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SIRIUS: Dual, Symmetric, Interactive Dimension Reductions
Michelle Dowling, John Wenskovitch, Student Member, IEEE, J.T. Fry, Scotland Leman, Leanna House, and Chris North

Fig. 1. The initial, interactive symmetric dual projections of a multidimensional dataset using SIRIUS. Observations (animals) are
projected in the left panel, while attributes (animal characteristics) are projected in the right panel. Both panels project similar items
closer together based on a weighted high-dimensional distance function in which the weights reflect a conceptual notion of “importance.”
These weights are reflected by the node sizes and opacities in the opposing panel. For example, Quadrupedal has a higher weight in
the left projection of animals, and Tiger has a slightly higher weight in the right projection of characteristics.

Abstract—Much research has been done regarding how to visualize and interact with observations and attributes of high-dimensional
data for exploratory data analysis. From the analyst’s perceptual and cognitive perspective, current visualization approaches typically
treat the observations of the high-dimensional dataset very differently from the attributes. Often, the attributes are treated as inputs
(e.g., sliders), and observations as outputs (e.g., projection plots), thus emphasizing investigation of the observations. However,
there are many cases in which analysts wish to investigate both the observations and the attributes of the dataset, suggesting a
symmetry between how analysts think about attributes and observations. To address this, we define SIRIUS (Symmetric Interactive
Representations In a Unified System), a symmetric, dual projection technique to support exploratory data analysis of high-dimensional
data. We provide an example implementation of SIRIUS and demonstrate how this symmetry affords additional insights.

Index Terms—Dimension reduction, semantic interaction, exploratory data analysis, observation projection, attribute projection

1 INTRODUCTION

Visualizing and interacting with high-dimensional data for exploratory
data analysis is an open research area with many facets to explore. In
this paper, we focus on visual analytics techniques for high-dimensional
data exploration that use dimension reduction to project 2D scatter-
plots of the data. Many existing techniques and interactions therein
focus on observation-centric tasks that reveal relationships between
observations as defined by their attributes1, such as clustering tasks [3].
For example, with the animal dataset used throughout this paper [29],
analysts could investigate questions such as “Which attributes separate
the Tiger and Wolf from the Blue Whale and Dolphin?” or “What
other animals are similar to those animal groups?” Projection methods
often define weight parameters on the attributes that enable analysts to
assign different levels of importance to each attribute, thus enabling
exploration of alternative observation projections [7, 43].

Likewise, there are complementary attribute-centric tasks that re-
veal relationships between attributes as defined by their observations,
such as correlation tasks [3]. For example, a follow-up question might
be “What other attributes are correlated with the attributes that sep-
arate these two groups?” This question is more difficult to answer
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with observation-centric projections. Thus, other kinds of visualiza-
tions are often used, such as linked distribution plots and dynamic
queries [1,31,34,46,47] or correlation matrices [44], creating asymme-
try in how observation-centric and attribute-centric tasks are supported.

A natural symmetry between observation-centric and attribute-
centric tasks in high-dimensional data can be defined as equivalent
tasks on the data table or data matrix and its transpose (which swaps the
observations and attributes). For example, this symmetry often arises
in visualizations for text analytics. With a vector space model matrix,
documents can be projected in terms of their word usage [2, 9, 13, 14].
Alternatively, with the matrix transpose, words can be projected in
terms of their usage in documents [6, 11, 37, 40].

We propose that this task symmetry between observations and at-
tributes reflects a symmetry in the cognition of multidimensional data,
and therefore is better supported by a symmetry between how the obser-
vations and attributes are visualized and interacted with. Such a sym-
metry would give analysts equal power to investigate both observations
and attributes, using the same visual representations and interactions
for both. Additionally, previous work has shown cognitive bias towards
symmetric stimuli, as well as an association between asymmetry and
disgust [16]. Based on this, we assert that asymmetric visualization
and interaction design should increase cognitive load in comparison to
symmetric designs as they require analysts to simultaneously interpret
different approaches to observations and attributes.

To address this need for symmetry, we define a symmetric dual

projection technique in which the projection of observations is defined
by the attributes, and the projection of attributes is defined by the obser-
vations. We further define interactions that connect the observations
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and attributes between the symmetric projections, resulting in a manipu-
lation of the projection of observations influencing the projection of the
attributes and vice versa. These interactions reflect a notion of a deep
connection between the observations and the attributes that mirrors the
analyst’s notion of how observations and attributes are interconnected.

Specifically, our contributions in this work are:

1. Defining a technique for symmetric, interconnected projections
of observations and attributes to directly address the lack of sym-
metry in current visual analytics techniques (detailed in Sect. 3).

2. Creating an implemented instantiation of SIRIUS using Weighted
Multidimensional Scaling (WMDS) (described in Sect. 4).

3. Demonstrating how SIRIUS allows analysts to gain insight on
both observation-centric and attribute-centric tasks (shown in
Sect. 5).

2 RELATED WORK

Here, we provide a brief survey of interactive visual analytics tech-
niques for exploratory data analysis with high-dimensional data to
highlight a lack of connection and symmetry between observations
and attributes. We directly address this limitation via SIRIUS. In the
following discussion, we refer to visualizations as simplistic if they do
not incorporate many dimensions, and interactions as simplistic if they
result in a trivial interpretation to change a mathematical model used to
process or visualize the data.

2.1 Displaying and Interacting with Attributes
The attributes of high-dimensional data are visualized using a variety
of techniques, ranging from simplistic (e.g., a raw data table or data
matrix [7]) to more complex and informative (e.g., MDS projections [8,
50] or PCA (Principal Component Analysis) projections [6,20,33,50,58,
59]). In most cases, attribute visualizations implement a more simplistic
technique like visual encodings such as color [8, 19, 40, 41, 45, 57, 58],
size [2, 8, 40], or labels [2, 6, 23, 40]. Another method is to show the
attribute values for observations along a one-dimensional line [19, 43].
Individual axes in parallel coordinates [19, 25, 54] create a similar
visualization of attributes. As the complexity of the visualizations grow,
we begin to see visualizations capable of conveying more information,
such as scatterplots [49], histograms [44], heatmaps [7, 54], and polar
coordinates [40, 55, 56]. Some visualizations implement a specific
method for conveying information with this level of complexity, such
as the arrows used by Brown [6], representing attributes as “magnetic”
nodes that pull on observation nodes [35, 57], and the “Axis Rainbow”
in AxiSketcher [28]. The most complex examples of visualizations for
attributes include the aforementioned MDS and PCA projections.

