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Figure 1: Clustered projections of three datasets generated by Pollux. From left to right, an Animals dataset [37], the Fisher Iris
dataset [18], and a U.S. Census States dataset [53].

ABSTRACT

Semantic interaction is a technique relying upon the interactive
semantic exploration of data. When an analyst manipulates data
items within a visualization, an underlying model learns from the
intent underlying these interactions, updating the parameters of
the model controlling the visualization. In this work, we propose,
implement, and evaluate a model which defines clusters within this
data projection, then projects these clusters into a two-dimensional
space using a “proximity≈similarity” metaphor. These clusters act
as targets against which data values can be manipulated, providing
explicit user-driven cluster membership assignments to train the
underlying models. Using this cluster-first approach can improve the
speed and efficiency of laying out a projection of high-dimensional
data, with the tradeoff of distorting the global projection space.

Keywords: Dimension reduction, clustering, semantic interaction,
exploratory data analysis.

Index Terms: Human-centered computing—Visualization—Visual
analytics

1 INTRODUCTION

In recent years, analysts have worked to explore and draw conclu-
sions from increasingly larger datasets. As a result, visual analytics
tools continue to grow more complex, with computational pipelines
that transform data into interactive visualizations often consisting of
multiple analytical models. These multi-model systems are becom-
ing prevalent, and include but are not limited to combinations such
as relevance and similarity [7], sampling and projection [41], and
most relevant to this work, dimension reduction and clustering [56].

Though dimension reduction and clustering algorithms serve dif-
ferent cognitive purposes in visualizations (spatializing and group-
ing, respectively), they can naturally coexist within a projection of
data. Many dimension reduction algorithms make use of a “proxim-
ity ≈ similarity” metaphor; in other words, the similarity of obser-
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vations in the high-dimensional space is mapped to the proximity
of the corresponding nodes in the low-dimensional projection [38].
As a result, groups of similar items form implicit clusters in the
projection. If these clusters are defined explicitly by a clustering
algorithm, additional structural information about the data can be
communicated to the analyst. That said, clusters are inherently sub-
jective structures, a fact that makes their identification a challenging
process for both the analyst and the machine [27].

In our previous work, we explored the combination of dimen-
sion reduction and clustering algorithms within visual analytics
systems [55], identifying the various ways of combining these two
algorithm families into the same system. However, few implementa-
tions make use of semantic interaction and similar learning routines
to infer the intent of an analyst and train a model, instead relying
on direct parametric feedback via user interactions. In other previ-
ous work, we implemented Castor [56], a tool that first reduces the
dimensionality of the data from the high-dimensional input into a
two-dimensional projection, and then runs the clustering algorithm
on that reduced data. As an analyst updates the cluster memberships
of individual observations, the system gradually learns which dimen-
sions are of most interest to the analyst’s current exploration, and
Castor updates the projection to better reflect that interest.

In this work, we introduce Pollux. Pollux is similar to Castor, but
the algorithm order is reversed: the data is first clustered in the high-
dimensional space, and is then projected into a two-dimensional
visualization. Such a process has previously been included in analyt-
ical tools [14], but these projects did not include semantic interaction
learning as seen in Castor. Introducing online learning into Pollux
permits analysts to maintain a data exploration focus, with no need
for mental context switching to ponder model parameters. Determin-
ing how to present the outcome of this computational flow leads to a
number of design options that can be considered, reflecting a balance
between an accurate projection of the data and faster rendering.

In particular, we note the following contributions:
1. The design and implementation of Pollux, an interactive

cluster-first system that learns observation classifications via
analyst feedback and displays using a unified layout model
based on edge classes.

2. A discussion of the benefits of the cluster-first model, as well
as of methods that can extend the cluster-first design space
beyond that which has been implemented in this work.



2 RELATED WORK

2.1 Interactive Dimension Reduction

The semantic interaction work initiated by Endert et al. [22–26] has
led to much of the current research into interactive dimension reduc-
tion tools. Under this semantic interaction paradigm, incremental
feedback is delivered to the system by an analyst [48]. The system
then uses these interactions to infer the intent of the analyst and to
update the projection accordingly, often via adjustments to a vector
of weights applied to the dimensions of the dataset.

These incremental dimension reduction tools can be divided into
classes that support quantitative and text data. Quantitative data is
straightforward, as dimension reduction algorithms process numeri-
cal data and distances by default. Tools such as Andromeda [46, 47]
are built on the V2PI framework [39] for parameteritizing and learn-
ing from user interactions, and can be supplemented with supporting
views, as seen in Dis-Function [8]. Alternative frameworks and
learning approaches are seen in the LAMP framework from Joia
et al. [34] and the iLAMP extension [16], the Piecewise Laplacian
technique described by Paulovich et al. [44], and the tools developed
by Mamani et al. [41] and Molchanov et al [43]. ModelSpace [9]
visualizes interaction provenance trails, projecting high-dimensional
vectors to show the exploration strategies of Dis-Function and Doc-
Function users.

The text data case is a special variant of the quantitative case,
as text must be processed into numerical data before running the
dimension reduction algorithms. These numerical values often take
the form of term frequencies, or term frequencies scaled by the
frequency of that term appearing in the overall corpus (TF-IDF).
However, the sparcity of the resulting data requires different pro-
cessing techniques, such as replacing the common Euclidean or
Manhattan methods for measuring the distance between observa-
tions with either Cosine Distance to handle the sparcity [49] or with
Gower distance to handle missing attributes [28]. Tools such as Star-
SPIRE [7, 54] and Cosmos [17] allow for the interactive exploration
of document collections, with StarSPIRE opting for a force-directed
layout and Cosmos using WMDS.

