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Towards insight-driven sampling for big data visualisation
Moeti M. Masiane, Anne Driscoll, Wuchun Feng, John Wenskovitch and Chris North

Virginia Tech, Blacksburg, VA, USA

ABSTRACT
Creating an interactive, accurate, and low-latency big data visualisation is challenging due to the
volume, variety, and velocity of the data. Visualisation options range from visualising the entire
big dataset, which could take a long time and be taxing to the system, to visualising a small
subset of the dataset, which could be fast and less taxing to the system but could also lead to a
less-beneficial visualisation as a result of information loss. The main research questions
investigated by this work are what effect sampling has on visualisation insight and how to
provide guidance to users in navigating this trade-off. To investigate these issues, we study an
initial case of simple estimation tasks on histogram visualisations of sampled big data, in hopes
that these results may generalise. Leveraging sampling, we generate subsets of large datasets
and create visualisations for a crowd-sourced study involving a simple cognitive visualisation
task. Using the results of this study, we quantify insight, sampling, visualisation, and perception
error in comparison to the full dataset. We use these results to model the relationship between
sample size and insight error, and we propose the use of our model to guide big data
visualisation sampling.
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1. Introduction

Due to the large amounts of data involved, big data visu-
alisation authors are presented with the challenge of
navigating a trade-off spectrum. Visualising big data pre-
sents a ‘need for speed’ (Wang, Wang, and Alexander
2015) as well as a need for accuracy. On one end of
the spectrum is the option to visualise the entire dataset
with the benefit of generating a highly accurate visualisa-
tion; however, this option also has high latency. On the
other end of the spectrum is the option to visualise a
smaller subset of the data, which not only has the advan-
tage of reducing latency, but also has the effect of redu-
cing the accuracy of the visualisation. The decision of
where to land in this spectrum depends on several fac-
tors, including the system resources available, the objec-
tive of the visualisation, and the context of the
visualisation application. These issues are particularly
salient in scientific simulation visualisation applications,
where generating larger datasets via simulation takes
substantial time.

We propose that the decision of where to land in the
trade-off spectrum should be left to the visualisation
end-user, as the determination between speed and accu-
racy is a fluid one that could change even between succes-
sive runs of the same visualisation. This could happen
when speed and accuracy demands change due to factors
such as an iterative work flow or the uncovering of

previously unknown information during prior runs of
the visualisation. Ensuing questions become (i) how do
visualisation authors enable system users to make this
decision and (ii) how do system users know if they are
making the right decision? We believe that the answers
to the questions above lie in sampling and providing inter-
active visualisation accuracy feedback to the end user.

When controlling the accuracy versus speed trade-off,
users need the ability to make an informed decision. A
feedback measure is needed to help inform the user
regarding the impacts of using a given accuracy or
speed value. An obvious choice for a measure that can
lead to informed decision making would be a statistical
measure like confidence interval. However, such
measures can be difficult to relate to visualisation. For
example, when one is attempting to identify regions of
high wind velocity in a geoscience visualisation, an accu-
racy value of 30% is not intuitive. Are the glyphs posi-
tioned inaccurately by 30%? Are the depictions of the
wind velocity inaccurate by 30%? Since the purpose of
visualisation is insight (Card, Mackinlay, and Shneider-
man 1999), the use of an insight based metric is more
intuitive, but statistical measures are more suitable for
describing the performance of sampling operations.
What is needed is an approach that takes statistical
measures and brings them to the visualisation user
domain.
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Our ultimate goal is to provide a model that allows
for the speedup of big data visualisation. Any speedup
of data visualisation is pointless if the visualisation
provides no insights. At the same time, any visualisa-
tion is wasteful if it provides insights that exceed
human insight processing capabilities. What is needed
is efficient big data visualisation speedup that does not
provide excessive insights. Any big data visualisation
speedup should be evaluated based on its benefits in
terms of insight. If sampling provides big data visual-
isation speedup, and one can determine the relation-
ship between sample size and insight quality, then
one can use human provided insight requirements to
determine an efficient sample size. This work models
the relationship between insight quality and sample
size. A model of the human insight versus sample
size relationship in conjunction with a slider for the
input of human insight requirements can then be
used to speed up big data visualisation. In addition
to visualisation speedup, this approach is based on
interactivity and this has well-known benefits (Holzin-
ger 2013). Our approach places primary focus on the
human in the loop of big data visualisation. The
human dictates the insight quality, and our model
allows for this requirement to be converted to an
efficient speedup requirement that provides just
enough required insight quality. We work to under-
stand how sample size impacts insight accuracy; in
particular, how does sample size impact the accuracy
of human estimates of the mean made from viewing
histogram visualisations?

In this work, we provide a measure of the human-per-
ceived mean error that relates the effects of sampling to
insights obtained from histogram visualisations of big
data. We proceed to relate our measure of insight to
the well-known statistical measure of standard error
of the mean. This enables a visualisation user to control
the trade-off using an insight measure that they under-
stand. The system then converts this insight measure
into a statistical parameter that is better suited for our
sampling algorithm. We provide a model that allows
for the speedup of big data histogram visualisations by
providing sample sizes that meet user-provided insight
requirements. This work represents an initial step
towards using insight-driven sampling to speed up the
visualisation of big data. Future applications will involve
more complex datasets, visualisations, and user tasks.

1.1. Contributions

As a result of our study of insight error associated with
the analysis of histogram visualisations, we make the fol-
lowing contributions:

C 1. Measure and define the relationship between insight
accuracy and sample size in histograms (see Section
6.6)

C 2. Using simple histogram visualisation-based tasks,
we demonstrate the relationships between insight
error and (i) its components, (ii) sample size, and
(iii) standard error of the mean (see Sections 6.3,
6.4, 6.5, 6.8.2, 6.8.3 and 6.8.4)

C 2a. We measure and define the relationship between
sample accuracy, histogram visualisation accuracy,
perception error, and insight error (see Section 6.8.1)

C 3. We use standard error to predict insight accuracy
(see Section 6.8.5)

C 4. We provide a model that allows for the speedup of
big data visualisation by providing sample sizes
that meet user-provided insight requirements (see
Sections 6.8.7)

2. Background and related work

The use of sampling introduces accuracy and uncertainty
considerations into information visualisation and these
could lead to error in any decision making that occurs
as a result of viewing such visualisations. In other
words, insight levels generated from a visualisation can
be impacted by sampling. Any visualisation system that
introduces error brings about the question of trust to sys-
tem users. Questions like ‘how accurate is this visualisa-
tion?’ and ‘how does the error impact my results?’ need
to be addressed by system authors.

A visualisation system that no one trusts provides no
value, even if it provides valuable insights. The related
accuracy, uncertainty, and error information that can
impact insight levels need to be presented to end users
of these visualisations so as to develop and maintain
trust between users and visualisation applications, and
to enable users to know the limitations of the visualisa-
tion application. For example, error bars can be placed
on the bins of a big data histogram visualisation to pro-
vide feedback of the uncertainty associated with a visual-
isation (Zgraggen et al. 2017). Other research has been
conducted into these areas (Chen et al. 2015; Sacha
et al. 2016; Liu et al. 2017; Grtler et al. 2018).

