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Figure 1: The conditions compared in this study. A: the small virtual monitor condition, which represented a 24” 4:3 monitor. B: the
large virtual monitor condition, which represented a 4x2 array of 24” 4:3 monitors. C: Immersive Space to Think, where documents
can be placed in 3D space surrounding the user.

ABSTRACT

Analysts need to process large amounts of data in order to extract
concepts, themes, and plans of action based upon their findings.
Different display technologies offer varying levels of space and in-
teraction methods that change the way users can process data using
them. In a comparative study, we investigated how the use of single
traditional monitor, a large, high-resolution two-dimensional mon-
itor, and immersive three-dimensional space using the Immersive
Space to Think approach impact the sensemaking process. We found
that user satisfaction grows and frustration decreases as available
space increases. We observed specific strategies users employ in
the various conditions to assist with the processing of datasets. We
also found an increased usage of spatial memory as space increased,
which increases performance in artifact position recall tasks. In
future systems supporting sensemaking, we recommend using dis-
play technologies that provide users with large amounts of space to
organize information and analysis artifacts.
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1 INTRODUCTION

Sensemaking tools have changed considerably over the past decade.
We have traditional desktop scenarios involving features like win-
dows, previews, and search bars, but these two dimensional (2D)
representations are limited by screen space even when including
“virtual” desktops that users can switch between [6]. The large,
high-resolution displays of the Space to Think approach attempt to
mitigate these spatial concerns, but it is still limited to flat 2D space
that can only contain a fixed amount of information [2]. Newer dis-
play technology using immersive space through augmented reality
(AR) or virtual reality (VR) has also been explored in a sensemaking
context. Immersive analytics allows users to leverage expansive
three-dimensional (3D) space to organize data and other analysis
artifacts, potentially leading to better understanding through exter-
nalized memory and embodied interaction [7, 28].

One immersive approach, the Immersive Space to Think (IST),
purports to assist users with understanding non-quantitative datasets
through providing tools to organize, annotate, and synthesize find-
ings [13]. The key way the approach differs from desktops or the
Space to Think approach is that IST offers 3D immersive space as
well as 3D interaction techniques, rather than 2D displays and 2D
interaction techniques. Immersive space has been shown to provide
benefits to both spatial memory [20, 37] and context switching [17].
Similarly, 3D interaction has been shown to provide benefits through
embodied interaction [7, 11, 19]. However, it is not fully understood
how well these benefits translate to the sensemaking process.

To better understand the tradeoffs and performance between these
technologies, we conducted a within-subjects study to evaluate the
benefits of immersive space and 3D user interaction techniques on
the sensemaking process. Our conditions included a small monitor
condition simulating the traditional desktop scenario, a large monitor
condition simulating the Space to Think approach, and an immersive
condition inspired by the IST approach.

We found that users preferred having more space while perform-



ing these tasks, as well as having greater engagement and interaction
with documents as space grew. Participants leveraged 3D space by
placing information in different depth layers to indicate importance.
We also found evidence of users employing “working areas” in im-
mersive space, which we define as physically separated areas that
users devoted to a particular task or category, such as report writing
or topic organization. In a similar vein, we found that increased
amounts of space used in the IST condition had a weak correlation
with performance, which should be explored in future studies. Lastly,
we found evidence of increased spatial memory usage as space grew,
with spatial memory being the most common strategy in a document
search task in the IST condition.

These findings suggest that the IST approach is a promising way
to understand large, complex, non-quantitative datasets that gives
users ample amounts of space to assign meaning. It further provides
benefits to users through spatial memory, allowing them to find
documents or themes quickly through their organizational schema.
Qualitative feedback from participants also suggests that future tools
should move away from six-degree of freedom (6DOF) controllers
for easier context switching and annotation. Overall, increased space
provides increased user satisfaction and reduces frustration with the
sensemaking task, and we recommend providing users with as much
space as is feasible.

2 RELATED WORK

2.1 Sensemaking & Immersive Analytics

While there have been many models created to describe the pro-
cess of sensemaking, they all agree that it is a cognitively difficult
process that is performed repetitively and iteratively where users
“structure the unknown” [1, 21, 36, 39]. In particular, we focus on
Pirolli and Card’s model of sensemaking, which discusses how an-
alysts perform tasks in two main loops: the foraging loop, and the
sensemaking loop [36]. In the foraging loop, analysts find sources,
skim them to identify topics, and lightly organize them by theme. In
the sensemaking loop, analysts further extract data from the sources,
create hypotheses and tell the story that lies beneath the sources. IST
purports to assist analysts with the entire process by representing
each source as a data artifact and allowing the analysts to organize
these artifacts, annotate them, and synthesize their findings.

Visual analytics has helped analysts with the sensemaking process
through providing tools to create interactive visualizations of abstract
data to assist with understanding [2, 14, 16]. Several of these tools
specifically support sensemaking with non-quantitative datasets,
where analysts can leverage aspects of digital processing such as
keyword search or semantic interaction to perform their tasks [4,
14, 29]. Immersive analytics is an extension of visual analytics
that is combined with mixed reality to further visualize data in 3D
immersive space [10, 31]. This field has been used to explore how
immersive technologies can assist with decision making through the
combination of human intelligence and machine intelligence and
improving analytical capabilities [15, 41].