Interactions with the attributes tend to also be more simplistic. For
techniques that map an individual attribute to an axis, the axis can
be enlarged, shrunk, or rotated to alter how the given attribute influ-
ences the visualization [19, 22, 43]. Another method for altering the
visualization of the attributes is to change the color mapping [2]. To
see data associated with a particular attribute, analysts can sometimes
hover over or click on nodes [6, 8]. Brushing and linking can also be
used to highlight attributes [49, 58]. Searching mechanisms allow new
attributes to be added to the visualization [40], while sorting enable an-
alysts to easily find specific attributes easily [19]. Some techniques also
support clustering of attributes [40,58]. With respect to attributes, there
are few examples of more complex interactions, such as dragging the
attribute nodes [35,40,57], the focus and context interactions described
by Turkay et al. [49], the update features described by Brown [6], and
altering the attribute values in the aster plot in AxiSketcher [28]. These
types of interactions adjust the underlying visualization mechanisms to
update the visualization itself based on the analyst’s interaction.

2.2 Displaying and Interacting with Observations
Visualization techniques used to display the observations of high-
dimensional data also range widely in complexity, but they tend to
be more complex in comparison to those used to display the attributes.
The least complex of these are raw data [7], color [8, 23, 44, 58],

size [8], and lists [40]. Increasing in complexity, we again see vi-
sualizations like heatmaps [44] as well as frequency plots [25], den-
drograms [44], and scatterplots [19, 21, 28, 49]. Many visualizations
for observations attempt to incorporate all the attributes explicitly in
visualizations [19, 22, 25, 35, 54, 57]. Examples of implicitly including
all attributes can be seen in scatterplot-like projections of the data (e.g.,
MDS projections [8, 43], PCA projections [7, 25, 49, 58], t-SNE [23],
and force-directed layouts [2, 52]).

Similarly, the interactions on the observations tend towards more
complex interactions. Simplistic interactions include hovering or
clicking on representations of observations to see the associated
data [6–8, 22, 25, 35, 43, 52] and altering how color is mapped in the
visualization [8, 41, 44]. Common, but still simple, interactions such
as filtering [22, 35, 44, 54, 58], searching [6, 54], and brushing and link-
ing [6,7,44,49,58] are often included. However, many visualizations for
the observations enable direct manipulation of the visualization itself,
such as how the attributes are used for the axes [19, 22, 44], manipulat-
ing the projection to alter an underlying mathematical model [7,21,43],
selecting the clustering algorithm used or at what level clustering oc-
curs [44, 58], manipulating how different attributes influence the visu-
alization of the observations [2, 35, 43, 52, 57], drawing lines through
the visualization to redefine the axes [28], and using a lens to separate
groups of observations [23].

2.3 Projecting Attributes and Observations
Although at first glance it may appear that techniques such as the Data
Context Map [8], Dimension Projection Matrix/Tree [58], and the vi-
sualization defined by Turkay et al. [49] provide symmetry in how
observations and attributes are visualized and interacted with, there
are important differences in their visualization methods, interaction
methods, or both. In the Data Context Map [8], observations and at-
tributes are plotted in the same MDS projection. Such a projection
enables insights regarding similarity-based relationships between ob-
servations and attributes while contextualizing the projection of the
observations. However, the tradeoff is that this technique necessarily
distorts either the projection of the observations, the attributes, or both.
This distortion is caused by the fact that each additional piece of data
plotted in an MDS projection influences the projection of all other data.
Therefore, the observations and/or attributes can appear more or less
similar than what they actually are. Furthermore, the interactions for
the Data Context Map focus on drawing contours around observations
based on ranges of attribute values; there is no interaction to draw
contours based on ranges of observations.

As for the Dimension Projection Matrix/Tree [58], both observations
and attributes are visualized using PCA projections. However, the
observation projection can be split into multiple projections based on
specific subsets of attributes, whereas the attribute projection always
remains a single projection. Additionally, the projections of the ob-
servations are given colored axes based on their corresponding subset
of attributes; such information about the observations is not provided
in the attribute projection. Thus, while this visualization and the in-
teractions therein enable exploration of how attribute subspaces affect
projections of the observations, the obvious tradeoff in this technique
is that such exploration of observation subspaces is not supported.

Lastly, the visualization by Turkay et al. [49] provides three scat-
terplots: one for observations using one attribute for each axis, an
observation projection using two principal components, and one vi-
sualizing attributes using their mean and standard deviation. Despite
observations and attributes being displayed in separate scatterplots,
the manner in which each portrays information is inherently different,
meaning these projections do not have a strong symmetry. Additionally,
interactions include brushing and linking between observations selected
in the first scatrerplot and associated data in the other two scatterplots
as well as focus and context interactions based on selected attributes in
the attribute scatterplot. Thus, the interactions for observations are very
different than those for attributes, creating further disparity between ob-
servations and attributes. Therefore, while this visualization technique
enables deep exploration of the observations, the tradeoff is that such
exploration for attributes is not well-supported.
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Table 1. A description of the commonly used variables and functions in the equations throughout this paper.

O A The original data matrix (observations; O) and its transpose (attributes; A = OT ), with the columns for each matrix normalized

n p The number of observations n or attributes p, as represented by the number of rows in O or A, respectively

Oi Ai The high-dimensional data for the ith observation (Oi) or ith attribute (Ai), as represented by the ith row of O or A, respectively

Ô Â The dimensionally reduced matrices derived from O and A. In SIRIUS, the dimensionally reduced space is 2D, enabling easy
projection onto a computer screen

WO WA The observation weights (WO) or attribute weights (WA), each represented as a single vector

WOi WAi The ith observation weight (WOi ) or attribute weight (WAi )

wDistO wDistA A matrix of high-dimensional pairwise weighted distances between observations (wDistO) or attributes (wDistA)

hDistO hDistA The weighted high-dimensional distance function to calculate similarities between observations (hDistO) or attributes (hDistA). In
SIRIUS, we use weighted Euclidean distance for each of these distance functions.

lDist The low-dimensional distance function to calculate the pairwise distances between rows of a dimensionally reduced matrix. The
same function is used for both observations and attributes, which further promotes symmetry in the presentation, interaction, and
interpretation of both projections. In SIRIUS, we use 2D Euclidean distance.

Given the above discussion, attributes are generally treated very dif-
ferently than observations, yet many tasks that analysts have regarding
attributes are symmetrically similar to those regarding observations.
Therefore, there is an opportunity to explore a new part of the design
space of semantic interaction in visual analytics in which observations
and attributes are displayed and interacted with in a symmetric and in-
terconnected manner. Thus, we propose a new, symmetric exploratory
data analysis technique for visualizing and interacting with both obser-
vations and attributes of high-dimensional data called SIRIUS, detailed
in the next section. An example implementation is described in Sect. 4.