2.2 Interactive Clustering

Interactive clustering serves several purposes for the analysis of data,
depending on the goals of the analyst. Typically, the analyst wishes
to find the clustering assignment that best suits their current search
strategy or supports their targeted conclusions [3, 40]. Systems such
as SOPHIA provide analysts with support for exploratory search and
retrieval of documents, in this case for medical documents [15]. The
goal of an ideal interactive clustering system is to understand these
analysts and adapt the clustering to suit their intent [11,30,50]. Some
systems provide analysts with options, displaying multiple clustering
results and allowing the analyst to choose the best solution [21]. Still
others aim to highlight interesting data automatically for the analyst,
guiding their exploration to regions of the data [2, 6]. Interactive
topic modeling allows analysts to see groups of documents based on
common topics of interest [21, 32, 33, 35].

Interactive clustering systems require a set of interactions to re-
ceive feedback from analysts. At a basic level, an analyst can be
given the ability to directly adjust the number of clusters created,
or to directly modify parameters that control those clusters such as
a distance threshold [6, 15, 30, 40, 50]. Systems can also support
direct interactions with the clusters, such as merging and splitting
clusters [6, 10, 32], removing clusters [5, 15, 30, 40], and hiding and
expanding clusters [3, 5, 6, 15]. When looking at individual obser-
vations within the clusters, analysts are often afforded the ability to
move nodes from one cluster to another [5,12], referred to by Dubey
et al. as “Assignment Feedback” [19]. Through such interactions,
analysts can supply must-link and cannot-link constraints to cluster-
ing solutions [8, 33]. A unique feature of Pollux is the projection

Figure 2: The computational pipeline for Pollux. The projection com-
putations convert data into a visualization, while the interaction com-
putations interpret and respond to analyst interactions.

of relationships within and between clusters using a spatialization
based on the clustering operations and assignments.

3 POLLUX

The goal with the Pollux system was to continue to explore the
interaction space between dimension reduction and clustering algo-
rithms [55] by introducing a cluster-first system. Pollux differs from
many other interactive clustering systems because of the inclusion of
projections via dimension reduction, displaying learned similarities
at both the cluster and observation level through user-driven reclas-
sification. An analyst using Pollux should be afforded the ability
to update the system-learned categorization of observation, training
the underlying clustering and dimension reduction models to better
express their current exploration interests. Further, an analyst should
be able to receive feedback from these algorithms concurrent with
the incremental learning process, permitting the analyst to update or
alter their exploration based on the most current results displayed.

Our model of this cluster-first framework is shown in Fig. 2. This
bidirectional pipeline is divided into projection and interaction di-
rections, where the projection direction converts input data into an
interactive visualization, and the interaction direction responds to
analyst input. These projections and interactions are supported by
Dimension Reduction and Clustering Models, which work cooper-
atively to generate an interactive visualization from the provided
high-dimensional dataset and a learned weight vector. The imple-
mentation described in this section makes use of the Euclidean dis-
tance function, a force-directed layout for dimension reduction, and
k-means clustering; however, the model generalizes to any distance
function, dimension reduction technique, and clustering algorithm.

3.1 Projection Direction

At a high level, the projection direction computes clustering assign-
ments for the high-dimensional observations, and then structures a
visual representation of those clusters into a two-dimensional space.
There are many methods to visually convey cluster membership,
and again, we elected to follow the visual style of Castor for this
application. A broader discussion of visualization structures and
alternatives follows in Sect. 4.

Weighted Cluster Assignments In the projection direction of
the Pollux pipeline, the Clustering Model is the first to execute.
This cluster model has two primary goals: to determine a quality
clustering assignment for the observations given the data at hand, and
to communicate those membership assignments to the Dimension
Reduction Model for layout.

To accomplish the first goal, a weighted k-means algorithm is
executed on the dataset. In the default implementation of the system,
we execute 500 versions of k-means for each value of k ranging
from 2 to 15. Each of the best k-clusterings (as determined by
summed intra-cluster distance) is stored, and an optimal k value is
determined from these best clusterings using the elbow method [51].
The analyst is afforded control of k, so that they can refine the
number of clusters generated by the system if the initially-selected
version does not suit their goals. After each of the clusters has been
determined, an additional node is created to specifically represent
the centroid of the cluster.



Figure 3: Five different classes of edges that could be included in
the layout: Centroid-Centroid Edges (CC), Centroid-Node Internal
Edges (CNI), Node-Node Internal Edges (NNI), Centroid-Node Exter-
nal Edges (CNE), and Node-Node External Edges (NNE).

Projecting Clusters After cluster memberships have been deter-
mined, the Dimension Reduction Model is tasked with projecting
these clusters into the visualization. The precise layout of this visu-
alization is dependent upon the importance of each class of edges
that is included in the layout. There are five of these classes, shown
in Fig. 3:

• Centroid-Centroid Edges (CC): Distances between the clusters
themselves, displaying the similarity between pairs of clusters.

• Centroid-Node Internal Edges (CNI): Distances between each
cluster member and its centroid, demonstrating the centrality
of a node in the cluster. These edges act to pull associated
nodes towards their cluster centroid.

• Node-Node Internal Edges (NNI): Distances internally be-
tween cluster members. These edges display the similarity of
nodes within a single cluster, providing an overall organiza-
tional structure to the members of a cluster.