The IST approach in particular has been explored as a way to
better understand large, complex non-quantitative datasets in an
immersive environment [25]. Lisle et al. observed users creating
2.5-dimensional structures and that document display order affected
how those documents were processed [26]. Davidson et. al looked
at how users processed data over multiple sessions. They found that
users refine their existing structures over time, as well as evidence
of a linear transformation path between artifact organization and
report synthesis [13]. Tahmid et al. explored tools to assist with IST
organization by creating automated and semi-automated clustering
interaction techniques and found that participants preferred and
performed better with the semi-automated technique [42].

Other studies on non-quantitative immersive sensemaking looked
at how people interact with data artifacts and the environment around
them. Luo et al. found that single users and groups of users would

leverage furniture in AR settings to scaffold their arguments and
create meaning [28]. Zhang et al. proposed leveraging a users’
interaction history in order to support their recall, annotation, and
sharing of identified concepts and themes [49]. They further de-
signed prototype interaction methods using their proposed criteria
to support sensemaking in immersive analytics. These tools and
findings can be used to design better immersive analytics approaches
and applications. However, the critical question of whether im-
mersive analytics provides measurable benefits over non-immersive
approaches remains unanswered.

2.2 Comparison of Displays

There have been several studies that have looked at how different
display technologies, such as AR, VR, or large high-resolution 2D
displays, impact how humans process information [3, 8, 22, 32, 35].
Furthermore, while we focus on immersive analytics with AR/VR
HWDs, large, high-resolution displays offer many benefits as a
competing option. For example, wall displays are semi-immersive in
that it takes effort to look away from the screen [8,24]. The Space to
Think concept, as another example, affords the ability to sort large
amounts of documents in 2D space [2]. Andrews et al. found that
users could leverage spatial memory to recall documents more easily
while using these displays [3]. IST furthers these advantages, by
providing a both surrounding display and 3D depth that provides
more space for users.

Often, display technologies are compared against each other to
ascertain relative strengths and weaknesses. Czerwinski et al. looked
at user satisfaction and performance between small and large 2D
displays, finding users performed tasks faster, had higher recall,
and preferred the larger display [12]. Cetin et al. continued these
comparisons, looking at visual analytics task performance with
small and large displays and also varying display resolution [9].
They found that different analysis techniques and performance were
found between the small and large conditions, but resolution did not
impact task performance.

Other comparative studies more directly evaluate the effect of
display style on performance metrics. For example, Andrews et
al. looked at the effect spatial memory had on Space to Think and
its large, high-resolution displays, and found that smaller displays
required more effort to recall where certain virtual artifacts were
kept [3]. Ping et al. designed a depth perception task for both VR and
AR and compared users’ performance in the two modalities, finding
AR afforded better depth estimations [35]. In another comparison,
Park & Kim looked at how motivation changed usage patterns in
AR and VR for users who were shopping for clothes, where dif-
ferent motivating factors impacted purchase patterns [33]. Voit et
al. performed an empirical evaluation study of smart artifacts using
five different methods including in-situ, lab studies, AR simulation,
virtual reality simulation, and online surveys [45]. These studies
show that the differences between display technology can change
how people perform tasks.

2.3 Spatial Memory & Organization

Robertson et al. define spatial memory as “the ability to remember
where you put something,” and this can be supported digitally in
many ways [38]. Andrews and North explored spatial memory and
their Space to Think concept, stating that this effect occurs through
embodied cognition and that natural human spatial abilities afford
this form of distributed cognition [5]. They discuss that the effect
wasn’t limited to their large 2D displays, but likely also applied to
other forms of immersive display and environments like the ones we
use for IST.

Landmarks are a key assistive tool in spatial memory that can be
created easily in immersive environments. Wickens and Hollands
argue that designers should synthetically create landmarks to support
navigation and spatial memory tasks [46]. Through the usage of



these landmarks, immersive environments can assist users in finding
and revisiting digital objects in terms of speed and accuracy [30, 38].
Furthermore, in a study by Liu et al., when documents were evenly
spaced in cylindrical layouts, participants performed worse at spatial
memory tasks than when in flat or semicircular layouts [27]. Their
cylindrical layouts lacked any landmark cues for the participants to
latch onto and assist their spatial memory, which may have caused
some amount of the performance disparities. IST using an AR
display naturally supports landmarks by allowing the user to leverage
real-world objects as their anchoring features.

Egocentric body movements, as well as interaction techniques,
have also been shown to assist with spatial memory [37, 43]. Rädle
et al. performed two studies evaluating a pan and zoom interface on
a large, high-resolution display using egocentric body movements
as compared to traditional multi-touch panning and zooming [37].
They found that their new technique was faster and more efficient
than the traditional method. Furthermore, participants who used
their new technique performed significantly better on a long-term
spatial memory task. Similarly, Tan et al. found egocentric interfaces
that leveraged the awareness of the body’s position relative to its
environment assisted with spatial memory tasks [43]. As our design
leverages several different egocentric body movements to interact
with data artifact, we should see a benefit for spatial memory.