3 SIRIUS: A TECHNIQUE FOR SYMMETRIC, INTERACTIVE
PROJECTIONS OF OBSERVATIONS AND ATTRIBUTES

To enable exploratory data analysis with high-dimensional data us-
ing symmetric visualization and interaction techniques between the
attributes and observations, we designed a new technique called SIR-
IUS (Symmetric Interactive Representations In a Unified System). We
assert that in SIRIUS the analyst must be able to:

Goal 1: View similarity-based relationships between observations
and similarity-based relationships between attributes of high-
dimensional data.

Goal 2: Explore different projections of the data by altering the impor-
tance of specific observations or attributes.

Goal 3: Understand how importances of observations affect the impor-
tances of attributes and vice versa.

Each of these goals are further described in the following subsec-
tions. To clearly exemplify these concepts, we use a subset of the
animal dataset from Lampert et al. [29] containing 13 observations
and 13 attributes. These observations and attributes were selected to
provide a clear and intuitive example (e.g., by excluding attributes like
Newworld) while ensuring variance (e.g., by only including Horse and
not Zebra). More complex examples are presented in Sect. 5. Variables
and functions are defined in Table 1.

3.1 Goal 1: Visualize Similarity-Based Relationships
This first goal combines the tasks of seeing similarities between ob-
servations and seeing similarities between attributes. For example, in
the animal dataset where the observations are animals, the German
Shepherd is similar to the Wolf but not very similar to the Elephant.
These similarities between the observations can be visually represented
via a projection method. There are many different methods of doing
so, including but not limited to PCA [20, 39, 53], t-SNE [51], and
MDS [26, 27, 48]. We generalize the lower-dimension projection of the
observations to be the output of the function pro jectO:

Ô = pro jectO(wDistO)

Similarly, an additional projection method should enable analysts to
see similarities between attributes. For example, in the animal dataset,
the attribute Strength is more similar to the attribute Size than to Grazer.

We generalize the lower-dimension projection of the attributes to be the
output of a function, pro jectA, as follows:

Â = pro jectA(wDistA)

As noted in our evaluation of the Data Context Map [8] in Sect. 2.3,
visualizing the observations and the attributes in a single projection
necessarily distorts the projection of the similarities between observa-
tions, attributes, or both. Thus, the observations and attributes must be
projected into separate spaces to maintain an accurate representation of
their similarities. This means we need two similarity-based projections:
one for observations (pro jectO) and one for attributes (pro jectA).

Furthermore, to reduce confusion between the two projections, we
propose that pro jectO and pro jectA should produce projections that are
understood in the same manner by the analyst. This is best reflected by
a symmetry in the manner in which observations and attributes are vi-
sualized (and later interacted with). The easiest way to accomplish this
is to use the same projection method for both pro jectO and pro jectA
(e.g., MDS), but they can differ if the analyst perceives them in the
same manner (e.g., MDS and PCA).

3.2 Goal 2: Explore Different Projections
Exploring different projections stems from the need to gain new insights
based on domain knowledge or a hypothesis, or for general exploratory
analysis. These insights can be gained by redefining the similarity
between observations or attributes, which implies interaction that alters
at least one projection. Such interaction can be accomplished by either
altering the parameters that generate the high-dimensional pairwise
distances or by directly manipulating the projection.

3.2.1 Explore Projections of Observations
To exemplify what is meant by each of these interaction methods,
we first focus on pro jectO. From a projection of the observations,
the analyst may want to understand how placing more importance on
different attributes affects the similarities between the observations.
For example, the analyst may want to investigate how animals differ
based on their Water attribute. By placing more importance on this one
attribute, animals like Otter should be reprojected much closer to the
Dolphin and Blue Whale and farther away from the Siamese Cat.

Alternatively, the analyst may want to see how altering similarities
between observations influences the level of importance that should
be placed on each attribute. For example, if the analyst drags nodes
for Dolphin and Blue Whale in one corner of the animal projection (to
denote their desired similarity) and Elephant to the opposite corner (to
denote its desired difference from the other two animals), the technique
should reflect a higher level of importance for attributes that describe
the differences between these two groups. In this case, the Walks and
Grazer attributes describe the differences between these two groups,
implying they should be given higher levels of importance.

In both of these types of interactions within the observation projec-
tion, the importances of attributes are altered. This reflects the fact that
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observations are understood based on their attributes. Given that the
importance of attributes can be represented by weights on the attributes,
the similarity between two observations, Oi and O j , can be generalized
with the following weighted high-dimensional distance function:

wDistOi, j = hDistO(WA,Oi,O j)

There are many weighted distance functions that could be used here,
such as weighted variants of Euclidean distance, Manhattan distance,
cosine distance, Gower distance [18], Pearson coefficient [38], and
Bray-Curtis dissimilarity metric [5, 6]. Which distance function to use
is often determined by the tasks supported and data used, however
it must be compatible with the chosen projection method and desired
outcome of the projection itself. For example, while PCA can be used to
accomplish Goal 1, it emphasizes variance rather than strictly pairwise
distances. Thus, using a weighted Euclidean distance with PCA may
not produce the desired results.

3.2.2 Explore Projections of Attributes
To maintain the desired symmetry with the observations, the same inter-
actions are enabled in the projection of the attributes. Thus, the analyst
can alter the importance of a specific observation to understand how
this affects the similarities between attributes. For example, increasing
the importance for Cow should result in attributes like Walks, Size,
and Strength being placed closer together but far away from Stripes.
Additionally, the analyst can alter the similarities between attributes
to understand how the importances of observations are affected. For
instance, if the analyst drags nodes for Grazer and Size to one corner
of the projection and Water to another, Horse describes the differences
between these two groups of attributes and should therefore receive a
higher weight to denote its increased importance.

In both of these types of interactions within the attribute projection,
the importances of observations are altered. This reflects the fact that at-
tributes are understood based on the observations. Since the importance
of observations can be represented by weights on the observations, the
similarity between two attributes, Ai and A j, can be generalized with
the following weighted high-dimensional distance function:

wDistAi, j = hDistA(WO,Ai,A j)

Note the symmetry between this equation and the equation for weighted
high-dimensional distances between observations.