2.1. Insight

In this paper, we use Saraiya et al. and Choe et al.
definition of insight that describes insight as an ‘ individ-
ual observation about the data, a unit of discovery ’ (Sar-
aiya, North, and Duca 2004; Choe, Lee, and et 2015).
Examples of insight that can be obtained from a numeric
dataset include the mean, median, mode, and range. In
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addition to the definition of insight is the idea that
insight can have various levels that can be quantified.
To explain the idea of quantifying levels of insight, we
consider two human migration datasets. The first con-
tains human migration data sampled monthly for a dec-
ade, while the other contains the same information
sampled daily for a decade. The latter is likely to have
a higher level of insight because it enables a more
detailed understanding of migration trends, beyond the
information that can be obtained from the former
dataset.

Measuring the level of insight can be done qualitat-
ively and quantitatively (Rojas et al. 2017; North 2006;
Chang et al. 2009). We use a quality measure that is
based on the error associated with the insight derived
from a visualisation in comparison to a ground truth.

2.1.1. Measuring insight
The idea of measuring insight is one with major impli-
cations on the effectiveness of visualisation approaches.
Yi et al. research the idea of how insight is gained in
information visualisation systems (Yi et al. 2008). During
the analysis of their findings, they allude to the idea of
higher level insights, meaning that some insights are bet-
ter than others. The main focus of their work is to ident-
ify the processes involved in the formulation of insight.
Our work, on the other hand, is concerned with measur-
ing different levels of insight and defining their relation-
ship to sample sizes. Our use of levels of insight has the
same intuition as the use of a Likert scale in the Insight
orientation scale (Gori et al. 2015).

Rojas et al. measure insight in an attempt to evaluate
the effectiveness of various sampling techniques on big
data (Rojas et al. 2017). Similarly to our work, they com-
pare the results of visualisation-based tasks to a ground
truth and use the results of the comparison to evaluate
the insights. They propose that insights can be evaluated
quantitatively and qualitatively, and they use open-
ended tasks to do so. Their objective is different from
ours in that they are concerned with the performance
of sampling techniques while our approach is mainly
focused on measuring and quantifying insight. Their
choice of more complex user tasks makes the evaluation
heavily reliant on human analysts, and this introduces
bias to the analysis. Our analysis, on the other hand, is
objective because it relies on simple tasks that have an
objective ground truth.

2.2. Effects of sampling

Sampling as a method for reducing the size of big data is
effective, but it also leads to information loss. This loss of
information is important because it introduces error into

the decision-making process of big data analytics. In the
information visualisation world, we care about this error
because we are interested in how this error impacts the
insights that we generate from a visualisation, which in
turn impacts decision making.

2.2.1. Effects on statistics
The effects of sampling can be measured and described
using statistical measures like confidence interval and
z-values for how close a sample statistic is to the popu-
lation parameter. As mentioned earlier, the challenge
with statistical measures is that they do not necessarily
translate to visualisation-based measures. For example,
consider a scenario (S1) where one samples data and
generates a visualisation of quantitative data. If statistical
tests show that the mean of the sample data has a relative
error of 25%, does this mean that insights generated
from a visualisation of this sample will be 25% inaccur-
ate? What does it mean to have insights that are 25%
inaccurate? The answers to these questions depend on
the visualisation, user task, and amount of data being
visualised. If one is visualising the mean of the data as
a bar in a chart, and the insight being generated is the
height of the bar, the inaccuracy of the insight generated
could be close to 25%, and that could be substantial. On
the other hand, if the data consists of a more complex
visualisation of wind speeds at a given time and place,
and the insight being generated is the identification of
regions where gusts exceed a certain threshold, the
insight inaccuracy associated with a 25% error could be
negligible. What is needed is a visualisation-based
measure that is applicable to a wide range of statistical
measures, visualisations, user tasks, and datasets. A
measure of insight level that quantifies what the end
user learns from a visualisation would meet this
requirement.

2.2.2. Effects on insight
The idea of a measure of the level of insight when eval-
uating the performance of a visualisation is intuitive
and for that reason we propose the use of insight error
as an instrument for feedback during the system user
controlled ‘accuracy versus speed trade-off’ process.
While leveraging sampling to improve visualisation per-
formance, the aim is to avoid compromising the visual-
isation quality. That being said, we also need to avoid
superfluous quality if it negatively impacts performance.
This is the same idea behind approximate query proces-
sing (Lin et al. 2018; Kulessa et al. 2018), and the same
idea in reverse that is used in privacy preservation,
where sampling rate is used to reduce the insight level
in cases where the insight in question is a person’s iden-
tity (Xiao et al. 2018).
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Through measuring the insight error associated with
various sample sizes, we can present the visualisation
user with system controls that allow the selection of an
arbitrary amount of insight error, which in turn will
select the sample size and the resultant visualisation
speed. The underlying idea is that gaining insights
takes precedence over processing the entire dataset
(Kaisler et al. 2013), but efficiency matters. If a system
user can generate quality insights from a small subset
of the data, then the user should be made aware of that
information. The goal is for the system user to make
an informed decision as to his or her desired amount
of insight error based on how the insight error impacts
the speed of the visualisation.

We adopt a qualitative approach with the idea of
using error to quantify such insights. The delta between
an insight value and the ground truth is the error that
can be used to compare similar insights and thus signify
the insight level (Figure 1). As in many evaluations of
visualisations, we begin by using simple user tasks in
such evaluations (North 2006). The intuition is that bet-
ter visualisations result in better insight levels, and as a
result, methods for evaluating visualisations are in
essence methods for evaluating levels of insight associ-
ated with a visualisation. An example of better visualisa-
tions leading to better insights in the context of
histograms could involve two histograms of normally
distributed data, where one has 2 bins and the other
has 10. The former could give the inaccurate insight of
the data being uniformly distributed, while the latter
could show a more accurate representation of the under-
lying distribution. Following this example, an even
higher number of bins would give an even better insight
into the distribution of the data being visualised.

Using a crowd study, we investigate these relation-
ships. Leveraging simple tasks consisting of estimating
the mean of a visualised sample, we compare the results

of the simple tasks to the ground truth generated using
statistical methods and assign error to each estimation.
This error represents the quantification of the quality
of the insight generated from the visualisation. The
error values associated with the different sample sizes
over a wide range of iterations allow us to measure the
effect of sampling on insight. This in turn allows us to
present insight error as intuitive feedback to the visual-
isation system users as they decide on an appropriate
sample size for their visualisation. This insight level
measure is not only appropriate for a visualisation con-
text, but is also backed by sound statistical concepts.

2.2.3. Sampling in big data visualisation
Sampling is used widely in big data visualisation (Park,
Cafarella, and Mozafari 2016; Hong, Hwa, and Kyung
2018). While random sampling is mostly used (Rojas
et al. 2017), cluster (Nguyen and Song 2016) and sys-
tematic (Berres et al. 2017) sampling are also used to
reduce big data for the purpose of visualisation (Leetaru
2019). In imMens (Liu, Jiang, and Heer 2013), Liu et al.
explore the use of sampling in visualisation and provide
references of other works that utilise sampling to reduce
the volume of big data. Liu et al. argue that various types
of sampling have disadvantages that include the need for
preprocessing, the exclusion of outliers, and in the case of
random sampling they could still result in a sample that
is too big to visualise. As a result, they choose binning as
a method for big data volume reduction. Their argu-
ments against sampling can be summarised as (i)
sampling introduces error and (ii) big data sampling is
not guaranteed to result in small data. We agree with
their arguments, but do not agree that these points are
hindrances to the visualisation of big data. Our approach
with regard to their first argument is to present the
sampling error to the visualisation system user and
allow the user to control that error. With regard to

Figure 1. Error flow diagram. The delta (δ) between the population mean (μ) and the sample mean (�x) is the sampling error (SE), while
the delta (δ) between �x and the visualisation mean (VM), which is the mean that can be calculated from the visualisation, is the visu-
alisation error (VE). The delta (δ) between VM and the human mean (HM), which is the mean that is perceived by the human, is the
perception error (PE) and the delta between μ and PE is our insight error (IE).
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their second argument, we also propose to give the visu-
alisation user control of the sample size along with rel-
evant information that will allow the user to make an
informed decision. The visualisation system user is
empowered to make an informed decision on the best
position to place the slider for the size and performance
(speed) trade-off.