3 IMMERSIVE SPACE TO THINK PROTOTYPE

The IST approach purports to assist users in understanding large,
complex, non-quantitative datasets through the ability to organize,
annotate, and present data artifacts in 3D immersive space [13,25,26].
IST makes use of a tracked VR/AR head-worn display (HWD),
tracked handheld controllers, and a tracked standard keyboard for
entering text. IST users can view documents, images, and other data
artifacts as virtual objects in an immersive 3D space, can place those
artifacts anywhere in the space, and can create annotations such as
highlights, notes, and labels. Examples can be seen in Figure 8.

Since we wanted to directly compare IST to traditional 2D display
technologies, we needed to control confounding variables such as
interface features and ergonomics as much as possible. Therefore,
while we kept most of the features seen in previous studies using
the IST approach, we have adapted it in several ways. More on
how we controlled confounding variables can be seen in Section 4.3.
Features unique to our IST prototype are listed below.

Seated Position - Traditional 2D displays are typically used while
seated. Therefore, we adapted IST to use a rotating chair with a desk
attachment that can rotate around the user. This allows the user to
face any direction while organizing their thoughts in 3D immersive
space and retain the ability to annotate documents using a keyboard.

Automatic Rotation - Previous work using IST found participants
had difficulty rotating documents [26]. Since we were using a seated
position, we decided to automatically rotate all documents to face
the user, which improves readability and reduces the required effort
during document placement.

File Browser - In our 2D conditions, users would be accessing
documents through the built-in Windows file browser. We integrated
this concept into IST through our own file browser that uses different
icons to represent text and images, and allows users to preview the
contents of a file. This can be seen in in Figure 8A.

Report Generation - As part of our experimental design included
later stages of the sensemaking loop where users synthesize their
understanding [36], we included a special note object in which users
could write their “report.” This was identical to other notes, except
it appeared as a gray document to make it visually distinct.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

The goal of our study was to understand what benefits the IST
approach provides to analysts compared to traditional 2D display

technologies and how larger amounts of space aid sensemaking. We
designed the study to address four research questions.

RQ1: How does an increase in available space affect how users
process large datasets? As the available space increases, users can
leverage that space to avoid the additional cognitive overhead re-
quired by the management of overlapping windows. We hypothesize
that as the space increases, users will require less spatial manage-
ment and can allocate those resources to solving sensemaking tasks.

RQ2: As available space increases, how do users utilize the
additional space? Large datasets can fill a workspace quickly. But
how do users manage those spaces when they have different amounts
of space? How users manage to get around the disadvantages of
the smaller spaces as well as how they utilize the larger spaces can
affect how they perform sensemaking tasks. We hypothesize that we
will see different strategies that users employ to manage the space in
each condition. Furthermore, we hypothesize that users will leverage
spatial memory more as space increases, as they can assign meaning
to different locations.

RQ3: How do 3D immersive space and 3D interaction methods
impact user sensemaking strategies as compared to traditional 2D
displays? Two of the key ways IST is a novel approach for sensemak-
ing tasks are that it leverages 3D immersive space and 3D interaction
methods. How does the ability to use 3D depth and 3D interaction
affect the user experience? We hypothesize that users will make
use of depth to organize documents in ways that assist their spatial
memory and writing process, but also that 2D interaction will be
preferred due to familiarity and simplicity.

RQ4: What, if any, is the comparative difference in performance
between the conditions, with their differing amounts of space? Nat-
urally, the best indication of a tool’s worth is how well it performs
the task it was designed for. We also recognize that there are many
factors that go into the process of sensemaking, so it may be diffi-
cult to measure significant differences in performance, as in many
studies about the similar process of learning [40, 48]. However, we
hypothesize that we will see performance increase as available space
increases due to reduced cognitive overhead in managing the space.

4.2 Conditions

To address our research questions, we designed three conditions
varying the amount and type of space provided to the participants
(see Figure 1). To remove confounding variables such as HWD
weight or clarity of images, all conditions were designed to use the
same HWD hardware. This meant that for the 2D conditions, we
used virtual displays, which have been explored as a replacement to
physical displays [34]. The first condition, small, simulated a 2D
24-inch display with a 4:3 aspect ratio and resolution of 1600x1200
pixels, and used 2D interaction via a mouse and keyboard. The
second 2D condition, large, simulated a 4x2 array of the small
displays (with no boundaries or bezels between the monitors) with
a total size of 6400x2400 pixels, similar to the Space to Think
concept [2]; it used the same mouse and keyboard as small. Both
small and large used the Windows 10 operating system and its
Windows Explorer (for file browsing), WordPad (for text document
display and markup), and Sticky Notes (for note taking and labels)
applications. The last condition, IST, used 3D immersive space with
3D interaction methods based on a handheld tracked controller. The
IST condition ran custom software developed in the Unity game
engine, with the features described in Section 3.