• Centroid-Node External Edges (CNE): Distances between
nodes and the centroids of other clusters. These edges pull
nodes within a cluster towards the direction of alternative clus-
ter memberships.

• Node-Node External Edges (NNE): Distances globally be-
tween observations, with no regard for cluster boundaries (but
not including edges internal to a cluster). These edges pull
nodes directly towards similar observations in other clusters,
showing pairwise relationships between observations.

The classes of edges that are included in the visualization impact
both the accuracy and rendering speed of the visualization. A longer
discussion of this tradeoff is included in Sec. 4.

After edges are constructed in the graph, a distance δ (ni,n j) is
computed for every pair of nodes and centroids with a connecting
edge. This distance, described in Equation 1, is the L2 or Euclidean
distance between the normalized attributes of endpoints ni and n j,
including an attribute weight wa applied to each attribute a to denote
the importance of the associated dimension to the current projec-
tion. At system initialization, each of these weights are set to 1,
indicating that each weight has no larger or smaller effect on the
resting length of each link than any other weight. These attribute
weights are updated in response to analyst interactions in the in-
teraction direction, detailed in the next subsection. A further edge
class weight, we, is applied to each of the edges. This edge class
weight allows for different styles of visualization to be created (e.g.,
compact clusters, tightly grouped clusters, broad clusters). Tradeoffs
in this design space are also discussed in more detail in Sec. 4.3.
These computed edge lengths are then treated as the optimal resting
lengths within a force-directed simulation, with nodes beginning
at locations uniformly and radially spaced about the center of the
display and updating their positions until the layout converges to a
relatively stable layout. Clusters are drawn using the Graham scan
algorithm for convex hulls [29].

δ (ni,n j) =
√

∑
a∈attr

we ∗wa ∗ (ni,a−n j,a)2 (1)

3.2 Interaction Direction
The goal of the interaction direction is to respond to analyst interac-
tions, incrementally training the underlying models and learning the
intent of the analyst when they perform reclassification interactions.
The analyst interacts with the nodes via direct manipulation, using
click-and-drag actions to move nodes between clusters. Mouseover
interactions afford a details-on-demand view of the raw data for each
node. Analysts have the ability to perform two types of interactions,
each of which are addressed by a different model in Pollux.

Layout Interactions These interactions are addressed by the
Dimension Reduction Model, as no clustering updates need to be
performed. Such interactions can be used to probe relationships
internal to a cluster, perhaps dragging a node from one side of
the cluster to the other and watching the updates to the rest of
the layout. These interactions can also assist the force-directed
optimization in Pollux to shift between various local minima in the
layout of observations, and could be extended to navigating the
rotation and scale invariance properties of other dimension reduction
algorithms such as MDS. Performing such interactions will not
trigger the learning of new attribute weights; these are only learned
via expressive interactions.

Cluster Interactions These interactions are performed when an
analyst reclassifies an observation, dragging it from one cluster into
another. As this interaction appears to demonstrate an analyst’s dis-
satisfaction with the automated membership assignment, the system
begins to learn a distance metric that matches the current exploration
interests of the analyst, inferring the semantic reasoning behind this
reclassification by examining the attributes of the dragged node, the
source cluster, and the destination cluster. These interactions train
the Clustering Model via incremental feedback.

To make this judgment, we use an incremental metric learning
approach to efficiently compute an updated distance function. We
compare each attribute a of the source cluster centroid cs and the
destination cluster centroid cd with the corresponding attribute of
the dragged node n. As shown in Equations 2 and 3, this comparison
is a calculation similar to that of our initial distance computation,
normalizing the difference in value for each attribute between the
node and cluster centroids. One important difference is that here
we use L1 or Manhattan distances rather than Euclidean distance,
because we consider each attribute independently with the goal of
sorting them rather than considering the attributes collectively to
calculate an overall distance.

∀a ∈ attr,δ (csa,na) = |csa−na| (2)

∀a ∈ attr,δ (cda,na) = |cda−na| (3)

After computing this similarity distance for each attribute, we sort
the attribute collections based on the strength of similarity score
computed, with the sorted positions of attributes with tied similarity
scores placed arbitrarily. A linear function is then applied to each
of these sorted attributes to update the weight of each attribute.
Attributes that show the greatest similarity between cluster and node
should pull the pair closer together and so the weight is reduced,
while attributes that show the least similarity should push the pair
apart and so the weight is increased. Attributes near the middle
of the list have little weight, with weight updates only a fraction
from 1. With these weight scaling factors set, we first apply the
factors between source cluster and node, followed by those of the
destination cluster and node.

After the attribute weights have been updated, the system must up-
date the visualization through the projection direction of the pipeline
again. First, cluster assignments for each node are recomputed with



Table 1: A summary of the three datasets visualized with Pollux,
enumerating each edge type.

Dataset Animals [37] Fisher’s Iris [53] Census [18]
Nodes 49 48 150
Dimensions 85 35 4
Clusters 5 6 2
Fully-Connected
Node Graph 1176 1128 11175

Centroid-Centroid
Edges (CC) 10 15 1

Centroid-Node
Internal Edges (CNI)

49 48 150

Node-Node Internal
Edges (NNI)

241 214 6175

Centroid-Node
External Edges
(CNE)

196 240 150

Node-Node External
Edges (NNE) 935 914 5000

the new weight information. Any node that receives a new cluster
assignment will have its adjacent edges updated as needed, which
could include the removal of unneeded edges, the introduction of
new edges, or the weighting of an edge that has transitioned from
internal to external or vice versa. The force-directed layout then
executes, with nodes that switch clusters smoothly animating from
source to destination cluster.