3.3 Goal 3: Relate Importances to Each Other
As stated previously, the analyst understands the observations based on
their attributes and vice versa. This hints at a connectedness between
the observations and the attributes themselves. In the equations in the
previous subsection, this connectedness is initiated by the importance
of the attributes affecting the similarity of the observations and the
importance of the observations affecting the similarity of the attributes.
However, the notion of interconnectedness goes beyond these equations:
attributes that are given more importance indicate which observations
should be given more importance and vice versa.

As a common example of this, a keyword search for relevant docu-
ments results in those keywords (i.e., attributes of documents) being
given a high level of importance. This means that documents that are
better described by those keywords are, in turn, more important as well,
and hence should be returned in the query results. This example implies
that observations that have higher values (e.g., keyword frequencies)
for an attribute are more important, and vice versa.

Using the animal dataset again to exemplify this, increasing the
importance of the Water attribute should result in animals like Dolphin,
Blue Whale, and Otter also being given a high level of importance in
addition to reprojecting their nodes closer together. Siamese Cat, on the
other hand, should have a low level of importance as it is not well de-
scribed by the Water attribute. However, these updated importances for
the different animals also denote which attributes should be considered
important, beyond the single Water attribute that was interacted with.
This means that given important animals like Dolphin, Blue Whale, and
Otter, attributes like Speed, Active, and Smart are also more important
than other attributes that do not describe these animals as well.

Therefore, the importance of attributes should affect the importance
of observations and vice versa to reflect the analyst’s notion of the in-
terconnectedness between the attributes and the observations. This can
be accomplished with the following equations, where ImpO and ImpA
compute the importance for one observation or attribute, respectively:

WOi = ImpO(Oi,WA)

WAi = ImpA(Ai,WO)

This interconnectedness between the importances of the observations
and the importances of the attributes enables a new visual analytics tech-
nique that not treats the observations and the attributes in a symmetric
manner while enabling rich interaction between both projections.

Given this interconnectedness in SIRIUS, the weights that reflect
the importances of observations and attributes are crucial components
of the technique. They are used to project the data via weighted high-
dimensional distance functions to explore different projections and to
relate the importances of observations and attributes to each other. We
demonstrate how this can be accomplished in Sect. 4.

4 AN IMPLEMENTATION OF SIRIUS
The generalized SIRIUS technique above supports a design space of
possible projection methods, distance functions, and interaction meth-
ods that can be inserted. We present a particular implementation of
SIRIUS that addresses the goals of Sect. 3 in the following manner:

1. Using WMDS for both pro jectO and pro jectA, and weighted Eu-
clidean distance for hDistO and hDistA, to create both a projection
of the observations and a projection of the attributes.

2. Using the notions of parametric interactions (which we call PaI)
and observation-level interactions described by Self et al. [43] to
manipulate the weights WO and WA of the weighted Euclidean
distance function. Since we use the concept of observation-level
interactions in both the observation projection and the attribute
projection, we have renamed observation-level interactions as
projection interactions (PrI) to reduce any potential confusion2.

3. Relating the importances of observations and attributes to each
other by defining ImpO and ImpA as a dot product between the
original data matrix or its transpose and a set of attribute weights
or observations weights (respectively). Ultimately, these equa-
tions for importance result in interconnecting both projections by
using an interaction in one projection to alter both projections.

We made these particular design choices based on previous research
in visualizing and interacting with high-dimensional data [4, 13, 15, 43,
52]. However, these are not strict constraints; any distance function,
projection method, or interaction method that properly address the
goals defined in Sect. 3 may be used in place of our choices here.

The following subsections describe how we accomplished each goal
in detail, using the same subset of the animal dataset from the previous
section to exemplify each concept.

4.1 Goal 1: Visualize Similarity-Based Relationships
4.1.1 Observation Projection
In SIRIUS, the left projection is designed to depict similarities between
observations. To visualize these similarities, we use weighted Euclidean
distance in WMDS [15], as defined by the following equation:

Ô = argmin
Ô1,...,Ôn

n�1

Â
i=1

n

Â
j>i

�
lDist(Ôi, Ô j)�hDistO(WA,Oi,O j)

�2 (1)

Before the data can be projected, some preprocessing must occur. To
overcome any potential distortions in the projection caused by attribute
values on different scales, O is z-score normalized prior to visualization.

2Briefly, PaI refers to direct alteration of a model parameter via some control
mechanism, such as a slider or textbox. An analyst may update that parameter
with a precise value. In contrast, PrI learns a set of model parameters based on
an interpretation of analyst alteration of the projection itself.
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Fig. 2. An initial projection of a subset of the animal dataset using
SIRIUS, which maps “importance” to node size and opacity to provide a
deeper semantic connection between observations and attributes. This
allows analysts to determine at a glance which animals best describe
the attribute projection (from the observation panel) and which attributes
best describe the animal projection (from the attribute panel).

Additionally, a set of attribute weights, WA, that reflect the im-
portances of each of the attributes must be defined before the high-
dimensional distance matrix can be calculated. WA has two constraints:
0  WAi  1 and Âi WAi = 1. Thus, weights are interpreted as pro-
portions of the analyst’s interest in each attribute (i.e., its level of
importance). Although this is a minor point in the initialization of
SIRIUS, it greatly affects the interaction methods, as discussed in the
following subsections. For now, we will say that WA is initialized by
determining the importances of the attributes, with details discussed in
Sect. 4.3. The initial observation projection is shown in the left panel
in Fig. 2, which accurately shows that German Shepherd and Wolf are
more similar to each other than to the Elephant as desired.

4.1.2 Attribute Projection
Given the desire for symmetry between the observations and the at-
tributes, a second projection is used to depict the similarities between
the attributes. It also uses weighted Euclidean distance in WMDS, as
defined in the following equation:

Â = argmin
Â1,...,Âp

p�1

Â
i=1

p

Â
j>i

�
lDist(Âi, Â j)�hDistA(WO,Ai,A j)

�2 (2)

Again, the data must be preprocessed before it can be projected. This
includes z-score normalizing A, as well as initializing an observation
weight vector, WO. These weights reflect the importances of each
observation and must hold to the same two constraints as WA. We again
leave detailed discussion for how we initialize this set of weights for
Sect. 4.3. This initial projection is shown in the right panel of Fig. 2,
which demonstrates that Strength and Size are more similar to each
other than to Grazer, as desired.

4.2 Goal 2: Explore Different Projections
In SIRIUS, we use weighted Euclidean distance to define both the sim-
ilarities between observations and the similarities between attributes.
Thus, exploration of different projections is accomplished by manipu-
lating the associated weights, thereby allowing the use of PaI and PrI
as described by Self et al. [43] to enable rich interactions.