4.3 Apparatus & Experimental Setting

All conditions used the Varjo XR-3 HWD, which has a resolution
of 1920x1920 pixels per eye and a field of view of 115 degrees [44].
We used Valve’s SteamVR 2.0 tracking system for HWD and device
tracking. In the small and large conditions, users viewed virtual
monitors through the HWD. All conditions used the XR-3 as a
video see-through AR display; users viewed the virtual displays and



documents overlaid on a 12-megapixel color video view of the real
world. The XR-3 ran on a desktop PC with an Intel Core i9-9800
processor and an NVIDIA GTX 2080 graphics card. Participants
sat in a rotating chair with a desk attachment such that they could
easily access the keyboard. This arrangement also helped with the
large condition, as the virtual display was larger than the XR-3’s
field of view. The rotating desk afforded the participant the ability
to face any part of that display and still have easy access to typing.
Furthermore, for the small and large conditions the participants
were given a Logitech K380 TKL Wireless Scissor Keyboard and a
Logitech Performance MX Wireless Mouse to use with the Windows
10 operating system. In the IST condition, participants used a Valve
Index wireless controller, a VIVE Tracker 2.0 to track the desk
position, and a Logitech K780 full size Wireless Scissor Keyboard
(we used the number pad enter key–which was not available on the
other keyboard–as a way to confirm text entry in the IST condition).

4.4 Experimental Tasks

One aim of this study was to understand how users utilize the
space given to them as the available space increases. Therefore,
our datasets needed to be large enough to take up all the space avail-
able in the large 2D condition, ensuring that they had to make some
tradeoff decisions in the two 2D conditions. To this end, we used
three datasets that were created as training sets for intelligence ana-
lysts. These were “The Sign of the Crescent” (crescent), “The Case
of Wigmore Vs. Al-Qaeda” (manpad), and “Stegosaurus (Excellent
Apples)” (stegosaurus). Crescent and manpad were developed by the
intelligence community to assist with intelligence analyst training,
and stegosaurus is the 2006 VAST challenge dataset. These datasets
have been used in prior studies on sensemaking tools [13, 50], and
Wu et al. compared crescent and manpad to other VAST challenge
datasets [47]. We used 24 documents from each dataset (while
ensuring that all relevant documents for completing the task were
included), such that the small condition could not display all the doc-
uments at once, the large condition would have difficulty displaying
all documents, and IST could easily fit all the documents. This also
ensured that each task was of similar size to each other. In addition,
we kept the dataset order constant while using a latin-square rotation
for the condition, thereby decoupling condition and dataset.

These datasets were intended to be challenging and require close
reading of the documents in order to connect people, places, and
themes to solve the intelligence analysis task. This allowed us to
simulate a real-world sensemaking task that required effort from our
participants. Participants were asked to spend at least 30 minutes
with the dataset before submitting their report to ensure they were
using a sufficient amount of effort on the task. We asked them to
report on four main questions: who are the actors in the plot; what
are they planning on doing; when are they planning on executing the
plot; and where is the target(s) or location(s)?

4.5 Procedure

This study had four phases: a pre-study phase where participants
were provided an introduction to the study and filled out a back-
ground questionnaire, three main session phases (performed at sepa-
rate times, with a minimum time between sessions of one hour), and
a post-experiment phase. The main sessions were further divided
into a training phase, a study phase, and a post-study phase. These
are described in detail below.

During the main session phases, participants were given a tutorial
for the interface and condition they were using that session. The
order of conditions was counterbalanced, while the dataset order
remained constant. Each participant was given crescent first, then
manpad, then stegosaurus to solve. The tutorial for the small and
large conditions instructed participants how to use the Windows
operating system, Microsoft WordPad, and Microsoft Sticky Notes.
With each app, they were shown how to create, move, and resize

windows, select text, and edit text where applicable. In addition,
they were instructed on how to use the preview section of the file
browser to see file contents as well as how to search the document
set for keywords using the file explorer. For IST, participants were
instructed how to open the file browser and open the documents.
They were further shown how to move documents, scroll documents,
select text, highlight text, and copy text. They were then shown
how to create notes, labels, and their final report document and how
to edit each of them. Lastly, the participants were introduced to
the search feature and how to find documents (including open and
unopened documents) that contained the search string. Participants
were given as much time to explore the features as needed. Each
tutorial used an example dataset of articles taken from the CNN.com
website. For the main session study phase participants were given
an introduction to the dataset they were going to analyze. As soon as
they indicated they were ready, they were given the dataset and the
experimenter started the recordings. This subphase took a variable
amount of time as people perform the sensemaking task at different
speeds and participants self-reported when they were finished. Then,
the post-session subphase was split into two parts: a semi-structured
interview performed while still in AR, and the UEQ and NASA-TLX
questionnaires. The semi-structured interview aimed to gauge how
the condition assisted their performance. The questions asked were:
Please walk me through how you analyzed the dataset in this session.
How did the available space impact your analysis? I’m going to ask
you to find a particular document in the dataset. You may use any
features available in the main phase to find it. Once found, please
read the title of the document. Can you please find [description of
document in the session’s dataset]? Could you please describe how
you located that document? Could you please walk me through how
you reported your findings? Each main phase took 60-120 minutes.

After the completion of all three main sessions, participants were
given another semi-structured interview to describe their experiences
with each condition in the post-experiment phase. We asked the
following questions: Could you please compare and contrast the
three conditions you experienced over the course of this study?
Which condition, in your estimation, best supported the task and
why? Please rank the other two as well. As the amount of available
space changed, how did you organize documents? How, in particular,
did 3D space in the IST condition impact your process? Was there
anything confusing, annoying, or difficult about the interface in each
condition? This interview took 10-15 minutes. Participants were
compensated with $70 for an expected 5-6 hours of work.