Ruan et al. (Ruan et al. 2017) use a novel sampling
technique that can be thought of as random sampling
with weighting to reduce the volume of big data in
their intrusion detection system’s big data visualisation.
Their novel sampling technique is aimed at reducing
the sampling error by allocating higher weights to data
instances with fewer occurrences in the dataset. After
applying their technique, they acknowledge that the
sampling error still exists, but do not attempt to quantify
this error. We on the other hand do not attempt to pro-
duce an error free sample. We expect error to exist,
hypothesise that it can be controlled, provide the system
user with the means to control it and provide feedback
regarding the effects of adjusting the error on the
visualisation.

2.3. Uncertainty in visualisation

Pang et al. surveyed and classified uncertainty visual-
isation methods (Pang, Wittenbrink, and Lodha
1997). They identified three sources of uncertainty in
the visualisation pipeline as (i) data gathering, (ii)
transformation and (iii) visualisation. They proceed
to create a taxonomy and classification of uncertainty
visualisation techniques. While they are concerned
with how uncertainty is visualised, we are concerned
with its existence and how it impacts insight. We
incorporate this uncertainty into our insight level
measures, which we can present to the end user so
they can use it to control the accuracy versus speed
trade-off.

Tolerating uncertainty for the effect of reaping per-
formance benefits extends beyond visualisation appli-
cations to systems and applications that provide data
to visualisation systems. IDEA and Google’s Dremel
are two such systems (Galakatos et al. 2017; Melnik
et al. 2010). IDEA treats current and previous query
responses as random variables, and uses standard
error based metrics to determine the accuracy of cur-
rent results. Based on this accuracy, IDEA determines
whether or not to rewrite an issued query and pro-
vides the most accurate response to the visualisation
system. Unlike our approach, IDEA does not provide
accuracy-related user feedback. Similar to our work
and IDEA, Dremel uses the idea of a trade-off
between accuracy and speed. Some of their queries

return approximate results. They query many tables
and use a quality parameter to determine the percen-
tage of relevant tables to query. Their work does not
state how they select this quality parameter, but they
mention that they sacrifice accuracy for performance.
The difference between the leveraging of uncertainty
in these works and ours is that we offload the
decision concerning the quality of the sample onto
the visualisation system user because we believe that
this decision is dependent on fluid factors that each
user can evaluate best.

Progressive visualisation is another technique that
leverages uncertainty to improve visualisation speeds
(Fisher et al. 2012; Turkay et al. 2017). Similar to
our work, progressive visualisation answers the ques-
tion of how much data is enough to make analytic
decisions? We agree that for a visualisation there is
not one answer and as a result, the user is in a better
position to know based on the visualisation context. In
progressive visualisation, data is loaded using small
batch processes and visualised incrementally until the
visualisation system user stops it or all the data is
loaded (Fekete 2015; Moritz et al. 2017). The general
idea is that the visualisation will converge to a solution
that is satisfactory to the user. We argue that the
strength of this approach does not lie in increasing
the speed of a visualisation but lies in keeping the
user engaged while a satisfactory visualisation is
being generated.

Relying on the user to decide when the visualisation is
satisfactory is based on the assumption that the user
knows what they are looking for and will be able to ident-
ify it as soon as they see it. In exploratory tasks, this may
not be the case. We follow the approach of supplying
what we deem an appropriate amount of data to satisfy
a user-controlled insight level and let the user explore
the data. We believe that this is a better approach for
scenarios where the user is unsure of what they expect
to find. That being said, the idea of progressive refine-
ment is one with many valid applications, and it can
be used in tandem with our approach. For example,
the progressive refinement technique is applicable in
cases where the sample size proposed by our approach
is large, or in scenarios where the user prioritises accu-
racy over speed but still needs to remain engaged with
the system.

3. Methodology

The ultimate goal of this work is to allow the speed up of
big data visualisation by allowing system users to decide
the size of the sample to visualise in order to obtain an
arbitrary insight quality. We realise this is a challenging
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task, and hence we explore it in the context of histograms
as a proof of concept. Our insight quality is measured in
terms of insight error (IE). In order to measure and pre-
dict IE, we gather data using a crowd study and use it to
test our hypothesised IE component errors and their
behaviour. To do this we measure IE as the normalised
difference between a human estimate and the ground
truth. We learn and model the relationships between
IE and its component errors, with sample size. We also
learn the parameters of an IE predictive model using
its component errors, and those for predicting IE using
standard error of the mean (SEOM). SEOM is used as
a proxy for IE component errors because it is a well-
studied statistical measure and due to our hypothesised
relationship between SEOM and the component errors.
We proceed to evaluate our models using data both
seen and unseen during training.

3.1. Research questions

This research seeks to identify the effect of data sample
size on visualisation insight quality. Insight quality is
measured in terms of insight error. In particular, this
work addresses the following research questions:

R 1. How does insight error (IE) and its components (i)
sampling error (SE), visualisation error (VE), and
perception error (PE) behave as a function of
sample size? (see Sections 6.3, 6.5, 6.6, and 6.8.3)

R 2. How do SE, VE, and PE contribute to total IE? (see
Section 6.8.1)

R 3. How well can a statistical measure that is a function
of sample size be used to predict each IE com-
ponent? (see Sections 6.8.2, 6.8.3, and 6.8.4)

R 4. Can a well-known statistical measure that is a func-
tion of sample size be used to estimate IE in place of
the IE components? (see Section 6.8.5)

R 5. Can we predict sample size as a function of IE? (see
Section 6.8.7)

3.2. Hypotheses

In an attempt to understand the relationship between
sample size and insight error, we focus our research on
studying this relationship in the context of insights
gained from histogram visualisations. We chose to use
histograms in our study because they are commonly
used in exploratory data analysis (Macke et al. 2018)
and because they are easy to understand visualisations
that highlight important data attributes like distribution,
range, mean, and other central tendency properties. We
also focus on the user task of visually estimating the

mean of the data, as an initial simple representative of
many types of insights that users want to gain from his-
togram visualisations. Our hope is that our results will
serve as a proof of concept and starting point to general-
ise to other insight-related visualisation tasks. With
respect to the research questions stated above, we
hypothesise the following:

H 1. Using the error between estimates generated from a
histogram visualisation of sampled data and actual
parameters from the full dataset, we can measure
the insight error and its components. We expect
insight error to decrease with an increase in sample
size with a behaviour similar to that of exponential
decay.

H 1a. The insight error measure depends on the qual-
ity of the sample, the effectiveness of the histogram
visualisation, and the perception abilities of the
end-user viewing the visualisation.