4.2.1 Parametric Interaction (PaI)
To explore how attribute importances affect similarities between obser-
vations, PaI is enabled via an “Importance” slider, which is accessible
by clicking a node in the attribute projection. The analyst can alter the
attribute weight (i.e., importance) by manipulating the slider. During
this interaction, all attribute weights are re-normalized to adhere to the
previously described sum-to-1 and 0-to-1 constraints. The change in
attribute weights is reflected in updates to the size and opacity of the
attribute nodes, which visually reflects their importance. All observa-
tions are then reprojected using Equation 1 with the updated attribute
weights to show the effect of the analyst’s interaction. An example of
PaI on the Water attribute is depicted in Fig. 3-A, which pulls Otter
closer to the Dolphin and Blue Whale than to the Siamese Cat.

Symmetrically, PaI is also used to explore how observation impor-
tance affects similarities between attributes via the same “Importance”

slider. The analyst can click an observation and adjust the slider to alter
the weight (i.e., importance) for the given observation, and all observa-
tion weights are re-normalized. The size and opacity of the observation
nodes are updated to reflect their new weights. All attributes are then
reprojected using the updated observation weights in Equation 2. An
example of PaI on the Cow observation is shown in Fig. 3-B, which
correctly results in the Walks, Size, and Strength attributes being placed
close together but far apart from the Stripes attribute to reflect their
similarity in “cow-ness.”

4.2.2 Projection Interaction (PrI)
To explore how observation similarities affect attribute importances,
analysts can use PrI in the observation projection. This is accomplished
by directly manipulating the observation projection via clicking and
dragging observation nodes of interest to redefine their relative similar-
ities. Once the analyst is done manipulating the projection, an “Update
Layout” button above the observation panel is clicked. This triggers
a semi-supervised re-learning of the attribute weights using only the
observation nodes the analyst interacted with, Ô⇤, in the following
optimization, essentially inverting the WMDS process in Equation 1:

WA = argmin
WA1 ,...,WAp

Â
i2Ô⇤

Â
j2Ô⇤

�
lDist(Ô⇤

i , Ô
⇤
j)�hDistO(WA,Oi,O j)

�2 (3)

This optimization must also adhere to the sum to 1 and 0 to 1 con-
straints for WA. From the new attribute weights, the attribute node sizes
and opacities are updated to reflect these new levels of importance, and
Equation 1 is re-executed to reproject all observations. For example, as
depicted in Fig. 3-C, dragging the nodes for Dolphin and Blue Whale to
one corner of the projection and Elephant to the opposite corner, results
in an increase in the importances of the Walks and Grazer attributes,
which distinguish these two groups of animals.

Symmetrically, the projection of the attributes permits exploring how
attribute similarities affect observation importances. This is accom-
plished via PrI by dragging attribute nodes and clicking the “Update
Layout” button above the attribute panel. This triggers a very similar al-
gorithm that effectively inverts the WMDS process in Equation 2 using
only the attribute nodes the analyst interacted with, Â⇤ and following
the same 0 to 1 and sum to 1 constraints for WO:

WO = argmin
WO1 ,...,WOn

Â
i2Â⇤

Â
j2Â⇤

�
lDist(Â⇤

i , Â
⇤
j)�hDistA(WO,Ai,A j)

�2 (4)

Using the new observation weights, the observation node sizes and
opacities are updated to reflect these new levels of importance, and
Equation 2 is re-executed to reproject all attributes. To demonstrate,
Fig. 3-D shows that dragging the nodes for Grazer and Size far away
from Water results in an increase in the importance for Horse.

4.3 Goal 3: Relate Importances to Each Other
As SIRIUS has been described thus far, it is somewhat similar to
Andromeda [43]. The main difference is that instead of listing the at-
tributes, an attribute projection is provided alongside the an observation
projection. However, we now introduce two equations to interconnect
observation importances and attribute importances: WOi = Oi •WA and
WAi = Ai •WO. These equations can be more generally expressed as:

WO = O•WA (5)
WA = A•WO (6)

Both of these equations are used in initializing the projections as
well as both PaI and PrI, as shown in Fig. 4, thereby interconnecting the
projections of the observations and attributes together. This intercon-
nectedness between observation importances and attribute importances
has crucial implications in revealing new relationships and affording
additional insights by providing methods to alter node size, opacity, and
position for both observations and attributes after any interaction. Thus,
analysts are afforded insights such as correlations between observations
or between attributes at a glance during any point of analysis.

Our use of these equations is loosely based on simple approaches
to relevance computations in information retrieval and recommender
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Fig. 3. The results of two examples of PaI and two examples of PrI described in Sect. 4 with Fig. 2 as the initial projection of the data and continuing
to map “importance” to node size and opacity: A PaI performed on the Water attribute; B PaI performed on the Cow observation; C PrI performed by
dragging the Dolphin and Blue Whale observations into one corner and the Elephant observation into the opposite corner; and D PrI performed by
dragging the Grazer and Size attributes into one corner and the Water attribute into the opposite corner.

Fig. 4. A flowchart depicting how Equation 5 and Equation 6 are used in
conjunction with Equations 1–4 on initialization or when PaI or PrI occur.
Arrows and their associated equation numbers are colored based on
whether they are used for the observation panel (purple), attribute panel
(green), or both (black). Note that Equation 5 and Equation 6 are both
used in PaI, whereas only one of these equations is used in PrI.

systems, such as the HITS (Hubs and Authorities on the Internet) Algo-
rithm [24], which underlies Google’s PageRank query technique [36].
However, a major difference is that HITS iterates over these two equa-
tions until convergence, whereas our implementation of SIRIUS only
iterates once to enable explorations of alternative projections via PaI
and PrI. However, it might be interesting to iterate until convergence
during initialization.

Interconnecting the observation importances and the attribute im-
portances is first seen when initializing each of the projections. For
the projection of the observations, an observation weight vector is first
initialized so that each observation has a weight of 1/n. This reflects an
equal level of importance for each observation while maintaining the
sum-to-1 and 0-to-1 constraints for the weight vector. Then, Equation 6
is used to determine the attribute importances. However, this equation
is not constrained as the attribute weights are. Therefore, to use these
attribute importance values for the attribute weights in Equation 1, they

are normalized to sum to 1. Similarly, the projection of the attributes is
initialized by first generating a set of attribute weights in which each
weight is 1/p. Then, Equation 5 is used and normalized to sum to 1 to
generate the observation weights for Equation 2.