4.6 Data Collection & Measures

We collected data for this mixed methods study in a number of ways.
We administered questionnaires using Google Forms, including the
User Experience Questionnaire (UEQ) [23], and the NASA Task
Load Index (NASA-TLX) [18]. Log files were generated from each
condition logging interactions with windows (such as grabbing or
maximizing) in the small and large conditions, and IST interaction
methods in the IST condition. Furthermore, camera position and
orientation was recorded up to ten times a second in all conditions.
In the IST condition, the controller position and orientation was also
recorded. The Varjo Base software made video recordings of all
conditions, and the interviews were recorded using Apple’s iPhone
Voice Memos app. Lastly, all final layouts were recorded using the
Sticky Notes app’s database for the small and large conditions, and a
save file for the IST condition. All data was stored on Google Drive.

4.7 Participants

Our participant pool was restricted to university students who had
strong English skills and were eighteen years old or older. Eighteen
people were recruited through a human-computer interaction email
list. However, two participants did not return for later sessions. Four
were removed for not putting in the requisite effort of 30 minutes



Figure 2: UEQ results for the aggregate categories of Attractiveness
(A), Efficiency (B), Stimulation (C), and Novelty (D).

and/or writing a minimum two-paragraph report. The remaining
twelve participants (five female) had a mean age of 23.7 and a
standard deviation of 3.33. Two wore glasses, and two wore contact
lenses. All participants had prior experience with AR or VR. The
study was approved by the institution’s instructional review board.

5 RESULTS & DISCUSSION

To analyze the effects of our independent variables on our depen-
dent measures, we performed Analysis of Variance (ANOVA) tests,
with Tukey’s post-hoc tests with Bonferroni corrections to deter-
mine pairwise significance. We used Kruskal-Wallis for categorical-
continuous correlation comparisons, and Pearson for continuous-
continuous comparisons. In all plots, significance is represented
by asterisks: a single asterisk represents p < 0.05, double asterisks
represent p < 0.01, and triple asterisks represent p < 0.001.

5.1 User Experience & Workload

Participant perceptions of user experience assist with our understand-
ing of the differences between the three conditions to help answer
RQ1. We performed ANOVAs to see the effect of condition on the
aggregate category ratings in the UEQ and found significant dif-
ferences in attractiveness (F(2,22) = 12.16, p < 0.001), efficiency
(F(2,22) = 10.79, p < 0.001), stimulation (F(2,22) = 11.64, p <

0.001), and novelty (F(2,22) = 23.55, p < 0.001). Boxplots of
these measures can be seen in Figure 2. For attractiveness, post-
hoc analysis revealed significant differences between the IST and
small conditions (p < 0.001), and the large and small conditions
(p< 0.001). We found the same significant differences for efficiency
(p < 0.001 for both pairs), and stimulation (p < 0.001 for IST v.
small and p = 0.00246 for large v. small). These results demonstrate
the small condition provides an undesirable user experience, while
both the large and IST conditions, with ample space to view and
organize documents, provide a high-quality experience.

The novelty subscale of the UEQ showed a slightly different
pattern of significant differences, with post-hoc analysis showing that
IST was considered more novel than either the large (p = 0.00197)
or small conditions (p < 0.001), while large was more novel than the
small condition (p = 0.00164). These results indicate that the small
condition feels ordinary, while large has a higher degree of novelty
(but note the range of opinions on this), and IST is considered highly
novel by almost all users. AR and immersive environments are still
an uncommon experience, which can contribute to a satisfying user
experience. However, the difference between the large and small
conditions was surprising. It indicates that this much seamless space
without bezels or multiple monitors is itself novel; today’s users are
used to having smaller and more constrained display spaces.

In the NASA-TLX results, we found trends or significance in
both self-assessed performance and frustration, and boxplots of

Figure 3: NASA-TLX results for self-assessed performance (A) and
frustration (B).

these metrics can be seen in Figure 3. Self-assessed performance
was trending towards significant (F(2,22) = 2.584, p = 0.0981).
Post-hoc analysis revealed weak trends suggesting better perceived
performance with IST than with small (p = 0.147) as well as with
large as compared to small (p = 0.147). Furthermore, we found
significance in the frustration metric (F(2,22) = 4.363, p = 0.0254).
Post-hoc analysis found significantly more frustration with small
than with IST (p = 0.0127) and a weak trend between small and
large (p = 0.116). These results suggest that participants found the
lack of space in the small condition to affect their frustration and
ability with solving the task, while large and IST provided enough
space for sensemaking with the datasets.

5.2 Qualitative Feedback

The interviews we performed both post-session and post-experiment
were designed to get qualitative feedback from the participants on
their experiences during the study.

In particular, we asked participants to rank the conditions based
on how well each of them supported the experimental task of sense-
making for intelligence analysis. Seven participants (58%) ranked
IST first, while five (42%) ranked large first, and no participants
preferred small. Participants who ranked large higher than IST still
had positive things to say about IST: [IST] had enough space to
cluster different files, which was not the case for [large], said P1,
and P3 stated [IST] was just more fun. P6 went further, saying that
organization was better in IST: I loved using all the space in IST, and
you could put things in their own section, and categorize them and
you can move the panels around as you see fit. With the monitors it
was more limited, you didn’t have the comfort room.

