
Pollux: Interactive Cluster-First Projections of High-Dimensional Data
John Wenskovitch* and Chris North†

Virginia Tech Discovery Analytics Center

Figure 1: Clustered projections of three datasets generated by Pollux. From left to right, an Animals dataset [37], the Fisher Iris
dataset [18], and a U.S. Census States dataset [53].

ABSTRACT

Semantic interaction is a technique relying upon the interactive
semantic exploration of data. When an analyst manipulates data
items within a visualization, an underlying model learns from the
intent underlying these interactions, updating the parameters of
the model controlling the visualization. In this work, we propose,
implement, and evaluate a model which defines clusters within this
data projection, then projects these clusters into a two-dimensional
space using a “proximity≈similarity” metaphor. These clusters act
as targets against which data values can be manipulated, providing
explicit user-driven cluster membership assignments to train the
underlying models. Using this cluster-first approach can improve the
speed and efficiency of laying out a projection of high-dimensional
data, with the tradeoff of distorting the global projection space.

Keywords: Dimension reduction, clustering, semantic interaction,
exploratory data analysis.

Index Terms: Human-centered computing—Visualization—Visual
analytics

1 INTRODUCTION

In recent years, analysts have worked to explore and draw conclu-
sions from increasingly larger datasets. As a result, visual analytics
tools continue to grow more complex, with computational pipelines
that transform data into interactive visualizations often consisting of
multiple analytical models. These multi-model systems are becom-
ing prevalent, and include but are not limited to combinations such
as relevance and similarity [7], sampling and projection [41], and
most relevant to this work, dimension reduction and clustering [56].

Though dimension reduction and clustering algorithms serve dif-
ferent cognitive purposes in visualizations (spatializing and group-
ing, respectively), they can naturally coexist within a projection of
data. Many dimension reduction algorithms make use of a “proxim-
ity ≈ similarity” metaphor; in other words, the similarity of obser-

*jw87@cs.vt.edu
†north@cs.vt.edu

vations in the high-dimensional space is mapped to the proximity
of the corresponding nodes in the low-dimensional projection [38].
As a result, groups of similar items form implicit clusters in the
projection. If these clusters are defined explicitly by a clustering
algorithm, additional structural information about the data can be
communicated to the analyst. That said, clusters are inherently sub-
jective structures, a fact that makes their identification a challenging
process for both the analyst and the machine [27].

In our previous work, we explored the combination of dimen-
sion reduction and clustering algorithms within visual analytics
systems [55], identifying the various ways of combining these two
algorithm families into the same system. However, few implementa-
tions make use of semantic interaction and similar learning routines
to infer the intent of an analyst and train a model, instead relying
on direct parametric feedback via user interactions. In other previ-
ous work, we implemented Castor [56], a tool that first reduces the
dimensionality of the data from the high-dimensional input into a
two-dimensional projection, and then runs the clustering algorithm
on that reduced data. As an analyst updates the cluster memberships
of individual observations, the system gradually learns which dimen-
sions are of most interest to the analyst’s current exploration, and
Castor updates the projection to better reflect that interest.

In this work, we introduce Pollux. Pollux is similar to Castor, but
the algorithm order is reversed: the data is first clustered in the high-
dimensional space, and is then projected into a two-dimensional
visualization. Such a process has previously been included in analyt-
ical tools [14], but these projects did not include semantic interaction
learning as seen in Castor. Introducing online learning into Pollux
permits analysts to maintain a data exploration focus, with no need
for mental context switching to ponder model parameters. Determin-
ing how to present the outcome of this computational flow leads to a
number of design options that can be considered, reflecting a balance
between an accurate projection of the data and faster rendering.

In particular, we note the following contributions:
1. The design and implementation of Pollux, an interactive

cluster-first system that learns observation classifications via
analyst feedback and displays using a unified layout model
based on edge classes.

2. A discussion of the benefits of the cluster-first model, as well
as of methods that can extend the cluster-first design space
beyond that which has been implemented in this work.

2 RELATED WORK

2.1 Interactive Dimension Reduction

The semantic interaction work initiated by Endert et al. [22–26] has
led to much of the current research into interactive dimension reduc-
tion tools. Under this semantic interaction paradigm, incremental
feedback is delivered to the system by an analyst [48]. The system
then uses these interactions to infer the intent of the analyst and to
update the projection accordingly, often via adjustments to a vector
of weights applied to the dimensions of the dataset.