After projecting the data using Equation 1 and Equation 2, as de-
picted in Fig. 2, the node sizes and opacities can be interpreted as
visualizations of (left) which observations are most important or best
describe the differences between the attributes and (right) which at-
tributes are most important or best describe the differences between
the observations. For this initial projection, the manner in which the
importances of the observations and attributes are determined result
in emphasizing items that are most “popular” (i.e., have the highest
sum across the dataset, as explained in Sect. 5.1.1). Additionally, these
projections show similarities (i.e., correlations) between attributes or
similarities between observations.

These equations for importances are also used during each interac-
tion. For example, when the analyst performs PaI on an attribute, a new
set of observation importances is calculated using Equation 5. These
importance values are used to update observation node size and opacity.
Then, the observation importances are used to calculate a new set of
attribute importances using Equation 6. This results in an update to
attribute node size and opacity. Additionally, both observations and
attributes are reprojected via Equation 1 and Equation 2 (respectively)
after normalizing both new sets of importances to sum to 1. Thus,
PaI results in node size, opacity, and position being updated in both
projections. This effect is demonstrated in Fig. 3-A and Fig. 3-B.

Similarly, PrI in the observation panel produces a new set of attribute
weights. These weights are used in Equation 1 to reproject the obser-
vations and in Equation 5 to determine new sizes and opacities for the
observation nodes. Then, the new observation importances are used
in Equation 6 to update the attribute node size and opacity. To update
the attribute node positions, the new observation importances are nor-
malized to sum to 1 and used in Equation 2. Thus, PrI also results in
node size, opacity, and position being updated in both projections. This
effect is depicted in Fig. 3-C and Fig. 3-D.

In the above use of dot products to relate observation importances to
attribute importances and vice versa, there is an implied assumption that
higher data values represent more importance. For example, we assume
that a higher importance for the Water attribute indicates that animals
that have a high value for the Water attribute are more important than
animals with a low value. While this assumption is appropriate for
some applications, such as in text analytics where values represent
word occurrences, it may be less appropriate in other applications, such
as wanting to emphasize both extrema. However, the technique for
relating observation and attribute importances as described in Sect. 3 is
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purposefully generic to support a variety of mathematical definitions
for relating importances, including one which might generate higher
importance values for animals with extreme low Water values as well
as those with extreme high Water values.

When interpreting the dual projections, it is important to understand
that, while the node sizes and opacities in one projection describe
the spatial layout of the other projection, the projections themselves
do not map onto each other. That is, since the projections represent
separate high-dimensional spaces, the spatial positions of nodes in
one projection do not specifically relate to the node positions in the
other. Attempting to align all spatial positions would create a projec-
tion similar to the Data Context Map [8], which necessarily distorts the
similarities between the observations, attributes, or both, as discussed
in Sect. 2.3. Although one of the projections can be rotated and re-
flected to better match the layout in the other projection (e.g., rotate the
attribute panel so that the Water and Grazer attributes are roughly in
the same positions as the animals that are higher in those attributes),
the potential tradeoff is that this may lead analysts to conclude that
the two projections can be mapped onto each other. An inaccurate
conclusion such as this can lead to significant misinterpretations of
how the projections relate to each other. For these reasons, we do not
attempt any such alignment between the two projections.

5 EXAMPLES OF DATA ANALYSIS WITH SIRIUS

To demonstrate how Equations 1–6 coalesce to enable exploratory data
analysis with diverse high-dimensional datasets, we provide examples
of animal data, intelligence analysis data, and breast cancer data in
our implementation of SIRIUS. These examples show that SIRIUS can
be used to explore quantitative data, textual data, and large datasets,
respectively. A demonstration video for each of these examples is
available at https://youtu.be/TzBjImkrbDU.

Since Equations 1–6 rely on strictly numerical data, some of the
example datasets had to be altered to change categorical attributes to
numerical representations. Additionally, any rows that contained miss-
ing data were removed. Such issues could be better addressed through
the use of alternative distance functions, such as Gower distance [18].

As we move away from more intuitive datasets like the one by
Lampert et al. [29], it is important to note that raw data for a selected
observation or attribute is displayed alongside the “Importance” slider.
For numerical datasets, this raw data is expressed as a simple list of
key-value pairs. For text datasets, selecting a document instead displays
the associated raw text. Thus, analysts can readily explore the entire
dataset without having to reference spreadsheets or outside tools to
interpret the projections.

5.1 An Animal Dataset

5.1.1 The Full Dataset

Given the initial projection of the entire animal dataset by Lampert et
al. [29] depicted in Fig. 1, we can already begin gaining insights about
the dataset. For example, while there are no strongly distinguished
groups or clusters of animals, more water-dwelling animals appear
in the upper right whereas more land-dwelling animals appear in the
lower left. Despite the hypothesis that the differences between animals
are best described by their Water attribute, the size and opacity of the
attribute nodes indicate that Quadrupedal is the correct answer. Since
this is the initial projection of the attributes, this also means more
animals have a high value for Quadrupedal than for any other attribute.
Therefore, many animals in the dataset are Quadrupedal and that this
attribute is the most “popular” attribute in the dataset. In addition to
these insights, the projection of the attributes shows that there are strong
correlations between certain attributes, such as Quadrupedal and Furry,
since they are projected closely together. Thus, an animal that has a
high value for Quadrupedal is likely to also have a high value for Furry.
Similarly, Grazer and Hooves are somewhat correlated, but since they
are projected on the opposite side of the attribute panel, they are not
correlated with Quadrupedal and Furry.

Fig. 5. Given the initial projection shown in Fig. 2, (Top) the analyst can
move animals to express their desired similarities or differences to begin
investigating their three questions about this animal dataset. (Bottom)
After clicking “Update Layout,” the data is reprojected with new attribute
weights and observation weights. The analyst can now use node position,
size, and opacity to determine the answers to all three questions without
performing any further interactions.

5.1.2 Analysis on a Subset of the Dataset
Using the same subset of the animal dataset as in Fig. 2 and Fig. 3 for
clarity, consider an analyst who wants to gain insights based on the
three related questions mentioned in Section 1 using this dataset:

1. What attributes separate the Tiger and Wolf from the Blue Whale
and Dolphin as well as from the Cow and Sheep?

2. What other animals are similar to those three groups?
3. What other attributes are correlated with the attributes that sepa-

rate these three groups?

To answer these questions, after the data is initially projected (as
shown in Fig. 2), the analyst would begin by using PrI to move the
nodes for the animals of interest into three groups, as depicted in the top
row of Fig. 5. Clicking “Update Layout” results in the final projection
shown in the bottom row of Fig. 5.