Participants who preferred IST over large praised IST for assisting
with their organization. P17 stated I could organize my notes a lot
better... but I was able to swivel away from them when I didn’t want
to look at them ... that was better than minimizing the notes. P15
stated that IST assisted with their spatial memory: In IST I had so
much space ... I had the space to visualize what I was working with
and place the documents the way I wanted to and knew where I
could find them compared to the other screens where you couldn’t
put 15-20 documents on one screen with your notes. Participants felt
that the amount of space and ability to freely organize documents
was a particular strength of IST.

Some participants discussed issues they had with IST. Three
participants raised the issue of device switching from interacting
with documents to typing notes. For example, P13 said that the
issues with the controller hampered their ability to offload cognition,
stating in [IST] I felt I took notes the worst because I kept having to
pick up and put down the controller in order to write down things.
Participants who ranked large higher than IST often did so because
of such minor UX issues, which is to be expected with a research



Figure 4: A: report score by dataset. B: report score by dataset and
condition.

prototype. P6 stated that I think IST would be above large with just
a few minor improvements, and P10 said the gap between large and
IST is very small.

Participants discussed how the use of 3D depth in IST narrowed
their focus to particular documents. P9 felt depth could signify the
importance of documents: for IST you could have things closer
and farther, instead of just 2D spreading things out ... Things that
weren’t as important could be really small, having it further away
made it obvious that it was not significant at the moment. Some
users also felt that it gave them more space for organization, and P17
even stated that IST changed how they worked: If I was trying to do
the same thing on my own computer I would have done something
similar to what I did with the large monitor, but with IST I completely
changed how I operate and I could have a bunch of things open and
it not be cluttered. I don’t like having too many things open because
I don’t like clutter, but I was able to contain documents to their own
space.

Participants also discussed how IST afforded the use of spatial
memory during sensemaking. P4 used their spatial memory as a key
aspect of their organization The IST was amazing because I had the
360 degree space to organize windows. I actually made a good ar-
rangement of my windows and I knew where they were. Participants
could leverage the environment itself as a way of understanding the
document set as a whole.

5.3 Task Performance

The first author evaluated each participant’s report for accuracy in
answering the four questions outlined in the instructions: who, what,
where, and when. Equal weight was given to each question, and
when there were multiple answers to a question, equal weight was
assigned to each answer. We performed an ANOVA to test whether
condition affected report score, and found no significant effects
(F(2,28) = 0.375, p = 0.691). However, a separate ANOVA with
dataset as an independent variable found that dataset significantly
affected score (F(2,22) = 14.88, p < 0.001). Post-hoc analysis fur-
ther found significance between crescent and manpad (p = 0.0343),
crescent and stegosaurus (p < 0.001), and manpad and stegosaurus
(p = 0.0104). We ran a two-factor ANOVA looking at the effects of
dataset and condition on score and found no significant main effects
and no significant interaction between the two factors. Boxplots
showing these results can be seen in Figure 4. These findings sug-
gest that condition was not the only factor determining sensemaking
performance (which is typical in studies of complex tasks). We
do note that on the dataset that was apparently the most difficult
(stegosaurus), IST had the highest mean and median scores.

5.4 User Strategies

Figure 5 shows comparisons of user interactions across conditions.
We looked into how each condition affected the number of times
participants grabbed documents in order to move them in the avail-
able space and found significance (F(2,22) = 14.05, p < 0.001).

Figure 5: Effects of condition on user strategies. A: number of grab
interactions in each condition B: time taken in each condition. C:
number of documents that remained open at the end of the session
for each condition. D: number of notes created in each condition.

Figure 6: Examples of strategies seen in the small condition. A: P9
utilized the document preview on the file browser instead of opening
files. B: P2 had to stack windows on top of each other during the task.

Post-hoc analysis revealed that IST had significantly more grabs
than large (p = 0.00373) and small (p < 0.001). We posit this is
due not only to the additional space affording more organization,
but also to participants using spatial organization of documents and
notes as a primary strategy for sensemaking in IST (see Figure 8),
as suggested by participant interviews in Section 5.2.

We investigated how much time participants spent performing
the tasks in each condition. As our tasks were difficult, participants
spent a mean of 5018 seconds (standard deviation of 903 seconds),
which was 83.6 minutes. We compared how long each participant
took in each condition, and found a significant effect (F(2,22) =
4.366, p = 0.0253). Post-hoc analysis found a significant difference
between small and large (p = 0.00991), with participants taking
significantly less time in the small condition. Combining this with
the increased frustration found for the small condition implies that
participants wanted to be done with the small condition as soon as
they could be. We further ran a correlation test between time taken
and score, but found no significance between the two measures.

One aspect of strategy that differed among various sessions was
whether participants decided to keep documents open to the end
of their session or to close documents as soon as they read them.
While there was only a trend for an effect of condition on the number
of documents open at the end of a session (F(2,22) = 2.677, p =
0.0911), post-hoc analysis revealed weak effects between IST and
large as well as IST and small (p = 0.135 for both), with participants
keeping more documents open in IST than either small or large
(Figure 5). While further investigation is required, this implies
that participants felt more comfortable leaving documents open and
organized into layouts in the IST condition, which may be due to
the increased space that afforded simultaneous viewing.