As the system is currently designed with a small set of supported
interactions, the process of displaying a clustering projection and
learning an updated distance function is fairly straightforward. How-
ever, future versions of the system can also make use of the various
edge types in determining the distance function updates. For exam-
ple, a Layout Interaction might update some properties of only the
CNI and NNI edges. Other interactions such as dragging two entire
clusters closer together may refine the impact of the CC edges.

4 EXTENDED DESIGN SPACE

As noted at the beginning of Sec. 3, the Pollux model can be gen-
eralized to any distance function, dimension reduction technique,
and clustering algorithm. Castor [56] held the same property. How-
ever, there are some additional properties of the Pollux technique
that enable additional variants to be created from this cluster-first
approach. In particular, we discuss in this section the roles of edge
type selection and edge class weights on the visualization that is
created.

4.1 Edge Class Selection

As noted in Sec. 3.1, there are five different classes of edges that
exist within a Pollux projection. The role of these edges in the
force-directed layout is the same as the role of distances in many
dimension-reduction projections: to communicate a measure of
similarity between two objects in the visualization. With the added
introduction of clustering into Pollux projections, layout time can be
improved and visualizations can therefore be generated more rapidly
than in pure projection applications.

Table 1 provides a summary of nodes, dimensions, clusters (as
learned by Pollux), and edge counts for three different datasets: a
dataset of animals and a collection of appearance, habitat, diet, and
behavioral attributes [37]; the traditional Fisher’s Iris dataset [18];
and a dataset of demographic, employment, and housing data for the
48 continental U.S. States [53]. In this table, the “Fully-Connected
Node Graph” row provides the number of edges or distances required
to lay out a fully-connected graph of only observations (this is merely
the sum of the NNI and NNE categories). Each of these classes of
edges communicate additional information to the analyst, as listed
in Sec. 3.1.

Figure 4: Four views of the Census dataset with a variety of edge
class selections. From top to bottom, (A) only CC and CNI edges,
(B) same as above, plus NNI, (C) same as above, plus CNE, (D) all
edge types.



Figure 5: Nine views of the Census dataset with various CC, CNI, and NNI weights. Cluster compactness varies across the x-axis via manipulation
of the CNI and NNI edge class weights, while pairwise cluster distance varies in the y-axis via manipulation of the CC edge class weight.

4.2 The Effect of Edge Class Selection on Performance

By selecting only the CC, CNI, and NNI edge classes, the number
of edges that need to be computed for a projection is reduced by
approximately 25-50% for these datasets, while still displaying the
relative similarity of both clusters and observations internal to those
clusters. Though force-directed simulations can run as quickly as the
O(n log n) of the Barnes-Hut simulation approximation [4], many
force-directed simulation implementations are O(n3), yielding a
significant performance boost with a reduction to half of the original
number of edges.

Figure 4 shows Pollux layouts with default edge class weights
for the Census dataset, displaying the visualizations generated from
four different edge class selections. In Fig. 4A, only the CC and
CNI edges have been selected. As a result, both pairwise cluster
similarities (CC) and cluster memberships (CNI) are displayed. In
Fig. 4B, the NNI have been added. The added attractive forces
between nodes internal to each cluster act to compact the clusters
in most cases while also incorporating pairwise node similarities
internal to each cluster. Fig. 4C adds CNE edges, which act to
pull nodes within clusters towards the centroid of other clusters,
thereby causing a more radial layout with the nodes on the inner ring
boundary most attracted to other clusters and those on the outer ring
boundary least attracted. Finally, Fig. 4D adds NNE edges, which
again cause the clusters to compact as many additional edges are
added to the graph.

4.3 The Role of Edge Class Weights

In addition to selecting edge classes, each class is paired with an
associated edge class weight we. The purpose of this weight is to
influence the layout of the projection, allowing for Pollux to generate
a variety of visual representations. Determining how to best lay
out observations after performing cluster assignments is a dataset-
and user-driven process, with the ideal layout of the data being
influenced by the insight that the analyst wishes to communicate
with the visualization. There exists a natural tradeoff that is implied
through manipulating the layout between the distortion of the space
and the best representation of these insights.

Fig. 5 shows several Pollux layouts for the Census dataset with
varied of CC, CNI, and NNI edge class weight values. From left to
right, the CNI and NNI weights are altered to change the compact-
ness of the clusters. From top to bottom, the CC weight is altered
to change the pairwise distances between the clusters. As clusters
become less compact, they begin to overlap, causing some ambiguity
in the cluster membership assignment of some nodes (e.g., Arkansas
and Ohio in Fig. 5I). This effect is magnified as the relative pairwise
distance between clusters is reduced.

4.4 Alternate Visual Representations

A limitation to the Pollux technique is the inherent space distortion
required by the cluster-first projections. In other words, the Dimen-
sion Reduction Model in the Pollux pipeline assumes that cluster



Figure 6: (left) A direct two-dimensional projection of the high-
dimensional Animals data with cluster information encoded by color.
(right) The same data in Pollux, using color encoding for clusters
rather than convex hulls.

membership information from the Clustering Model is the primary
layout factor, with weights a secondary factor and high-dimensional
distances a tertiary factor. As a result, there is no way to avoid such
spatial distortions without transforming the pipeline.