Following this reprojection, the analyst can answer Question 1 by
observing that the attributes Water, Hunter, and Grazer are large and
opaque, thus leading to the insight that they describe the differences
between the three groups of animals. Additionally, this projection gives
the analyst the insight that Horse, Deer, Elephant, and Squirrel are
similar to the Cow and Sheep; the Siamese Cat and German Shepherd
are most like the Tiger and Wolf ; and the Otter is similar to the Dolphin
and Blue Whale. Thus, Question 2 is also answered from this projection.

However, Question 1 and Question 2 can be answered by existing
techniques such as Andromeda [43]. What makes SIRIUS unique is
that Question 3 can also be determined at a glance via the relative node
positions in the attribute panel; more similar (or correlated) items will
appear closer together in the projections. Thus, analysts can easily
gain the insight that Furry, Active, Speed, Smart, Strength, and Size are
all more correlated with Hunter than with Grazer or Water. Similarly,
Stripes, Walks, Forager, and Spots are most correlated with Grazer. The
Water attribute, in comparison to Hunter and Grazer, is not correlated
with any other attributes.

Connecting these answers for Question 3 back to the animals, this
means that the animals that have a high value in Hunter are more likely
to have higher values for Furry, Active, Speed, Smart, Strength, and
Size than animals that have a high value in Grazer or Water. Inspection
of the animals in the observation panel (or domain knowledge) provides
the insight that animals that are high in Hunter are animals like Tiger
and Wolf. Similarly, animals that have a high value in Grazer (like
the Cow and Sheep) are more likely to have higher values for Stripes,
Walks, Forager, and Spots than animals that have a high value in Hunter
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Fig. 6. The panels labeled A show an initial projection in SIRIUS with all
extracted entities as attributes of a textual dataset, which immediately
emphasizes Charlottesville as an important entity. The panels labeled
B show an initial projection with topics learned through topic modeling
as the attributes of the dataset. While this makes both the projection of
the observations and the projections of the attributes clearer, the initial
insight about Charlottesville is lost.

or Water. Animals that have a high value in Water (like the Dolphin
and Blue Whale) are not as likely as animals that have a high value in
Hunter or Grazer to have higher values in any of the other attributes.

5.2 A Text-Based Dataset
As mentioned in Sect. 4.3, our notion of importance, defined by Equa-
tions 5–6, results in a high importance for observations that have high
values for important attributes and vice versa. This definition of im-
portance is well-suited for text-based datasets in which a higher value
for an attribute (e.g., an extracted entity) denotes that the associated
extracted entity appears more often in that document (observation).

5.2.1 TF-IDF Data vs Topic Modeled Data
To demonstrate how SIRIUS can be used to explore textual data, we
extracted entities from a synthetic intelligence analysis dataset and
created a TF-IDF matrix in data preprocessing steps. Using SIRIUS
to visualize this data (depicted in Fig. 6-A), we can immediately see
that Charlottesville is greatly emphasized over other attributes. Given
this is the initial projection, the emphasis on Charlottesville indicates
that this entity has the highest sum of TF-IDF values across the entire
dataset, hinting that there may be something nefarious occurring there.
Since Charlottesville is the entity that has the largest influence on the
documents in the observation panel, documents that mention Char-
lottesville (the 5 documents towards the top of the observation panel)
are separated from the ones that don’t (in the middle of the observation
panel). Inspecting these Charlottesville documents provides insight on
a terrorist plot in Charlottesville involving several individuals.

However, Fig. 6-A has many of the observations and attributes
overlapping with each other, making them harder to distinguish from
each other. Although the attribute node labels have been removed
to improve clarity in the projection, these labels are still accessible
by hovering over a node.3 However, this issue can be also alleviated
using topic modeling to essentially group attributes together (and thus
better separate the documents) during an additional preprocessing step.
Visualizing the topics in place of the extracted entities results in the
much clearer initial projections shown in Fig. 6-B. The tradeoff in
doing so is that the previous initial insight that Charlottesville may be
the center of some nefarious activity is lost.

3There are many methods for improving the display of labels in scatterplot-
like visualizations [10, 17] However, this is not the main focus of this paper;
we instead focus on new interactive projection techniques for displaying both
observations and attributes of high-dimensional data and highlight the insights
that can be gained.

Fig. 7. From the initial projection of the topic modeled data shown
in Fig. 6-B, nefarious activity can be uncovered by (top) using PrI on
the attributes to separate topics of interest from generic or uninteresting
topics. Clicking “Update Layout” produces (bottom) a visualization which
reveals other topics that are very closely correlated with topics of interest.
Additionally, the combination of emphasized attributes results in fbi11 in
the observation panel being highly emphasized. This document reveals
crucial information to one of the three main terrorist plots in this dataset.

5.2.2 Example Analysis

To show analysis on text data with SIRIUS, we use the topic modeled
data to improve clarity. A reasonable starting point with a dataset like
this is to pick out attributes (i.e., topics) that seem more indicative
of nefarious activity than others. Examining the topics shown in the
attribute panel of Fig. 6-B uncovers a number of such topics, includ-
ing one that focuses on passport information (dates/passport/address),
another on police activity (polic/truck/two), and a third on explosions
(report/driver/explos). In contrast, topics like <number>/cia/date
seem perhaps generic or less useful to the initial investigation. Perform-
ing PrI by dragging the three attributes of interest into one corner to
and <number>/cia/date into the opposite corner to expresses their de-
sired similarities/dissimilarities (depicted in the top row of Fig. 7) and
clicking “Update Layout” above the attribute panel results in the visu-
alization depicted in the bottom row of Fig. 7. This visualization gives
the insight that the topics <number>/report/phone and april/ave/report
are very closely correlated with the three topics of interest that were
moved. These new topics, along with fbi/list/<number> (which is now
the most emphasized topic), are all worthy of further investigation.

However, most notably, this interaction resulted in the document
fbi11 being highly emphasized in the observation panel, giving insight
on its strong association with the emphasized topics in the attribute
panel. Reading the contents of this document reveals information that
happens to be central to one of the three main terrorist plots contained
within the dataset, as further analysis can confirm.

5.3 A Breast Cancer Dataset
To demonstrate the ability of SIRIUS to enable exploration of larger
datasets, Fig. 8 shows the “Breast Cancer Wisconsin (Original)” dataset
from the UCI Machine Learning Repository [32]. Similar to Fig. 6,
the observation labels have been removed to improve clarity. In this
visualization, many observations representing benign tumors naturally
group together in the lower left of the observation panel, separating
themselves from those representing cancerous tumors.