We also looked at the number of notes generated in each condition
and found weak significance (F(2,22) = 3.416, p = 0.0511). Post-
hoc analysis revealed trends for significant differences between the
large and IST conditions (p = 0.075) as well as the large and small
conditions (p = 0.0669), where they made more notes in large than



Figure 7: Examples of strategies seen in the large condition. A: P4
created a note for each document in their dataset and organized them
into clusters. B: P2 kept all documents open and arranged around the
screen so they could refer to them while writing the report.

Figure 8: Examples of strategies employed in the IST condition. A:
P13 used timelines, where they highlighted the dates in each docu-
ment and organized them according to the date. B: P17 created a
wall of notes that they referred to (instead of the document set) during
the report writing synthesis.

either other condition (Figure 5). An example can be seen in Figure
7A. We believe this could be caused by a combination of factors.
First, the small condition simply didn’t have enough space to support
many notes, with P7 stating As I had more space, I had more sticky
notes. In [small] I had 1 sticky note with all my information on it.
Furthermore, the large condition couldn’t support both viewing all
documents simultaneously and having multiple notes. Since sticky
notes use less space, some participants preferred them over open
documents, as P17 notes: [In the large condition] I could open
multiple documents and see them all at once, but I couldn’t do that
and also have my sticky notes open and arranged. Finally, as noted
above, there were minor issues with switching between document
interaction and typing that prevented more notes being written in
IST. Additionally, we ran a correlation test between number of notes
and score and found no significance.

Participants had to create ways of dealing with the lack of space
in the small condition. Five of the twelve participants did not open
documents in WordPad. Instead, they elected to read the documents
in the preview section of the file browser window which reduced
occlusion but only allowed viewing of one document at a time. An
example can be seen in Figure 6A.

Figure 9: Participants varied how much space they utilized in the IST
condition. A: P1 used a large arc of space for placing documents. B:
P3 used a small arc of space for organization. C: comparison of the
amount of angular used space (with 5-degree bins) and report score.

Figure 10: Participants used several different strategies in order to
re-find documents after the sensemaking task. A: number of times
each strategy was used in each condition. B: how long it took users
to find documents with each strategy.

Four of the twelve participants mentioned in the interviews that
they assigned meaning to certain areas in IST, which we term “work-
ing areas.” The participants would separate in physical space areas
to do specific tasks in, such as report writing, document organiza-
tion, or note taking. P9 stated that this enabled them to ... group
documents to the left and right and turn to face them in IST without
having to worry about using them. Kind of like where people have 3
desks and can turn to face different topics. P13 was more explicit,
saying that In the IST session, I felt that this method I had employed
couldn’t be contained to monitors but having different workstations,
like an information station and a chronological one and such ...
that’s where having [immersive space] was really impactful. A cor-
relation test found weak significance between use of the working
area strategy and score (Chisquare = 3.24, p = 0.072). This could
indicate that separating one’s sensemaking areas might increase the
ability for the user to understand the dataset.

We investigated the use of space in IST further, by looking at
locations where data artifacts were placed relative to the center-point
of their work area (where their head was located in space). We sorted
these into five-degree bins relative to their head’s yaw and considered
a bin to be “used space” if at least two artifacts were placed there at
any time during the session. We found wide variation in the amount
of angular used space. Two examples can be seen in Figure 9. A
correlation test found a weak correlation between the amount of
angular used space and score (r(10) = 1.74, p = .112). Working
areas and using large amounts of angular space are potentially useful
strategies in IST that should be explored in future studies.

Participants were more likely to keep documents open to the
end of their sensemaking process while using IST, with eight of
twelve doing so. However, no significant correlation was found
between score and open documents (Chisquare = 1.44, p = 0.230).
Participants noted that it was easier to view all the documents at
once in IST. P4 pointed out that If the space is smaller, I had to keep
smaller windows. In the [small] task, I kept minimizing windows. In
the [large] task I used sticky notes and it helped me fit everything to
the size of the screen. For the IST session, I used the whole space
around me, so there was no need to use sticky notes because I could
keep all my windows open at once. The freedom of immersive space
afforded participants the ability to keep the documents open.

5.5 Re-finding Strategies

One aspect of 3D immersive space is that it affords the ability to rely
on spatial memory [6, 8]. We wanted to see whether this would im-
prove participants’ ability to find documents after the sensemaking
session. In our post-session interviews, we asked participants to find
a particular document by giving a brief description. We were able
to categorize five different types of re-finding strategies participants
employed: manual, search bar, notes, memory, and spatial memory.
We defined manual search as when the participant would use the
preview feature of Windows or IST to go through files one by one



to find the document. Search bar, in contrast, was when the partic-
ipant used the search feature in any condition. The notes category
was defined as when participants referred to their notes to find the
document. The memory strategy was when the participants simply
recalled the document without referring to the interface at all. Lastly,
spatial memory was defined as when the participant remembered
where they had organized the document in space and referenced it
at that location. A bar chart of counts for each re-finding strategy
in each condition can be seen in Figure 10. We can observe that
the spatial memory strategy could only be employed in the IST and
large conditions, and that users in the small condition were primarily
limited to using the search bar and manual strategies.