H 2. Calculating the accuracy of statistics derived from
our samples in comparison to population par-
ameters will give us a metric that behaves similarly
to a well-known error measure like standard error
that is a function of sample size.

H 3. The relationship between standard error and size is
similar to that of our component errors and size.
We should be able to use standard error to predict
our component errors.

H 4. Standard error can be used to predict the insight
error.

H 4a. Our insight error and standard error quality
measures are positively correlated.

H 5. Given our insight metric, one can predict a corre-
sponding sample size.

The ability to predict our insight error measure from
standard error of the mean means that we can employ
this approach of using insight error to drive sampling,
leading to the ability to visualise large datasets without
having to run a user study for each dataset being ana-
lysed. We can use standard error of the mean to deter-
mine insight level as long as the dataset shares the
same properties as a dataset that has previously been
studied.

4. Insight model

We hypothesise that the insight error can be measured
(H1), and that the measure is impacted by sampling,
visualisation, and perception effects (H1a). Using a
crowd-sourced study, we measure these error
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components, and then subsequently define a multiple
linear regression model for the relationship between
the insight error and perception, sampling, and visualisa-
tion effects, before finally learning the parameters for our
model. Using the insight error to predict the sample size,
which in turn controls the perception, sampling, and
visualisation effects, will allow us to provide visualisation
end users with a slider that they can use to control the
accuracy versus speed trade-off. Such a slider would
allow the user to input an arbitrary insight level, and
our model would then provide a sample size that meets
this user provided insight requirement, thus providing
a statistically sound speedup of the visualisation of big
data. However, since we are unable to know the insight
error components for datasets that we have not studied,
it is important to find a proxy for insight error or any of
its components that is easy to calculate. We use standard
error of the mean as our proxy, and we use our study
results to learn the relationship between insight error,
its components, and our proxy. Our slider will allow
the visualisation system end user to control the insight
level, which will control the sample size and sub-
sequently the visualisation, perception, and sampling
errors.

4.1. Assumptions

In this work, we assume that samples are being drawn
from a finite population. We foresee cases where these
samples would be drawn from samples of larger or
infinite populations, and in those cases our samples
would be considered as subsamples. We expect our
approach to still be applicable in those cases.

4.2. Definitions

In our investigation of insight error (IE), we hypoth-
esised the existence of components of IE and defined
the relationships of these components. The components
are (i) sampling error (SE), (ii) visualisation error (VE),
and (iii) perception error (PE).

Central to the definitions of our components is the
concept of error, which is the difference between the
expected and observed values. Due to the different mag-
nitudes of our expected values as a result of using various
populations and samples with different ranges and
means, using error values as described above can lead
to misleading insights. To mitigate this issue, we normal-
ise our errors based on the range of the underlying
sample. We use the range of the data that our partici-
pants see to normalise their responses onto a common
scale.

4.2.1. Population and sample
dN = {x | x [ R} (1)

dN � a(m,s) (2)

dn # dN (3)

dn � a(�x,s) (4)

A population (dN) consists ofN real numbers (Equation 1).
The population has a distribution α, a mean μ, and a stan-
dard deviation σ (Equation 2). A sample is a subset of the
population (Equation 3), and it has a distribution α, a mean
�x, and a standard deviation s (Equation 4).

4.2.2. Histogram

histogram = {bin | bin has a width and frequency}

(5)

f :dn � histogram (6)

A histogram consists of bins and each bin has a width
and a frequency (Equation 5). Using D3.js, we generate
a histogram from a sample (Equation 6).

4.2.3. Population, sample, visualisation, and human
means

m = 1
N

∑N

i=1

xi, where N = population cardinality (7)

�x = 1
n

∑n

i=1

xi, where n = sample cardinality (8)

VM=

∑b

i=1

frequency(bin[i])∗min(bin[i])+max(bin[i])
2

∑b
i=1 frequency(bin[i])

,

(9)

where b= number of bins in the visualisation

HM=mean estimate provided by a human

looking at a histogram visualisation

The population mean (μ) is calculated as the average of
the values of all instances in the population (Equation
7), while the sample mean (�x) is calculated as the average
of the values of all instances in the sample (Equation 8).
The human mean (HM) is the estimate of the mean pro-
vided by a human as a result of analysing a histogram
(Equation 10). The visualisation mean (VM) is an objec-
tive calculation of the mean of the bins in a histogram as
a result of summing the products of the middle x-value
and the height of each bin and dividing this sum by
the sum of all bin frequencies (Equation 9).
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4.2.4. Sampling error (SE)
Sampling introduces error, and as a result, the visualisa-
tion of sampled data can only lead to generated insights
that are at best as good as the quality of the sample. If as
the result of sampling bias, all the data from our S1 scen-
ario (Section 2.2) happens to fall to the left of the mean,
an accurate estimate of the population mean using this
sample will fall to the left of the true population mean
(Figure 2). The impact of the quality of the sample on
the insight error generated from a visualisation of that
sample is referred to as the sampling error (SE).

SE = |m− x|
range(sample)

(11)

Sampling error is defined as the absolute difference
between the actual population mean and the sample
mean, normalised by the range of the sample (Equation
11). The SE for a given sample size is a distribution of
errors for that sample size. For the purpose of sample
size prediction, we represent this distribution with the
mean of the observed errors for that sample size.

4.2.5. Visualisation error (VE)
After the sample is chosen in our S1 scenario (Section
2.2), certain considerations need to be made before the
data is visualised. Decisions like the need for data trans-
formations, the type of visualisation used, the data
encoding schemes, the type of data scales, the need for
data binning, etc. contribute to the effectiveness of the
visualisation. For example, binning data in a histogram
could lead to a loss of accuracy based on the width of
the bin. In other words, wider bins group a wider

range of data and this results in a loss of accuracy due
to the generalisation of the binned data. Two different
visualisations of the same data could lead to different
levels of accuracy, which in turn could lead to different
levels of insight generated by the same end user. The
impacts of the visualisation choices on the insight levels
generated are referred to as the visualisation error (VE).

VE = |VM − x|
range(sample)

(12)

Visualisation error is defined as the absolute difference
between the sample mean and the mean of the visualisa-
tion, which can be calculated using the middle value of
each bin width and its height, normalised by the range
of the sample (Equation 12). Similar to the sampling
error, the VE for a given sample size is a distribution
of errors for that sample size. For the purpose of sample
size prediction, we represent this distribution with the
mean of the observed errors for that sample size.

4.2.6. Perception error (PE)
The visualisation created in our S1 scenario (Section 2.2)
could be interpreted differently by different end users.
This is due to the variation in human perceptive capabili-
ties. We take this variation into consideration when
hypothesising our model and refer to this variation as
the perception error (PE).

PE = |VM − HM|
range(sample)

(13)

Perception error is defined as the absolute difference
between the estimate of the mean provided by a
human and the mean of the visualisation, which can be
calculated using the middle value of each bin width
and its height, normalised by the range of the sample
(Equation 13). Our PE is also a distribution of errors
as opposed to a single error value and for the same
reasons as those given for the SE and VE, we represent
this distribution with the mean of the observed errors
for a given sample size.

4.2.7. Insight error (IE)
Insight error (IE) is a measure of how accurate the
insights that are gathered from a visualisation of sampled
data are in relation to the ground truth. Our IE is the
difference between an estimate made by a user viewing
a visualisation (HM) and the actual population par-
ameter (μ).