These incremental dimension reduction tools can be divided into
classes that support quantitative and text data. Quantitative data is
straightforward, as dimension reduction algorithms process numeri-
cal data and distances by default. Tools such as Andromeda [46, 47]
are built on the V2PI framework [39] for parameteritizing and learn-
ing from user interactions, and can be supplemented with supporting
views, as seen in Dis-Function [8]. Alternative frameworks and
learning approaches are seen in the LAMP framework from Joia
et al. [34] and the iLAMP extension [16], the Piecewise Laplacian
technique described by Paulovich et al. [44], and the tools developed
by Mamani et al. [41] and Molchanov et al [43]. ModelSpace [9]
visualizes interaction provenance trails, projecting high-dimensional
vectors to show the exploration strategies of Dis-Function and Doc-
Function users.

The text data case is a special variant of the quantitative case,
as text must be processed into numerical data before running the
dimension reduction algorithms. These numerical values often take
the form of term frequencies, or term frequencies scaled by the
frequency of that term appearing in the overall corpus (TF-IDF).
However, the sparcity of the resulting data requires different pro-
cessing techniques, such as replacing the common Euclidean or
Manhattan methods for measuring the distance between observa-
tions with either Cosine Distance to handle the sparcity [49] or with
Gower distance to handle missing attributes [28]. Tools such as Star-
SPIRE [7, 54] and Cosmos [17] allow for the interactive exploration
of document collections, with StarSPIRE opting for a force-directed
layout and Cosmos using WMDS.

2.2 Interactive Clustering

Interactive clustering serves several purposes for the analysis of data,
depending on the goals of the analyst. Typically, the analyst wishes
to find the clustering assignment that best suits their current search
strategy or supports their targeted conclusions [3, 40]. Systems such
as SOPHIA provide analysts with support for exploratory search and
retrieval of documents, in this case for medical documents [15]. The
goal of an ideal interactive clustering system is to understand these
analysts and adapt the clustering to suit their intent [11,30,50]. Some
systems provide analysts with options, displaying multiple clustering
results and allowing the analyst to choose the best solution [21]. Still
others aim to highlight interesting data automatically for the analyst,
guiding their exploration to regions of the data [2, 6]. Interactive
topic modeling allows analysts to see groups of documents based on
common topics of interest [21, 32, 33, 35].

Interactive clustering systems require a set of interactions to re-
ceive feedback from analysts. At a basic level, an analyst can be
given the ability to directly adjust the number of clusters created,
or to directly modify parameters that control those clusters such as
a distance threshold [6, 15, 30, 40, 50]. Systems can also support
direct interactions with the clusters, such as merging and splitting
clusters [6, 10, 32], removing clusters [5, 15, 30, 40], and hiding and
expanding clusters [3, 5, 6, 15]. When looking at individual obser-
vations within the clusters, analysts are often afforded the ability to
move nodes from one cluster to another [5,12], referred to by Dubey
et al. as “Assignment Feedback” [19]. Through such interactions,
analysts can supply must-link and cannot-link constraints to cluster-
ing solutions [8, 33]. A unique feature of Pollux is the projection

Figure 2: The computational pipeline for Pollux. The projection com-
putations convert data into a visualization, while the interaction com-
putations interpret and respond to analyst interactions.

of relationships within and between clusters using a spatialization
based on the clustering operations and assignments.

3 POLLUX

The goal with the Pollux system was to continue to explore the
interaction space between dimension reduction and clustering algo-
rithms [55] by introducing a cluster-first system. Pollux differs from
many other interactive clustering systems because of the inclusion of
projections via dimension reduction, displaying learned similarities
at both the cluster and observation level through user-driven reclas-
sification. An analyst using Pollux should be afforded the ability
to update the system-learned categorization of observation, training
the underlying clustering and dimension reduction models to better
express their current exploration interests. Further, an analyst should
be able to receive feedback from these algorithms concurrent with
the incremental learning process, permitting the analyst to update or
alter their exploration based on the most current results displayed.

Our model of this cluster-first framework is shown in Fig. 2. This
bidirectional pipeline is divided into projection and interaction di-
rections, where the projection direction converts input data into an
interactive visualization, and the interaction direction responds to
analyst input. These projections and interactions are supported by
Dimension Reduction and Clustering Models, which work cooper-
atively to generate an interactive visualization from the provided
high-dimensional dataset and a learned weight vector. The imple-
mentation described in this section makes use of the Euclidean dis-
tance function, a force-directed layout for dimension reduction, and
k-means clustering; however, the model generalizes to any distance
function, dimension reduction technique, and clustering algorithm.

3.1 Projection Direction

At a high level, the projection direction computes clustering assign-
ments for the high-dimensional observations, and then structures a
visual representation of those clusters into a two-dimensional space.
There are many methods to visually convey cluster membership,
and again, we elected to follow the visual style of Castor for this
application. A broader discussion of visualization structures and
alternatives follows in Sect. 4.