Looking at node size and opacity in the attribute panel, we can see
that the attributes that describe this separation are Bland Chromatin,
Single Cell Epithelial Size, and, most notably, Clump Thickness. Thus,
an analyst can immediately gain the insights that Bland Chromatin and
Single Cell Epithelial Size do help distinguish between observations,
but Clump Thickness describes the separation between the different ob-
servations better than the others. Additionally, since Clump Thickness
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Fig. 8. An initial projection of the “Breast Cancer Wisconsin (Original)”
dataset [32] in SIRIUS. Note that the dense group of nodes in the lower
left of the observation panel correspond to benign tumors. The attribute
projection reveals that the observation projection is best described by
the Clump Thickness attribute. However, this attribute, along with Single

Cell Epithelial Size and Bland Chromatin are the attributes that are most
closely correlated with the Class attribute and therefore may be useful in
diagnosing breast cancer in patients.

is the closest attribute node to Class, this means that Clump Thick-
ness is the attribute that has the strongest correlation with Class. This
correlation explains why observations seemed to be well-separated
by class. Theses insights also mean that doctors may be able to use
clump thickness, bland chromatin, and single cell epithelial size to help
distinguish between cancerous and non-cancerous tumors. While these
insights may be obvious to medical practitioners, the fact that SIRIUS
immediately uncovers them demonstrates its ability to easily reveal
critical information in high-dimensional datasets.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In our supplementary material, we thoroughly evaluate the capabilities
of SIRIUS against 10 existing visual analytics projection techniques,
emphasizing the different insights afforded. Here, we highlight that
SIRIUS is enables exploratory data analysis on observations and at-
tributes simultaneously and efficiently, as evidenced in Sect. 5. This
includes insights such as attribute correlations while exploring observa-
tion similarities, which can be gained through few, simple interactions.

Using Andromeda [43] as a contrasting example, PaI and PrI are
enabled on a single observation projection (accomplishing half of Goals
1 and 2). A separate Andromeda instance would need to be run simul-
taneously to display the attributes to enable the same interactions on
an attribute projection (for the other half of Goal 1 and Goal 2). While
this would provide the two projections and the same interactions within
each, they would remain disconnected (falling short of Goal 3). Thus,
the analyst would be forced to estimate or even guess how to manipu-
late one projection to reflect changes in the other. This process would
be time-consuming and error-prone, easily resulting in incorrect con-
clusions. Therefore, we assert that SIRIUS provides a more powerful
platform for performing data analytics tasks that incorporate both the
observations and the attributes of a dataset, such as the example tasks
in Sect. 5, than existing techniques.

However, using SIRIUS comes with the potential tradeoff of how
one projection cannot be transposed on top of another (as exemplified
by the bottom row in Fig. 5), which may be confusing for some analysts.
Despite this, we highlight that every projection provided in SIRIUS
is a valid projection that can provide rich, meaningful insights, as
demonstrated in Sect. 5.

One potential limitation of our implementation of SIRIUS is in the
usability and understandability of PrI caused by the fact that only a
subset of nodes are used to calculate a new set of weights, which are
then applied to all nodes. While Self et al. explore this limitation
in [43], the user study described in [42] highlights the benefits that PrI
can bring to the analysis process.

Another limitation of our implementation of SIRIUS is a “jumping”
effect, which is most evident when performing PaI on each panel in
sequence. This effect stems from our use of Equation 5 and Equation 6.
For example, assume that PaI was just performed in the attribute panel.
The weights for the changed attributes, WA, are first fed into Equa-
tion 5. The observation weights, WO, resulting from that equation is
then fed into Equation 6 to determine a final set of attribute weights,

WA. Repetitions of this interaction follow the same flow; for small,
subsequent changes to WA, this series of steps results in similarly small
changes to WO. However, when an observation’s importance value is
then manipulated, the first step instead becomes that the new WO is
fed into Equation 6 to determine a new WA. Since the WA here is very
different than the previous WA, the projection of the attributes changes
greatly. Therefore, although an analyst may expect both projections to
change minimally, a large change is reflected in the attribute projection.

One cause of this “jumping” effect is that the cycle of Equation 5
and Equation 6 have a single convergence point, as suggested by the
HITS algorithm [24]. However, since we want to explore alternative
projections, we necessarily consider other pairs of weight vectors for
which the cycle is not converged and therefore “jump” when the analyst
switches their interaction back and forth between the projections.

A related cause of the “jumping” effect is the memorylessness of the
interaction. When a new interaction is performed, our implementation
of SIRIUS only uses the most recent interaction to update the visualiza-
tion. One possible way to address this issue is to alter Equations 5–6 to
incorporate previous interactions or projections. For instance, Leman
et al. [30] suggest a weighted average of the weight vectors produced
by the most recent interaction with vectors from previous interactions.

Lastly, a limitation to our implementation of SIRIUS is the size
of data that is supported due to the the n2 and n2 p2 computational
complexities for projection and interaction optimizations (respectively).
However, recent performance improvements in the computation of
WMDS projections [12] as well as PrI interactions (which others in the
BaVA @ VT group are researching) can greatly increase the size of
datasets that can be supported with interactive response times. However,
this issue may also be alleviated for some datasets by implementing
foraging features (e.g., searching and filtering for text data) in which
only the most important observations and attributes are projected, such
as StarSPIRE [4].

We intend to address these issues and limitations by continuing
to develop our implementation of SIRIUS. This will also enable us
to improve other aspects as well, such as the placement and size of
the node labels in the projections or adding trails to highlight the
impact the interaction had on the nodes’ locations . With a more
refined implementation in hand, we will be able to provide thorough
evaluations on the time complexities of our refined algorithms as well
as run user studies to evaluate interpretability and usability.

7 CONCLUSION

In this paper, we identified an opportunity for dual, symmetric, interac-
tive projections of high-dimensional data to support the interconnected-
ness between observations and attributes in exploratory data analysis
tasks. Given this need, we defined a generalized technique called SIR-
IUS, consisting of three principles: (1) dual projections of observations
and attributes, (2) symmetric interactions on importances to explore
projections, (3) symetrically relating importances of observations to
importances of attributes. To concretize these principles, we described a
specific implementation based on WMDS, weighted Euclidean distance,
parametric and projection interactions, and dot-product importance cal-
culations. A set of examples then demonstrated how SIRIUS provides
insights across a range of diverse datasets, and we compared SIRIUS
against a suite of existing techniques. SIRIUS offers new insight into
both observations and attributes of high-dimensional data and their
interrelationships, while maintaining a consistent symmetric mental
model of each.
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