We measured the time to re-find the document. The timing re-
sults for each category of search can be seen in Figure 10. An
ANOVA revealed a weak effect of condition on re-finding time
(F(2,22) = 3.292,P = 0.0561). Post-hoc analysis found significant
differences between small and large (p = 0.0378). We believe this
is mostly due to the manual search strategy only appearing in the
small condition. The lack of space seemingly affected the organiza-
tion of participants’ sensemaking process that they resorted to more
inefficient search strategies. We ran an ANOVA to look for effects
of re-finding strategy on the time it took to find the document and
found significance (F(4,7) = 558, p = 0.0242). Post-hoc analysis
revealed significant differences between manual and all other strate-
gies (p < 0.001 in each case), and between search bar and spatial
memory (p = 0.00805). This supports our supposition that small
performed worse than IST or large in this task due to the manual
search strategy. Furthermore, spatial memory was one of the best
strategies (similar in efficiency to the memory strategy), and is only
possible with larger amounts of space, which led to 33% of IST
participants using this strategy without being prompted.

5.6 Key Takeaways

In RQ1, we asked how amount of space affects users’ sensemaking.
We found that users can become frustrated with inadequate space for
sensemaking, as evidenced by the UEQ and NASA-TLX feedback.
Participants found the small condition significantly less attractive,
efficient, and stimulating than either other condition. Participants
spent significantly less time in the small, which we believe was
due to their frustration with the lack of space. We further found
that as space increases, so too does the amount of interaction users
have with documents, seen particularly with how often participants
moved documents around the space. This was somewhat at odds
with our hypothesis that larger spaces would require less spatial
window management; it seems that when space became too small,
users simply avoided using space to organize information.

For RQ2, we found that strategies varied in each condition as
participants had more space to work with. In particular, we saw
participants in small develop the strategy of using the preview feature
in Windows to conserve space. This meant that they were willingly
sacrificing the ability to use other features, such as highlighting or
organization techniques. In contrast, we found participants making
more notes in large than the other conditions. We believe this
is an artifact of them having more space, but not quite enough
to keep all the larger document windows open. Furthermore, we
saw IST provide users with the ability to keep all the documents
open at the same time. In addition, we found several participants
assigning meaning to spaces while using IST. Similarly, we found
that participants relied on their spatial memory more when given
more space, with more instances of leveraging spatial memory seen
in IST than large, and none at all in small.

For RQ3, we observed that 3D interaction affected where partici-
pants placed documents. For example, participants liked bringing
documents closer to themselves when interacting with them directly,
which allowed them to focus on particular documents. Furthermore,
participants discussed how 3D interactions assisted with their spatial

memory and their recall of concepts or themes.
Finally RQ4 asked how performance varies with amount of space.

There was no significant difference in performance between the
three conditions. However, within IST in particular, we found a
weak trend correlating performance to the use of working areas and
amount of angular space used.

6 LIMITATIONS

There are some limitations in our study design. First, the datasets we
used might not have been large enough – participants didn’t feel like
they lacked for space in the large display condition. Further studies
should use even larger datasets in order to stress the use of space
even further. Our findings also suggest that how participants use
space impacts their sensemaking performance. Future studies should
measure spatial ability of participants to better understand how their
management and understanding of space affects performance.

Our participant population may also impact our results. Despite
requiring 5-6 hours of work from each participant, an N of 12 is still
small and affected our ability to measure significance. Furthermore,
novice users may not be the best population to measure the effect of
our conditions on sensemaking tasks. Other studies have leveraged
professional analysts in order to better understand their user needs,
and IST could be similarly evaluated [7].

7 CONCLUSIONS & FUTURE WORK

IST is a promising approach for sensemaking of large non-
quantitative datasets as compared to traditional 2D displays. We
found that increasing the amount of space a user has for sensemak-
ing does increase their satisfaction and lower frustration with the
environment, as well as creating more varied strategies. The expan-
sive 3D space in IST has the potential to support these strategies
better than bounded 2D spaces, despite users’ familiarity with the
latter approach. The “working area” concept has merit in separating
tasks to certain spatial areas, allowing users to leverage their spatial
memory in order to better process the data at hand. Similarly, users
leveraged more spatial memory to find documents as the available
space increased. Furthermore, users that utilized as much space as
they were given tended to achieve higher scores on the sensemaking
task, though this finding needs to be verified in future studies. Over-
all, we recommend providing users with as much space as available,
which would indicate that we should further explore the use of 3D
immersive space for analytical tasks.

Participants had particular issues with IST’s user experience,
which hampered some results. However, these could be addressed
in future work. One pain point in particular, where users had issues
switching between document manipulation and text entry, could be
solved by using hand tracking instead of 6DOF controllers. This
would allow users to move from document organization to text
entry and back without putting down or picking up hardware. Since
annotation is a common feature for sensemaking, we suggest future
immersive analytics applications move away from 6DOF controllers
to afford for a better user experience.

Continuing with that theme, future work should focus on a few
particular areas. We should create a set of guidelines on best prac-
tices and strategies for employing immersive space for the sense-
making task, such as separating work spaces for different specific
tasks. Furthermore, HWDs offer a suite of sensors that we can lever-
age for understanding users’ intentions and interests. For example,
eye tracking can be explored to understand items of interest to an-
alysts. Lastly, future work could address the storytelling phase of
sensemaking. How users leverage immersive space could assist with
synthesizing observations and conveying results to others.
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