For example, the left panel of Fig. 6 depicts an alternative layout
of the Animals dataset. In this layout, both the projection and the
layout are computed from the high-dimensional data separately. The
projection then accurately reflects all pairwise distances between
observations, and the cluster membership is encoded by color rather
than in convex hulls. However, this is not an instance of the Pollux
pipeline; rather, it matches the “Independent Algorithms” pipeline
identified in our taxonomy in previous work [55]. Additionally, the
clusters are not as compact and easily identifiable in this view.

A Pollux representation of this Animals dataset using the same
color mapping is provided in the right panel of Fig. 6. In this view,
the clusters are more compact and uniformly-shaped, though the
view without convex hulls may not clearly imply that there is no
inter-cluster similarity at the node level in this view, as the CNE and
NNE edges were not included when generating this projection.

4.5 Analyst Control of k
The Pollux examples provided thus far use the system-determined
value of k to categorize and lay out the observations. However,
the analyst is afforded with the ability to manipulate the value of
k to update the cluster membership assignments. For example, the
Fisher’s Iris dataset consists of three different species of iris: Setosa,
Virginica, and Versicolor; however, Pollux only determines that two
clusters exist in the dataset, and does not differentiate between the
Virginica and Versicolor species (Fig. 7 left). When the analyst
updates the system to force three clusters, the Virginica and Versi-

Figure 7: (left) The Fisher’s Iris dataset with the system-determined
two clusters. (right) The analyst updates the view to incorporate three
clusters.

color species are separated, albeit imperfectly. The analyst can then
begin to perform reclassification interactions to train the system to
distinguish between Virginica and Versicolor.

4.6 Extending the Hierarchy
Pollux as described thus far only consists of a single set of clusters
containing nodes; however, the technique can be extended to include
cluster hierarchies. Additional research is necessary to design inter-
action techniques for disambiguating between cluster reassignments
in such a hierarchy. However, the benefit is the ability to visualize
much larger datasets by also interactively expanding and contracting
clusters. A similar technique was used by ASK-GraphView [1] to vi-
sualize hierarchically-clustered datasets several orders of magnitude
larger than those demonstrated with Pollux in this work.

4.7 When to Learn?
As described in Sec. 3.2, Pollux contains two learning phases, identi-
fying the reasoning behind the action of an analyst both removing an
observation from a cluster as well as inserting the observation into
a different cluster. However, there may be cases when the source
cluster is not meaningful (an associated analyst intent might be “The
Fox should be in the Predators cluster”) and cases when the target
cluster is not meaningful (“Alaska does not belong in the cluster of
high-population states”). In these cases, only one learning phases is
relevant to the interaction, and thus the second learning phase cap-
tures a portion of the interaction that has no associated analyst intent.
The attribute weights are therefore updated needlessly. A second
component to the interaction could help to determine which portions
of the interactions have meaning. For example, a click-and-hold
interaction before dragging could indicate that the removal from
the source cluster is meaningful, while holding the mouse button
down for a short period before releasing could indicate that insertion
into the target cluster in meaningful. Again, additional research is
necessary to design the best interaction technique.

Disambiguating cases where only the source cluster is important,
only the target cluster is important, and cases where both are impor-
tant is related to the “With Respect to What” problem detailed by
Self et al [47]. The original definition of this problem was focused
on disambiguation of intent between interactions relationships, but
the same issue is present in Pollux, albeit with fewer possible in-
terpretations of an analyst interaction. Thus, the introduction of
clusters simplifies but does not solve “With Respect to What.”

4.8 Multiple Distance Functions and Weight Vectors
Our implementation of Pollux uses a single shared distance function
and weight vector for the Dimension Reduction and Clustering
Models. However, implementations could certainly be produced that
learn separate weight vectors for each model, each of which could
then use a difference distance function in processing the dataset.
For example, the Dimension Reduction Model, using Manhattan
distance to boost computational efficiency, might use a different
weight vector than the Clustering Model, which still uses Euclidean
distance to accurately determine distances between clusters in the
high-dimensional data.

5 EVALUATION

In this section, we evaluate Pollux via a case study, performing re-
classification interactions on the Census dataset to create a particular
cluster of states, and evaluate the attribute weights learned within
the system to create such an overall clustering and layout. After nor-
malizing this dataset, we create an initial clustered projection (right
panel of Fig. 1) in which each of the 35 dimensions begins with
a weight of 1. Processing this dataset with the k-means algorithm
produces six clusters.

The Census Bureau defines the Midwest Region as a collection
of 12 states, ranging from Ohio in the east to the Dakotas in the



Figure 8: Each of the six interactions performed by the analyst in the case study. Nodes enclosed by red rectangles denote analyst-driven
classification updates, while nodes enclosed by blue rectangles denote classification updates made by the system in response to newly-learned
weights. Lines are drawn to show observation paths from source to destination cluster.

west [52]. In the initial projection, the cluster annotated with “Mid-
western States” on the left side of Fig. 8A already incorporates 7 of
these 12 states (as well as two extra states). In order to create a
Midwest Region cluster, we perform the reclassification interactions
listed in the following paragraphs. The learning routine executes
after each of the interactions is performed, learning new weights to
reflect what has been learned about the intent of the analyst thus far.

The first interaction reclassifies Ohio as a Midwestern state, drag-
ging it from the central center into the Midwestern States cluster
(Fig. 8A). The dimension weights are updated to reflect both the
departure of Ohio from its source cluster and its introduction into
the target cluster. Following the weight updates, no other states
have received new cluster assignments. However, the area of the
Midwestern States expands slightly, both because the number of
nodes has increased and because Ohio is pushed to the outskirts of
the cluster. The second occurs because the system has only recorded
a single interaction; it has not yet learned enough to understand the
optimal position of Ohio within the cluster.

