightly inte-
grated in the process, SI aids in relieving some
explainability challenges studied in XAI research.
This can produce more trust in results, as well
as the development of clear high-level and low-
level roles. Further, learning from the exploration
process of the user permits system designers to
quantify and overcome bias. We briefly discuss
these benefits in this section.

Trust
Cooperation between a pair of humans is

dependent upon trust, and the same is true for
cooperation between a human and an AI. A core
goal of XAI research is to build systems that
humans can trust, with this goal achieved by
designing ways for the AI to be understood and its
decisions accurately interpreted. As a result, the
human in the pair has additional insight on the
behavior of the AI, and can subsequently better
determine whether or not its output is accurate.

A similar relationship exists for XCI, though
in a more extended manner. Rather than the AI
needing to trust the human, the human needs to
trust that the AI understands their goals and inten-
tions. In other words, “Is the AI actually listen-
ing to me?” The incremental formalism process
supports this need, as the human is able to see
progressive changes occur within the visualiza-
tion in response to their actions. Since the human
was involved throughout the process, the need for
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extensive explanation about the arrived solution
is reduced or obviated. This stands in contrast to
more typical XAI approaches which better model
the “Human in the Loop” paradigm, performing
a lengthy computation and then presenting a set
of results for a human to validate or correct.

High- and Low-Level Roles
In human-AI collaborative learning, each

participant plays separate roles to support the
other. The role of the AI is low-level process-
ing, using its computational power to quickly
search through documents, identify co-occurring
terms, identify targets in images, and other
computationally-intensive tasks. The role of the
human is high-level thinking, identifying con-
nections through knowledge that may not be
contained in files, spotting patterns and trends
that are computationally-difficult to locate, and
driving the course of the analysis.

A benefit of collaborative learning is permit-
ting the AI to free the cognitive resources of the
human to focus on the bigger picture; the human
no longer has to perform low-level search and
sort tasks. The machine fills in the concepts with
relevant detailed information. When the human
repositions a single document, the AI handles
updating the position of every other on-screen
document in response to that interaction. The
human can then spend their time contemplating
the concept represented by the new cluster they
created and the supporting evidence.

Quantifying and Overcoming Bias
By learning from the human’s interactions, AI

can quantify many aspects of human exploration,
including potential bias. An important feature of
the synthesis-driven foraging in StarSPIRE is its
relevance-based foraging. Rather than searching
for documents supporting the hypothesis of the
user, it instead retrieves all relevant documents,
including those which may refute the hypothesis.
Further, because StarSPIRE builds a model of
user interests during the sensemaking process, it
is able to query a broader set of relevant docu-
ments than simple keyword search [5]. Indeed,
keyword search overfocuses the results on the
smaller set of known relevant terms. By quan-
tifying this model, the system helps to overcome
the bias of the search keywords entered by the

user.

Related solutions include artificially broaden-
ing queries to introduce alternative analysis paths,
as well as reorganizing the documents presented
to the human in order to draw their attention to
these alternate paths.Computing these alternatives
requires analysis of the exploration of the human.
By measuring the analysis trajectory of the human
against multiple possibilities, the bias of current
analysis can be quantified and corrected. Systems
such as ModelSpace [17] permit the human to
view their analysis paths and identify portions
of the document space that they may not have
inspected.

Semantic Interaction Alternatives and
Extensions

While we use SI as a paradigm for mediating
communication between human and AI, alterna-
tive techniques do exist. These techniques primar-
ily differ in the XCI communication channel; us-
ing interactions for external cognition is certainly
not the only means by which the cognition of a
human can be extracted and conveyed to the AI.
For example, a human can use natural language
to communicate their interests and intentions to
the AI [18]. A sequence of utterances can be used
to continue to subsequent phases of analysis or to
correct misunderstandings in the interpretation of
a previous instruction. The intent of the human
does not even necessarily need to be inferred; an
AI can use active learning to directly query the
user [19].

The ideas that underlie SI can also be ex-
tended further. For example, StarSPIRE requires
a mapping between interaction and model update
to be defined in advance. In contrast, the Metata-
tion system does not require such a mapping.
Instead, Metatation combines a linguistic data-
model with the interaction sequence from the
human to learn the meaning behind free-form
annotations, thereby recommending next analysis
steps [20]. Another technique for model explain-
ability is seen in systems such as Andromeda,
which displays the current model state via a set
of interactive sliders beside the workspace rather
than within the space itself [12].
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Conclusion
Understanding the cognition of a human and

conveying that information accurately to a ma-
chine is a promising direction for future research.
By examining the broader problem of Interac-
tive AI, not just Explainable AI, we hope that
methodologies such as SI will lead toward a more
human-centered approach to AI design.
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