Weighted Cluster Assignments In the projection direction of
the Pollux pipeline, the Clustering Model is the first to execute.
This cluster model has two primary goals: to determine a quality
clustering assignment for the observations given the data at hand, and
to communicate those membership assignments to the Dimension
Reduction Model for layout.

To accomplish the first goal, a weighted k-means algorithm is
executed on the dataset. In the default implementation of the system,
we execute 500 versions of k-means for each value of k ranging
from 2 to 15. Each of the best k-clusterings (as determined by
summed intra-cluster distance) is stored, and an optimal k value is
determined from these best clusterings using the elbow method [51].
The analyst is afforded control of k, so that they can refine the
number of clusters generated by the system if the initially-selected
version does not suit their goals. After each of the clusters has been
determined, an additional node is created to specifically represent
the centroid of the cluster.

Figure 3: Five different classes of edges that could be included in
the layout: Centroid-Centroid Edges (CC), Centroid-Node Internal
Edges (CNI), Node-Node Internal Edges (NNI), Centroid-Node Exter-
nal Edges (CNE), and Node-Node External Edges (NNE).

Projecting Clusters After cluster memberships have been deter-
mined, the Dimension Reduction Model is tasked with projecting
these clusters into the visualization. The precise layout of this visu-
alization is dependent upon the importance of each class of edges
that is included in the layout. There are five of these classes, shown
in Fig. 3:

• Centroid-Centroid Edges (CC): Distances between the clusters
themselves, displaying the similarity between pairs of clusters.

• Centroid-Node Internal Edges (CNI): Distances between each
cluster member and its centroid, demonstrating the centrality
of a node in the cluster. These edges act to pull associated
nodes towards their cluster centroid.

• Node-Node Internal Edges (NNI): Distances internally be-
tween cluster members. These edges display the similarity of
nodes within a single cluster, providing an overall organiza-
tional structure to the members of a cluster.

• Centroid-Node External Edges (CNE): Distances between
nodes and the centroids of other clusters. These edges pull
nodes within a cluster towards the direction of alternative clus-
ter memberships.

• Node-Node External Edges (NNE): Distances globally be-
tween observations, with no regard for cluster boundaries (but
not including edges internal to a cluster). These edges pull
nodes directly towards similar observations in other clusters,
showing pairwise relationships between observations.

The classes of edges that are included in the visualization impact
both the accuracy and rendering speed of the visualization. A longer
discussion of this tradeoff is included in Sec. 4.

After edges are constructed in the graph, a distance δ (ni,n j) is
computed for every pair of nodes and centroids with a connecting
edge. This distance, described in Equation 1, is the L2 or Euclidean
distance between the normalized attributes of endpoints ni and n j,
including an attribute weight wa applied to each attribute a to denote
the importance of the associated dimension to the current projec-
tion. At system initialization, each of these weights are set to 1,
indicating that each weight has no larger or smaller effect on the
resting length of each link than any other weight. These attribute
weights are updated in response to analyst interactions in the in-
teraction direction, detailed in the next subsection. A further edge
class weight, we, is applied to each of the edges. This edge class
weight allows for different styles of visualization to be created (e.g.,
compact clusters, tightly grouped clusters, broad clusters). Tradeoffs
in this design space are also discussed in more detail in Sec. 4.3.
These computed edge lengths are then treated as the optimal resting
lengths within a force-directed simulation, with nodes beginning
at locations uniformly and radially spaced about the center of the
display and updating their positions until the layout converges to a
relatively stable layout. Clusters are drawn using the Graham scan
algorithm for convex hulls [29].

δ (ni,n j) =
√

∑
a∈attr

we ∗wa ∗ (ni,a−n j,a)2 (1)

3.2 Interaction Direction
The goal of the interaction direction is to respond to analyst interac-
tions, incrementally training the underlying models and learning the
intent of the analyst when they perform reclassification interactions.
The analyst interacts with the nodes via direct manipulation, using
click-and-drag actions to move nodes between clusters. Mouseover
interactions afford a details-on-demand view of the raw data for each
node. Analysts have the ability to perform two types of interactions,
each of which are addressed by a different model in Pollux.

Layout Interactions These interactions are addressed by the
Dimension Reduction Model, as no clustering updates need to be
performed. Such interactions can be used to probe relationships
internal to a cluster, perhaps dragging a node from one side of
the cluster to the other and watching the updates to the rest of
the layout. These interactions can also assist the force-directed
optimization in Pollux to shift between various local minima in the
layout of observations, and could be extended to navigating the
rotation and scale invariance properties of other dimension reduction
algorithms such as MDS. Performing such interactions will not
trigger the learning of new attribute weights; these are only learned
via expressive interactions.