IE = |m− HM|
range(sample)

(14)

Insight error is defined as the absolute difference

Figure 2. Component errors. If a sample drawn from a popu-
lation is visualised and the visualisation is used to estimate the
true population mean (μ) an accurate human estimate of the
mean can only fall within the range of the sample. The difference
between the sample mean (�x) and population mean (μ) is the
sampling error, while the difference between the objective
mean of the visualisation (VM) and the sample mean is the visu-
alisation error. Any difference between the visualisation mean
and the perceived mean of a human (HM) viewing the visualisa-
tion is the perception error. Insight error which is a measure of
the how well the human estimates the actual mean is impacted
by the quality of the sample, visualisation, and human
perception.
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between the estimate of the mean provided by a human
and the actual population mean, normalised by the range
of the sample (Equation 14). For the same reasons as
those given for the SE, VE, and PE, we can think of IE
as the mean of a distribution of errors as opposed to a
single error value.

4.3. Model details

We define our model of IE as consisting of the SE, VE,
and PE and hypothesise that our model is a multiple lin-
ear regression model that can be used to predict the
insight level. We hypothesised that our model would fol-
low the following form:

IE = b0 + b1 ∗ x1 + b2 ∗ x2 + b3 ∗ x3 + 1,
where b0..3 are parameters and x1 · · ·3 are regressors

(15)

Insight error can be modelled as a function of our
sampling, visualisation and perception error regressors
and parameters that can be learnt from training data
(Equation 15). Using data gathered from a crowd
study, we learn the parameters of our model and evaluate
the model (Section 6.8.1).

5. Crowd study

Our study used a blocked design with replication. The treat-
ments consisted of dataset and sample size combinations
and we blocked by study participant. With 20 datasets
and 20 sample sizes, we had a total number of 400 treat-
ments. Due to the large number of treatments, we went
with a design that limited our treatments to 20 by limiting
each participant to seeing each dataset once and seeing each
sample size once. This reduced the number of tasks each
participant had to complete and avoided learning that
would impact the responses of future tasks based on infor-
mation learned from prior interactions with a dataset. Par-
ticipants were randomly assigned to one of the 20
treatments. Our treatment design consisted of a table
with an axis of 20 values representing each of our 20 data-
sets and an axis of 20 values each representing one of our 20
sample sizes. Each of the 20 rows of 20 values within our
table represented a block and each block consisted of the
order and combination of the treatments each participant
encountered. Each treatment had 3 replications and the
60 participants were randomly assigned to blocks.

5.1. Participants

We had two trial studies before conducting our final
study, as we fine-tuned the procedure of the study. Our

final study had 60 participants whose identity, sex, and
age are unknown because they were crowdworkers.
They were paid an average of about $3 for about 15 min-
utes of work. Their online identities were unique, guar-
anteeing that there were no repeat participants. One of
the user tasks was only used for quality control, while
the other 20 were included in our study results. This
quality control task in conjunction with our clear
instruction stating that we would not pay for unsatisfac-
tory results and our criteria for crowd workers who had
never had their work rejected for bad quality in the past
ensured that we got quality results. We provided partici-
pants with an email to submit any feedback and only
heard from 1 who did not receive a confirmation code
after submitting his results.

5.2. Data

We inspected various probability distribution plots and
created a collection of datasets to use based on the shapes
of their distribution curves, with the intention of provid-
ing heterogeneity amongst our datasets. We generated 20
synthetic datasets using the R programming language
distribution functions. The distributions of the datasets
we selected varied (Table 1), and within the same distri-
bution, the means, ranges of values, skewness, and kurto-
sis were also varied.

5.3. Procedure

Only Amazon Turkers who had never had their work
rejected for poor quality on Amazon Web Services
(AWS) were allowed to participate in the study. Partici-
pants were each provided with a URL that led them to a
page with a survey. The survey, created using HTML,
D3.js, and CSS, showed a sequence of histograms using
data sampled from a larger population. For each task,
participants were asked to estimate the mean of the
data shown in the histogram (Figure 3). After each esti-
mation task, the task was repeated with a different histo-
gram. To control the quality of responses, participants
were informed that quality of results would be reviewed
and payment would only be issued for results exceeding a

Table 1. Distribution of the datasets that are used in the study.
Each dataset is sampled and all participants encounter each
dataset once and each sample size once.
Distribution # of Datasets

Chi-Square 3
Exponential 3
Left Skewed 5
Normal 3
Right Skewed 5
Uniform 1
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certain quality, and a quality control histogram was
added to each treatment.

There were 21 tasks for each participant, and one of
these tasks was for quality control. These tasks consisted
of the basic visualisation task of estimating the mean of
the visualised histogram. All of the tasks consisted of
an identical question about a histogram visualisation,
but the data being visualised was different for each
task. The question asked for each task was ‘Estimate
the mean of the histogram by clicking on where you
think the mean should lie along the x-axis’. The quality
control task consisted of a histogram with two bars
whose mean was easy to estimate. None of the responses
showed a large error on the quality control estimate, and
thus none were rejected. The highest error was a normal-
ised root mean square deviation value of 0.0126.

To prevent any learning effects, participants saw each
dataset once. Using random sampling with replacement,
each dataset was sampled at 20 sample sizes, and each
participant saw each sample size once. Sample sizes of
2n were used, where n was an integer in the range
[1,20]. A treatment was considered to be a histogram
visualisation of a combination of a dataset and a sample
size. We randomised the order that treatments were pre-
sented to each participant. Participants were randomly
assigned IDs in the order that they signed up to partici-
pate in the study.

After each histogram loaded, participants would see a
label on the histogram showing an estimated mean
value along the x-axis for the current cursor position.

Moving the cursor would update the x-value that
would also move to stay aligned with the cursor pos-
ition. Any location on the histogram could be clicked
to provide an estimated mean value, including the
space between bars for tasks that consisted of sparsely
populated histogram bars. The selected value, as well
as the properties of the histogram including the dataset
name, size, standard deviation, sample size, sample
mean and population name, mean and standard devi-
ation, were stored in a MariaDB database along with
the user ID and a per-user 13-character hexadecimal
code that was provided to the participant at the end
of the survey in order to confirm survey completion.
Each participant had to enter their unique completion
code into Amazon Mechanical Turk in order to receive
payment.

6. Results and evaluation

We hypothesised that our insight metric was composed
of several errors (H1a) and that standard error of the
mean (H2) could be used to predict our insight metric
(H4). We observed and modelled each of these errors
in relation to sample size and standard error of the
mean, and generated both a predictive model for insight
error given its component errors and a predictive model
for sample size when given arbitrary insight and percep-
tion errors. We evaluated each of these models based on
their performance on data that had been observed in
training and also on their performance on data instances

Figure 3. A screenshot of our survey showing a single task. The participant is shown a histogram and asked to estimate the mean value.
Participants can select any value in the histogram. Values coincide with the current mouse X position and the red label gives feedback
as to the value that is currently selected. An estimation is made using a simple mouse click. Due to the fixed bin width, our visualisation
like any other introduces error (VE) between the mean of the sample (x) and the mean that can be calculated from the histogram (VM).
We capture this error (VM) and account for it in our model.
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specifically withheld for testing that the model had never
processed before.