The second interaction is similar, reclassifying Michigan as a
Midwestern state by transferring it from the central cluster into the
Midwestern States cluster (Fig. 8B). Following the weight updates,
several changes are now apparent in both the clustering assignments
and in the overall projection. Minnesota was pulled into the forming
Midwestern States cluster from the cluster to the upper-right, while
West Virginia was reclassified as a member of the top-center cluster,
departing the central cluster. Further, the three upper clusters begin
moving closer together as a result of ethnicity weights exerting more
influence upon the overall graph. The states in these three clusters
all have similar ethnic breakdowns, causing this effect.

The third interaction causes substantially more updates. Reclas-
sifying Illinois as a Midwestern state also brings in Wisconsin (in-

tended), as well as Arkansas and Kentucky (unintended) (Fig. 8C).
As a result, there are now four states which must be removed from
the cluster, but all five new states have now been introduced. In
addition to these updates to the Midwestern States cluster, the states
of Rhode Island and Washington were transferred into the upper-
center cluster. The three upper clusters continue their drift from the
previous interaction.

The fourth interaction begins the removal of the unwanted states,
and also demonstrates the inertia of the learning routine. Removing
Kentucky from the Midwestern States cluster and positioning it into
the cluster which appears most sensible based on geography (the
center cluster) also results in the automatic removal of Montana
(hoped for), but it additional brings unwanted Tennessee into the
Midwestern States cluster (Fig. 8D). Tennessee and Kentucky are
quite similar states, and Tennessee was close to being relocated into
the Midwestern States cluster before this interaction. Following the
removal of Kentucky, the dimension weights just enough to finally
pull Tennessee in. The upper-center and upper-right clusters were
temporarily overlapping after this interaction, though they eventually
separated as the projection stabilized.

Finally, the fifth and sixth interactions had minimal impact beyond
the removal of states from the Midwestern States cluster. Reclassify-
ing Oklahoma into the upper-right cluster removed Tennessee and
returned it to the central cluster, where it was classified prior to the
fourth interaction (Fig. 8E). Reclassifying Arkansas into the central
cluster had no other cluster assignment effects (Fig. 8F).

The result of this set of six interactions is the formation of a
cluster of the 12 Midwestern states, as well as five other clusters
which saw occasional updates based upon the analyst’s interactions
with the Midwestern States cluster. Progressing counterclockwise
(with the clusters labeled #1–5 in Fig. 8F), these clusters could be



Figure 9: A selection of six attribute weights and their respective value
updates during the six analyst interactions.

mapped with semantic meanings such as Northeastern States (#1),
East Coast States (#2), High-Population States (#3), Low-Population
States (#4), and a cluster that is difficult to label, but contains states
that lean towards elderly, rural populations with lower than average
per capita income (#5).

Fig. 9 shows a selection of six attribute weights, their value up-
dates following each analyst interaction, and their influence on the
overall projection as a result. The weight with consistently the most
influence over the projection, the percentage of residents with a
high school diploma, matches well with the states that the analyst
reclassified: Ohio, Michigan, and Illinois each rate between #21
and #26 when the states are sorted by this attribute, while Kentucky,
Oklahoma, and Arkansas are #2, #15, and #4 respectively. Indeed,
the only time when the high school graduation rate decreases in in-
fluence was after Oklahoma was reclassified. The attribute weights
associated with Caucasian, elderly, and male residents consistently
declined through the interaction sequence, while the attribute weight
for Hispanic residents varied in influence by that group’s population
in each state. The 1990 population was selected in the figure to
demonstrate a dimension that seemed to have no meaningful impact
on the overall projection, with the value of this attribute weight oscil-
lating about the default of 1 as the interaction sequence progressed.

6 DISCUSSION

The overarching focus of this research direction is to continue to
explore the complex interplay between dimension reduction and
clustering algorithms in both systems and in humans. As noted in
the introduction, these algorithms serve different cognitive purposes
but can naturally coexist within a projection of high-dimensional
data. Understanding how analysts interpret and interact with such
visualizations is a long-term goal, of which Pollux represents one
point in the overall design space. That said, the variety of visual rep-
resentations that can be produced by Pollux through modifications to
the edge class selection and weights, cluster representation, distance
function selection, and learning method demonstrate the flexibility
of this framework for visualizing high-dimensional datasets.

6.1 Benefits of Subspace Clustering
The clustering assignments and projections in Pollux current make
use of a global weight vector, but this does not necessarily need to
be the case. Clusters are intended to group related observations, but
when the number of dimensions becomes too great (as in the Animals
and Census datasets), some dimensions may not be meaningful for a
given cluster. It is further likely that some dimensions are correlated,
and as such do not provide new information to the clustering process.
The goal of subspace clustering is to identify a smaller, relevant set
of dimensions that can be used to structure a particular cluster [36].
Of particular note to visualization research is biclustering [31, 42],
which approaches the subspace clustering problem by striving to
simultaneously cluster both observations and dimensions in order to
identify pockets of similar behavior within a larger dataset. These

subspace techniques offer an alternative method to creating and
spatializing clusters.