Cluster Interactions These interactions are performed when an
analyst reclassifies an observation, dragging it from one cluster into
another. As this interaction appears to demonstrate an analyst’s dis-
satisfaction with the automated membership assignment, the system
begins to learn a distance metric that matches the current exploration
interests of the analyst, inferring the semantic reasoning behind this
reclassification by examining the attributes of the dragged node, the
source cluster, and the destination cluster. These interactions train
the Clustering Model via incremental feedback.

To make this judgment, we use an incremental metric learning
approach to efficiently compute an updated distance function. We
compare each attribute a of the source cluster centroid cs and the
destination cluster centroid cd with the corresponding attribute of
the dragged node n. As shown in Equations 2 and 3, this comparison
is a calculation similar to that of our initial distance computation,
normalizing the difference in value for each attribute between the
node and cluster centroids. One important difference is that here
we use L1 or Manhattan distances rather than Euclidean distance,
because we consider each attribute independently with the goal of
sorting them rather than considering the attributes collectively to
calculate an overall distance.

∀a ∈ attr,δ (csa,na) = |csa−na| (2)

∀a ∈ attr,δ (cda,na) = |cda−na| (3)

After computing this similarity distance for each attribute, we sort
the attribute collections based on the strength of similarity score
computed, with the sorted positions of attributes with tied similarity
scores placed arbitrarily. A linear function is then applied to each
of these sorted attributes to update the weight of each attribute.
Attributes that show the greatest similarity between cluster and node
should pull the pair closer together and so the weight is reduced,
while attributes that show the least similarity should push the pair
apart and so the weight is increased. Attributes near the middle
of the list have little weight, with weight updates only a fraction
from 1. With these weight scaling factors set, we first apply the
factors between source cluster and node, followed by those of the
destination cluster and node.

After the attribute weights have been updated, the system must up-
date the visualization through the projection direction of the pipeline
again. First, cluster assignments for each node are recomputed with

Table 1: A summary of the three datasets visualized with Pollux,
enumerating each edge type.

Dataset Animals [37] Fisher’s Iris [53] Census [18]
Nodes 49 48 150
Dimensions 85 35 4
Clusters 5 6 2
Fully-Connected
Node Graph 1176 1128 11175

Centroid-Centroid
Edges (CC) 10 15 1

Centroid-Node
Internal Edges (CNI)

49 48 150

Node-Node Internal
Edges (NNI)

241 214 6175

Centroid-Node
External Edges
(CNE)

196 240 150

Node-Node External
Edges (NNE) 935 914 5000

the new weight information. Any node that receives a new cluster
assignment will have its adjacent edges updated as needed, which
could include the removal of unneeded edges, the introduction of
new edges, or the weighting of an edge that has transitioned from
internal to external or vice versa. The force-directed layout then
executes, with nodes that switch clusters smoothly animating from
source to destination cluster.

As the system is currently designed with a small set of supported
interactions, the process of displaying a clustering projection and
learning an updated distance function is fairly straightforward. How-
ever, future versions of the system can also make use of the various
edge types in determining the distance function updates. For exam-
ple, a Layout Interaction might update some properties of only the
CNI and NNI edges. Other interactions such as dragging two entire
clusters closer together may refine the impact of the CC edges.

4 EXTENDED DESIGN SPACE

As noted at the beginning of Sec. 3, the Pollux model can be gen-
eralized to any distance function, dimension reduction technique,
and clustering algorithm. Castor [56] held the same property. How-
ever, there are some additional properties of the Pollux technique
that enable additional variants to be created from this cluster-first
approach. In particular, we discuss in this section the roles of edge
type selection and edge class weights on the visualization that is
created.

4.1 Edge Class Selection

As noted in Sec. 3.1, there are five different classes of edges that
exist within a Pollux projection. The role of these edges in the
force-directed layout is the same as the role of distances in many
dimension-reduction projections: to communicate a measure of
similarity between two objects in the visualization. With the added
introduction of clustering into Pollux projections, layout time can be
improved and visualizations can therefore be generated more rapidly
than in pure projection applications.

Table 1 provides a summary of nodes, dimensions, clusters (as
learned by Pollux), and edge counts for three different datasets: a
dataset of animals and a collection of appearance, habitat, diet, and
behavioral attributes [37]; the traditional Fisher’s Iris dataset [18];
and a dataset of demographic, employment, and housing data for the
48 continental U.S. States [53]. In this table, the “Fully-Connected
Node Graph” row provides the number of edges or distances required
to lay out a fully-connected graph of only observations (this is merely
the sum of the NNI and NNE categories). Each of these classes of
edges communicate additional information to the analyst, as listed
in Sec. 3.1.

Figure 4: Four views of the Census dataset with a variety of edge
class selections. From top to bottom, (A) only CC and CNI edges,
(B) same as above, plus NNI, (C) same as above, plus CNE, (D) all
edge types.