While building our model, we were interested in the
impact that the distribution of the underlying data
would have on our model. To investigate this, we used
two methods: (i) we added a distribution predictor to
our model and observed the behaviour of the R2 and
Cp values when this predictor was added to and removed
from the model and (ii) we used ANOVA to determine if
the skew of the underlying distribution had an impact on
the insight levels.

6.1. Impact of data distribution on insight error

Initially, we built an MLR model that used our three
component errors, and we observed an R2 value of
0.9953 and a Cp value of 2.5689. We added a distribution
predictor for the right, left, normal, and uniform skews
of our datasets. When we added the distribution predic-
tor, the R2 value did not change, but the Cp value
improved slightly to 4.3861. This modest improvement
did not seem to warrant the use of a more complicated
model, but to be sure we decided to conduct an
additional ANOVA test.

This ANOVA test was conducted to determine if the
insight levels for our four distributions that were
blocked by sample size were significantly different at
an a = 0.05 significance level. The null hypothesis
was that there was no difference in means of the
samples drawn from the four distributions that were
right skewed, left skewed, normal, and uniform, while
the alternative hypothesis was that at least one of the
means was different. We analysed this data as a
Balanced Incomplete Block Design (BIBD), as the num-
ber of datasets that we used from each distribution was
uneven. We had more IE information about left and
right skewed distributions than we had about normal
and uniform distributions. BIBD ANOVA mitigates
this lack of balance by using LS means as opposed to
means in the analysis. We obtained an F-value of
0.6415 and a critical F-value (df1 = 3 and df2 = 57) of
2.76643794. Since our F-value was less than our critical
F-value, we fail to reject H0 and conclude that the popu-
lation distribution does not lead to significantly differ-
ences in insight levels. As a result, our models did not
include predictors for distribution of the populations
from which the samples were drawn.

6.2. Relationship between standard error and
sample size

Having hypothesised that our insight metric would
behave similarly to standard error of the mean (H4a)

with values that grow inversely proportional to
sample size, we experimentally reproduced the behav-
iour of standard error (Figure 4). Standard error showed
exponential decay in relation to sample size, as
expected.

6.3. Relationship between sampling error (SE) and
sample size

SE was one of the component errors of our insight
metric (H1a). We reproduced this error for all sample
sizes and observed its behaviour. As expected, the error
between the sample mean and the population mean
was inversely proportional to the sample size. The
error shows exponential decay behaviour (Figure 5).
As the size of the sample increases, the mean of the
sample becomes closer to the mean of the population.
The quality of the sample improves with an increase in
sample size. The sampling error behaves similar to
standard error of the mean.

6.4. Relationship between visualisation error (VE)
and sample size

Our VE also shows exponential decay behaviour in
relation to an increase in sample size (Figure 5). This is
a result of the bin width in our histograms becoming
more representative of the data within each bin as the
amount of data increases. Our study shows that the
more data one adds to a histogram, the more accurate
the histogram becomes at representing the data. As a
result, our visualisation error behaves similar to standard
error of the mean.

Figure 4. Observed standard error of the mean (SEOM) values
plotted against sample size (Log2) showing exponential decay.
The smallest two sample sizes have been excluded from the
figure to highlight the behaviour of SEOM for larger sample
sizes. The SEOM values are normalised with the sample range
as the denominator.
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6.5. Relationship between perception error (PE)
and sample size

As expected, our PE decreases with an increase in sample
size and exhibits the same exponential decay as our other
component errors (Figure 5). This tells us that people
understand histograms better as more data is added to
the histogram, but there are diminishing returns. After
some point, the rate of decrease of PE cools off even
though the rate of adding data does not. In the world
of big data, this could mean large amounts of processing
power being used for no added benefit.

6.6. Relationship between insight error (IE) and
sample size

Our IE behaved as expected in relation to sample size
(Figure 5). This confirmed our hypothesis that IE
would behave similar to standard error (H3). This
relationship shows that as more data is added to a his-
togram, the quality of insights gained from the histo-
grams improve even though there are diminishing
returns in the relationship. This diminishing effects
relationship has to be considered when one is visualis-
ing big data. As more data is added at a high computing
cost, while potentially increasing application latency,
there is a possibility that this could be for no added
insight benefit.

6.7. Model parameter learning

In order to make the best decision on the appropriate
sample size needed to attain an arbitrary IE, a

relationship that accounts for the IE component errors
is needed. This can be attained by learning the par-
ameters of an MLR model that uses the IE component
errors as predictors. Using the results of our study, we
learned the parameters of models describing the
relationship between sample size and our various
errors, and evaluated these models. We split our
crowd study results into a training and testing dataset
using an 80–20 ratio. The data was randomised before
splitting. 80% of the data was used to train our models
while 20% was held out for evaluating the model. We
did not create a validation set, but relied on the visu-
alisation of the relationships between learned values
and the actual observed values to help us decide on
the best model to use.

6.8. Model evaluation

Due to the small error values that were close to zero,
forecast error metrics like Mean Absolute Percentage
Error that would seem intuitive to evaluate the per-
formance of our model were unsuitable for this
study. Such evaluation metrics are percentage based,
and in our case resulted in large numbers due to
very small denominators. As a result, we argue that
plotting our model predictions provides sufficient
evaluation.

6.8.1. Using component errors to predict insight
error
Following R2, we proceeded to use all component errors
to model insight error and our results were successful.

Figure 5. Observed Insight, Sampling, Visualisation, and Perception Error values plotted against sample size (Log2) showing exponen-
tial decay. The smallest sample size has been excluded from the figure to highlight the behaviour of errors for larger sample sizes. These
values are normalised with the sample range as the denominator.
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Our learned parameters for our relationship were:

IE = −0.0474158+ 1.05784676 ∗ PE
+ 0.7535806 ∗ VE + 0.8509646 ∗ SE

During the learning of these model parameters, we
added a predictor for the distribution of the underlying
data, but this predictor did not significantly improve
the Rsq and Cp values for our model, nor did it largely
degrade the performance. From this, we determined to
keep the simpler model, deciding that the distribution
of the dataset was not a requirement for predicting IE
from component errors. The results of this model on
the training data were good (Figure 6) and using the
model on the held out testing set also showed excellent
results (Figure 7). As successful as this model was, we

sought a model that did not require a prior knowledge
of the component errors. Such a model could be cre-
ated by learning the relationship between the com-
ponent errors and standard error, and using standard
error as a proxy for these component errors.

6.8.2. Using standard error of the mean to predict
sampling error
Modelling the relationship between sampling error and
the standard error of the mean on the training dataset
was very successful (Figure 8). The relationship was lin-
ear and the parameters for this model were:

SE = 0.097∗std. error2 + 0.086∗std. error
+ 0.002 (17)

Figure 6. Forecasting insight error (IE) given insight error com-
ponent errors from the training set. The actual errors seen in
the training dataset (solid), and those predicted by our model
(dashed).

Figure 7. Forecasting insight error (IE) given insight error com-
ponent errors on the testing set. The actual errors seen in the
testing dataset (solid), and those predicted by our model
(dashed).

Figure 8. Forecasting sampling error (SE) when given standard
error of the mean from the testing set. The smallest two sample
sizes have been excluded from the figure to highlight the behav-
iour of SE for larger sample sizes. The actual errors seen in the
testing dataset (solid) and those predicted by our model
(dashed).