6.2 Limitations and Future Work

One notable limitation of the work presented here is the scale of
data tested. Though we did visualize datasets of various shapes (e.g.,
many more observations than dimensions, similar numbers of obser-
vations and dimensions), the true power of this cluster-first technique
lies in its scalability. The current k-means and force-directed imple-
mentation of Pollux was the limiting factor in experimenting with
larger data scale, and so we chose to focus this work on demonstrat-
ing the use and success of the reclassification, learning, and layout
technique. Our next step in development is to re-implement the
system with scalability in mind.

Additionally, our focus in this work to date has been exploring
the visualization space of cluster-first projections specifically. When
introducing this into a more complete application, the existing inter-
face can be supplemented with a variety of additional views. These
views can incorporate visualization of attribute weights, both at the
current time (as seen in Andromeda [47]) and over the span of many
interactions (as shown in Fig. 9). The quality of the clustering across
an interaction set can also be visualized, making use of a metric
such as the Dunn Index [20], the Davies-Bouldin Index [13], or
the Silhouette Coefficient [45]. Such Explainable AI techniques
provide the analyst with additional insight beyond the projection and
clustering assignments themselves.

Further, we have not yet performed a user study to test the usabil-
ity of this cluster-first technique in contrast to existing layout-first
techniques. Our demonstration of Pollux in this work is limitation
to a case study demonstration of the technique. A full study to ex-
amine the similarities and differences in insights generated by each
technique is currently planned.

Finally, a limitation of the Pollux technique is the distortion of
space to create compact clusters, a distortion that goes beyond that
which is already necessary when projecting into a low-dimensional
space. Beyond examining the underlying model weights, Pollux
currently lacks a method for demonstrating to analysts whether or
not their current clustering is meaningful. In other words, is the
clustering that was constructed by the analyst supported by the data,
or does it force nonsensical constraints upon the data in order to
generate the current clustering? There are a variety of methods that
we are considering to visualize the quality of clusters and to quantify
the fitness of user-imposed constraints, with enough options under
discussion to necessitate a further study, taking this issue beyond the
scope of this work.

7 CONCLUSION

This work presents Pollux, a system that combines clustering and
dimension reduction algorithms in a cluster-first framework to effi-
ciently produce an interactive visualization of an input dataset. By
interacting with the visualization, an analyst provides feedback to
the underlying models, incrementally training the models to produce
representations that reflect the current exploration interests of the
analyst. We discuss means by which the default implementation of
Pollux can be altered or extended, and we demonstrate the effective-
ness of the interactive reclassification interaction via a case study.
The flexibility demonstrated by Pollux presents an interesting tool
to continue to develop, with several future studies planned.

ACKNOWLEDGMENTS

Many thanks are given to the members of the Virginia Tech Bayesian
Visual Analytics and InfoVis research groups for feedback during
the development of this work.



REFERENCES

[1] J. Abello, F. V. Ham, and N. Krishnan. Ask-graphview: A large scale
graph visualization system. IEEE Transactions on Visualization and
Computer Graphics, 12(5):669–676, Sept 2006. doi: 10.1109/TVCG.
2006.120

[2] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, and D. Pedreschi.
A visual analytics toolkit for cluster-based classification of mobility
data. In N. Mamoulis, T. Seidl, T. B. Pedersen, K. Torp, and I. As-
sent, eds., Advances in Spatial and Temporal Databases, pp. 432–435.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] G. Andrienko, N. Andrienko, S. Rinzivillo, M. Nanni, D. Pedreschi,
and F. Giannotti. Interactive visual clustering of large collections of
trajectories. In 2009 IEEE Symposium on Visual Analytics Science and
Technology, pp. 3–10, Oct 2009. doi: 10.1109/VAST.2009.5332584

[4] J. Barnes and P. Hut. A hierarchical o (n log n) force-calculation
algorithm. Nature, 324(6096):446, 1986.

[5] S. Basu, D. Fisher, S. M. Drucker, and H. Lu. Assisting users with
clustering tasks by combining metric learning and classification. In
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[6] L. Boudjeloud-Assala, P. Pinheiro, A. Blansch, T. Tamisier, and B. Ot-
jacques. Interactive and iterative visual clustering. Information Visual-
ization, 15(3):181–197, 2016. doi: 10.1177/1473871615571951

[7] L. Bradel, C. North, L. House, and S. Leman. Multi-model semantic
interaction for text analytics. In 2014 IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 163–172, Oct 2014. doi:
10.1109/VAST.2014.7042492

[8] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang. Dis-function:
Learning distance functions interactively. In 2012 IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 83–92, Oct 2012.
doi: 10.1109/VAST.2012.6400486

[9] E. T. Brown, S. Yarlagadda, K. Cook, R. Chang, and A. Endert. Mod-
elspace: Visualizing the trails of data models in visual analytics sys-
tems. In Proceedings of the Machine Learning from User Interaction
for Visualization and Analytics Workshop at IEEE VIS 2018, Oct 2018.

[10] J. Choo, C. Lee, C. K. Reddy, and H. Park. Utopian: User-driven topic
modeling based on interactive nonnegative matrix factorization. IEEE
Transactions on Visualization and Computer Graphics, 19(12):1992–
2001, Dec 2013. doi: 10.1109/TVCG.2013.212

[11] J. Chuang and D. J. Hsu. Human-centered interactive clustering for
data analysis. Conference on Neural Information Processing Systems
(NIPS). Workshop on Human-Propelled Machine Learning, 2014.

[12] A. Coden, M. Danilevsky, D. Gruhl, L. Kato, and M. Nagarajan. A
method to accelerate human in the loop clustering. In Proceedings of
the 2017 SIAM International Conference on Data Mining, pp. 237–245.
SIAM, 2017.