Figure 9. Forecasting visualisation error (VE) given standard error
of the mean from the testing set. The actual errors seen in the
testing dataset (solid) and those predicted by our model
(dashed).
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6.8.3. Using standard error of the mean to predict
visualisation error
Predicting VE using the training set also produced
good results (Figure 9). Our linear model predicted
values that exhibited a behaviour that was similar to
the actual observed VE. The parameters for this
model were:

VE = −0.0472∗std. error2 + 0.6405∗std. error
+ 0.0384 (18)

6.8.4. Using standard error of the mean to predict
perception error
Our linear model to predict perception error based on
the sample size was very successful on the training data
(Figure 10) and our variables were positively correlated.
However, the results on the unseen data (Figure 11)
showed a need for improvement. It seems that we either

need more training data or to try a different mode. More
investigation on modelling how different people under-
stand visualisations is needed in the future. The par-
ameters for this model were:

PE = −0.07157∗std2 + 0.0.7297∗std. error
+ 0.09271 (19)

6.8.5. Using standard error of the mean to predict
insight error
As hypothesised (H4) and also due to the fact that each
of our component errors were positively correlated with
the standard error of the mean, we built a model for the
relationship for predicting insight error using standard
error of the mean as a proxy for our component errors.
This model showed good results for the training

Figure 10. Forecasting perception error (PE) given standard error
of the mean from the training set. The actual errors seen in the
training dataset (solid) and those predicted by our model
(dashed).

Figure 11. Forecasting perception error (PE) given standard error
of the mean from the testing set. The actual errors seen in the
testing dataset (solid) and those predicted by our model
(dashed).

Figure 12. Forecasting insight error (IE) using standard error of
the mean as a proxy for our component errors from the training
set. The actual errors seen in the training dataset (solid) and
those predicted by our model (dashed).

Figure 13. Forecasting insight error (IE) using standard error of
the mean as a proxy for our component errors on data that
our model had not seen in training. The actual errors seen in
the testing dataset (solid) and those predicted by our model
(dashed).
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(Figure 12) and testing (Figure 13) sets. The parameters
for this model were:

IE = 1.595 ∗ std. error+ 0.097 (20)

6.8.6. Using IE to prediction standard error of the
mean
Having determined the linear relationships between
standard error and our component errors, we proceeded
to model the relationship between standard error of the
mean and IE. Our model performed very well for both
our training and testing (Figure 14) datasets. The par-
ameters for our model were:

std. error = 0.6269 ∗ IE − 0.06067 (21)

6.8.7. Using IE to predict sample size
We learn the parameters for an MLR for predicting the
sample size using IE. Modelling the relationship
between IE and the sample size would allow us to
accomplish our main goal of providing a model for
the relationship between a sample size and a user pro-
vided insight measure. We modelled this relationship
successfully using the log of IE and the log of sample
size and had great results for both data that our
model had seen in training and data that it had not
been seen in training (Figure 15). Our R2 for our testing
dataset was 0.81. This means that our model can accu-
rately determine the sample size required to meet user
provided insight requirements. The parameters for our
model were:

log2(log2(size)) = −0.61 ∗ log2(IE)+ 0.99 (22)

7. Applications

Our model allows us to predict the sample size that
would give us an arbitrary insight error. For example,
if we have scientists visualising exabytes of data, they
can use our application to guide their work in terms of
how much error they are willing to accept in order to
speed up their workflow. They would simply use a slider
to input an arbitrary value for IE, see a feedback visual-
isation that shows the associated visualisation speed for
the given IE value, and our model would calculate the
associated sample size (n) for the selected IE, providing
the visualisation application with the corresponding n
and rendering the visualisation of the sampled data.

We are also able to provide the sampling, visualisa-
tion, perception, and insight errors, given an arbitrary
sample size. An example of an application for this
would be one where a scientist knows the sample size
that is required to run their visualisation within a given
time but would like to know the impacts of using that
sample size. He or she would provide our model with
the sample size and our model would provide the corre-
sponding sampling, visualisation, perception, and insight
errors. This would give the scientist an objective measure
of the uncertainty associated with the results he or she
would get from the given sample.

Our approach can also be used to save time and
money for scientists running ensemble simulations.
Scientific simulation can take a long time to execute
and ensemble simulation requires many simulation
runs. Lowering the runtime of each simulation would
save time and money due to power, cooling and per
CPU licensing costs associated with scientific simulation
(Adhinarayanan 2015; Borghesi et al. 2018). For

Figure 14. Forecasting standard error of the mean given insight
error (IE) on data that our model had not seen in training. The
smallest sample size has been excluded from the figure to high-
light the behaviour of standard error of the mean for larger
sample sizes. The actual errors seen in the testing dataset
(solid) and those predicted by our model (dashed).

Figure 15. Forecasting sample size given insight error (IE) on
data that our model had not seen in training. The actual errors
seen in the testing dataset (circles) and our regression line
(solid line).
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example, given a scenario (S2) where a scientist is using
histograms to gain insight on the distribution of ensem-
ble data objects produced by an ensemble simulation.
Using a slider based on our model, one can reduce the
runtime of each simulation. The scientist would input
an expected insight error measure. This measure would
determine the amount of data required by the visualisa-
tion application in order to provide the required insight
level. The data amount provided by our model would in
turn be used to guide the grid size for each simulation
run in order to produce the required data. The result
of this approach would be a faster runtime for each simu-
lation that results in time and money savings as a result
of lower power, cooling, and licensing costs.

Scenario S2 (above) could be extended to cases where
our scientist is visualising the resultant ensemble data
objects in order to determine if the complete simulation
input parameter space is being evenly covered (Dahshan
and Polys 2018). Using a spatial visualisation of the map-
ping of the resulting ensemble data objects to the input
space, one could determine input parameter spaces that
need more or less coverage. Given the cost and long run-
time of each simulation, the scientist might determine that
a lowering of insight accuracy is worth the time and cost
savings. As a result, running the simulation faster, despite
increased insight error, at an acceptable insight error rate
would result in large runtime benefits.

Our model could also bring interactivity and its
benefits to ensemble and other scientific simulation
applications that produce big data and have long run-
times. An example of a simulation with long runtimes
that could benefit from our approach is one where the
results are analysed using a geographic visualisation. In
cases where this simulation takes days or weeks to run,
it would be wasteful to have to wait for days before deter-
mining that the incorrect set of parameters has been
used. Using our model to decide on a quick runtime to
zero in on the right input parameters to use before run-
ning the simulation at a high accuracy could save days or
months in the simulation work flow.

8. Discussion and future work

This work implements the idea of providing a solution
that is focused on the human. It presents a model that
is driven by human insight requirements that are pre-
sented in terms of insight error. The model allows us
to calculate the insight error as a function of sampling,
perception, and visualisation errors, and visualisation,
perception, and sampling errors as functions of sample
size. This means that a visualisation end user who selects
an arbitrary insight and perception level from a slider is
in essence selecting the sample size. This approach can

be used to sample big datasets using human insight
and perception levels as the primary consideration.

Most big data analytic approaches focus on automat-
ing the analytics due to the well-known human limit-
ations associated with the processing of time sensitive
large amounts of data. The consensus it seems is to get
the humans out of the way of the faster more accurate
computing machines. The result is usually either one
that works extremely well and is used widely, or one
that does not seem to do the job well and is avoided by
end users. In both these cases, the humans using the sol-
ution have very little understanding of the inner work-
ings of the solution. The problem with these
approaches is that when things go wrong, the results
can be catastrophic because very few people are able to
catch early telltale signs of something going wrong
(O’Neil 2017). This work is a contribution to an alternate
human-in-the-loop approach that focuses on the human
and uses faster compute machines to aid the human.