[13] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(2):224–227, April 1979. doi: 10.1109/TPAMI.1979.4766909

[14] C. Ding and T. Li. Adaptive dimension reduction using discriminant
analysis and k-means clustering. In Proceedings of the 24th Inter-
national Conference on Machine Learning, ICML ’07, pp. 521–528.
ACM, New York, NY, USA, 2007. doi: 10.1145/1273496.1273562

[15] V. Dobrynin, D. Patterson, M. Galushka, and N. Rooney. Sophia:
an interactive cluster-based retrieval system for the ohsumed collec-
tion. IEEE Transactions on Information Technology in Biomedicine,
9(2):256–265, June 2005. doi: 10.1109/TITB.2005.847184

[16] E. P. dos Santos Amorim, E. V. Brazil, J. Daniels, P. Joia, L. G. Nonato,
and M. C. Sousa. ilamp: Exploring high-dimensional spacing through
backward multidimensional projection. In 2012 IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 53–62, Oct 2012.
doi: 10.1109/VAST.2012.6400489

[17] M. Dowling, N. Wycoff, B. Mayer, J. Wenskovitch, S. Leman,
L. House, N. Polys, C. North, and P. Hauck. Interative visual ana-
lytics for sensemaking with big text. Journal of Big Data Research,
Special Issue on Big Data Exploration, Visualization, & Analytics,
2019.

[18] D. Dua and C. Graff. UCI machine learning repository, 2017.
[19] A. Dubey, I. Bhattacharya, and S. Godbole. A cluster-level semi-

supervision model for interactive clustering. In J. L. Balcázar,

F. Bonchi, A. Gionis, and M. Sebag, eds., Machine Learning and
Knowledge Discovery in Databases, pp. 409–424. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[20] J. C. Dunn. Well-separated clusters and optimal fuzzy partitions. Jour-
nal of cybernetics, 4(1):95–104, 1974.

[21] M. El-Assady, R. Sevastjanova, F. Sperrle, D. Keim, and C. Collins.
Progressive learning of topic modeling parameters: A visual analytics
framework. IEEE Transactions on Visualization and Computer Graph-
ics, 24(1):382–391, Jan 2018. doi: 10.1109/TVCG.2017.2745080

[22] A. Endert, L. Bradel, and C. North. Beyond control panels: Direct
manipulation for visual analytics. IEEE Computer Graphics and Ap-
plications, 33(4):6–13, July 2013. doi: 10.1109/MCG.2013.53

[23] A. Endert, R. Chang, C. North, and M. Zhou. Semantic interaction:
Coupling cognition and computation through usable interactive ana-
lytics. IEEE Computer Graphics and Applications, 35(4):94–99, July
2015. doi: 10.1109/MCG.2015.91

[24] A. Endert, P. Fiaux, and C. North. Semantic interaction for sensemak-
ing: Inferring analytical reasoning for model steering. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2879–2888,
Dec 2012. doi: 10.1109/TVCG.2012.260

[25] A. Endert, P. Fiaux, and C. North. Semantic interaction for visual text
analytics. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’12, pp. 473–482. ACM, New York, NY,
USA, 2012. doi: 10.1145/2207676.2207741

[26] A. Endert, M. S. Hossain, N. Ramakrishnan, C. North, P. Fiaux, and
C. Andrews. The human is the loop: new directions for visual analytics.
Journal of Intelligent Information Systems, 43(3):411–435, 2014. doi:
10.1007/s10844-014-0304-9

[27] V. Estivill-Castro. Why so many clustering algorithms: A position
paper. SIGKDD Explor. Newsl., 4(1):65–75, June 2002. doi: 10.1145/
568574.568575

[28] J. C. Gower. A general coefficient of similarity and some of its proper-
ties. Biometrics, 27:857–871, 1971.

[29] R. L. Graham and F. F. Yao. Finding the convex hull of a simple
polygon. Journal of Algorithms, 4(4):324–331, 1983.

[30] P. Guo, H. Xiao, Z. Wang, and X. Yuan. Interactive local clustering
operations for high dimensional data in parallel coordinates. In 2010
IEEE Pacific Visualization Symposium (PacificVis), pp. 97–104, March
2010. doi: 10.1109/PACIFICVIS.2010.5429608

[31] J. A. Hartigan. Direct clustering of a data matrix. Journal of the
American Statistical Association, 67(337):123–129, 1972. doi: 10.
1080/01621459.1972.10481214

[32] E. Hoque and G. Carenini. Convisit: Interactive topic modeling for
exploring asynchronous online conversations. In Proceedings of the
20th International Conference on Intelligent User Interfaces, IUI ’15,
pp. 169–180. ACM, New York, NY, USA, 2015. doi: 10.1145/2678025
.2701370

[33] Y. Hu, J. Boyd-Graber, B. Satinoff, and A. Smith. Interactive topic
modeling. Machine Learning, 95(3):423–469, Jun 2014. doi: 10.1007/
s10994-013-5413-0

[34] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G. Nonato.
Local affine multidimensional projection. IEEE Transactions on Visu-
alization and Computer Graphics, 17(12):2563–2571, Dec 2011. doi:
10.1109/TVCG.2011.220

[35] M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist. Topiclens:
Efficient multi-level visual topic exploration of large-scale document
collections. IEEE Transactions on Visualization and Computer Graph-
ics, 23(1):151–160, Jan 2017. doi: 10.1109/TVCG.2016.2598445
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