The benefit of our approach is that it is based on the
understanding that users have highly variable needs and
as a result does not try to model these needs. An
approach that tries to model user needs introduces a
lot of bias. Our approach is centred on the user and
allows for users to adjust the model’s involvement intui-
tively each time the user’s needs change. For example, in
a situation where a visualisation user is exploring big
data and is willing to accept a low fidelity visualisation,
one can input a high IE value into the model and as a
result visualise a small sample in a short amount of
time with a clear understanding of how it will impact
the insights drawn from the visualisation. If the user
feels that he or she has a firm understanding of the big
data and would like to generate a high fidelity visualisa-
tion even though it will take a long time, he or she could
input a low IE value and generate the visualisation. Our
approach provides this flexibility based on the user’s
needs at a given time.

One could argue against normalising our IE using the
sample range. We chose this approach for two reasons:
(i) all interactions with the data by study participants
were done using the sample, so it makes sense to normal-
ise using a sample statistic, and (ii) during the study
design, we chose depth over breadth when investigating
the relationship between IE and its component errors as
a function of sample size. We chose to have one sample
per sample size for each population, with multiple rep-
etitions of the same samples as opposed to many differ-
ent samples for each sample size with no repetitions.
This constraint was as a result of having 400 treatments
and a need to avoid learning. This design decision lim-
ited our knowledge of the behaviour of IE and its com-
ponents across populations. As a result, our IE
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measure can be thought of as a relative measure similar
to the widely used Cp value (Gilmour 1996) that can be
used to compare models using the same data.

Our IE measure allows one to compare the IE from
different sample sizes and determine the difference of
IEs, when IE is increasing, decreasing, or not changing
as a function of sample size. Converting our IE to an
absolute measure (IE’) that can be used to compare
different models using different data would entail run-
ning an additional study with more samples and less rep-
etitions or more samples and participants. We plan to
conduct such a study in the future. However, since we
had learned the relationship between our component
errors and sample size, we were able to generate a
proof-of-concept absolute IE’ measure by leveraging
sampling and the data from our user study. Using a
single population, we generated a hundred samples for
each sample size (Figure 16). For each sample, we pre-
dicted the human estimates using the average perception
error for that sample size learned from our crowd study.
We then learned an absolute IE’ normalised by the range
of the population. Using the variance of this absolute IE’
error with a log transformation gave us a fairly linear
model that can be used to predict the IE’ given a sample
size and vice versa (Figure 17).

In order to produce solutions that humans under-
stand, trust and can contribute to their accuracy, we
need to understand human strengths and capabilities
when it comes to data analytics and processing. Even
though more work is needed to understand how people
perceive visualisations, this work contributes to that
caused by quantifying human understanding of visual-
ised information and provides a model that leverages

our understanding of human understanding to provide
visualisations that efficiently present information at arbi-
trary workload levels.

8.1. Limitations

The major limitation of this work is that it is based on
simple tasks and only on histogram visualisation that
can be seen as providing little real world benefit.
Even though a histogram is a simple visualisation, its
strength lies in its simplicity. In a glance, one can
understand the range, mean, distribution, mode, etc.
of a big dataset with very little training. We plan to
address these limitations in future work by focusing
on more complex visualisations and user tasks. That
being said, the use of simple tasks is beneficial because
it allows us to focus on the main deliverable of this
work, which is building a model that relates human
insight to sample sizes without getting caught up in
other details and confounding effects associated with
complex tasks. Other limitations include the use of
synthetic datasets as opposed to real world data. We
plan to address these limitations in future work.
Some might frown on the use of R2 values to evaluate
MLR models, but we feel that the use of these values in
conjunction with other measures like Cp values and
error visualisation provides adequate model evaluation.

Additional limitations include the need for an
improvement in our modelling of human perception of
visualisations, and the fact that our data consisted of
only numerical data. Most big datasets are composed
of high dimensional data of a variety of data types.
Even though one can argue that a lot of data mining

Figure 16. Samples generated to learn simulated absolute
insight error (IE’). Sample ranges are visualised in red lines
with low opacity. Dark red areas show repeated coverage.
Sample means are visualised using green asterisks. The blue mar-
kers represent the expected sampling error (SE).

Figure 17. Absolute insight error (IE’) after log transformation as
a function of sample. This measure is generated using expected
human estimates from the crowd study as well as a hundred ran-
dom samples for each sample size. This IE’measure is normalised
by the range of the population and is robust to different
populations.
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and analytics approaches tend to transform this data into
a numeric format, it is important that we study such data
and see how our model perform on it. We plan to
address these area of limitation in the future as we
apply our approach to real world data. The use of a rela-
tive IE metric is another limitation that needs to be
addressed in the future. In this work, we provided a
proof of concept absolute IE metric ( Section 8), but
we plan to produce one that is extensively evaluated in
the future.

8.2. Future work

This work provides a relative measure of IE. As noted
earlier, this measure cannot be used to compare IE
from different datasets. In future work, we plan to
address this limitation by providing a global IE measure
that can be used across datasets. We also plan to add
more evaluation of the human component in perceiving
visualised data and to evaluate our approach with case
studies involving the application of this approach to
real world challenges like those encountered in infor-
mation security and geoscience domains. These domains
typically rely on advanced hardware to process and visu-
alise big data. We think our approach could help extend
the reach of these approaches. Additionally, we intend to
explore the perception effect on insight in greater detail
to determine if there are other dependencies like stress,
workload, and time of day for example. Questions like
‘does the time of day impact how end users understand
big data visualisation?’. Such questions have an impact
in domains with a low error tolerance like information
security where adversaries can leverage high stress
periods to bypass security that relies on an analyst view-
ing a security visualisation application. A potential visu-
alisation that leverages this information would adjust
itself based on these external conditions that could
impact insight. We also intend to investigate the effects
of different datasets, visualisations, and user tasks on
our model. Will different visualisations and user tasks
also produce an exponential decay relationship between
IE and sample size?

9. Conclusion

In this work, we used a simple task to run a crowd study
that quantified human insight levels. Using the results of
the study we generated a model that can be used to pre-
dict the sample size when given an arbitrary insight level.
This allows for the efficient visualisation of big datasets
by using just the right amount of data needed to meet
a given insight requirement. We evaluated our model
and reduced it to a form that only has one variable.

Our model relies heavily on the use of standard error
of the mean as a proxy for our features and this allows
the generation of model parameters without needing to
run a study for every new dataset. Our approach allows
visualisation authors to create an interface with a slider,
through which the end user selects an arbitrary insight
level that in turn predicts the required sample size to
generate a visualisation that would produce the required
insight level. We also generated a model that can provide
the impact of an arbitrary sample size on sampling, visu-
alisation, perception, and insight errors. This model is
valuable for use cases when one wants to put results
from a visualisation of sampled data into perspective.
We studied and defined the relationship between insight
accuracy and sample size, defined and demonstrated the
relationship between insight error, its component errors
and a well-known statistical measure, displayed the
behaviour of insight error and its component errors as
a function of sample size, and provided a model that
allows for the speedup of big data visualisation based
on user provided insight levels.
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