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1 INTRODUCTION

In Sect. 5 of the SIRIUS paper, we mentioned comparisons between
SIRIUS and existing techniques for visualizing and interacting with
high-dimensional data. With Table 1, we highlight the novelty of
SIRIUS, showing that no other technique addresses all three goals
described in Sect. 3 of the SIRIUS paper. We also acknowledge that
SIRIUS is not a comprehensive technique in that it does not explicitly
afford other types of insights, such as those that have been added to the
bottom of Table 1. However, it does not prohibit the addition of these
insights either.

2 COMPARING SIRIUS WITH OTHER TECHNIQUES

To directly compare SIRIUS with existing visual analytics techniques
for high-dimensional data, we compare the capabilities of SIRIUS and
the techniques exemplified by Andromeda [8], Dust & Magnet [10],
Star Coordinates [5], Dis-Function [2], LAMP [4], Dimension Pro-
jection Matrix/Tree [11] (shortened to “DP Matrix/Tree in Table 1),
the visualization proposed by Turkay et al. [9], Data Context Map [3],
Intent Radar [6], and Doc-Function [1]. These comparisons are summa-
rized in Table 1, which emphasize how these other techniques meet the
three Goals described in Sect. 3 of the SIRIUS paper. Note that these
comparisons are based on how the visualization is presented in their
perspective publications and whether the visualization directly enables
the given task or directly provides the given information. For example,
Andromeda by default provides a similarity-based projection of the
observations of high-dimensional data. Although a projection of the
attributes could be achieved by using a transpose of the original data
matrix as input, this additional projection is not automatically given
as part of the visualization. Therefore, we consider Andromeda to not
provide a similarity-based projection of the attributes. The following
subsections provide further details on why we filled each cell of Table 1
in the manner presented.

2.1 Goal 1: Similarity-Based Projections
As discussed in Sect. 2 of the SIRIUS paper, most visual analytics
techniques, including Andromeda, Dis-Function, and LAMP, focus on
the observations. Thus, only a similarity-based projection is provided
for the observations in many of the techniques in Table 1. However,
Doc-Function provides a similarity-based projection of the attributes,
and the Intent Radar maps the similarity of the attributes to the angle
around the radar. As discussed in Sect. 2.3 of the SIRIUS paper, the
Data Context Map projects the observations and the attributes into the
same space using MDS, which necessarily distorts at the projection
of the observations, the projection of the attributes, or both. In the
visualization from Turkay et al., three scatterplots are provided: one
that visualizes the observations using one attribute for each of the axes,
one that visualizes the observations using two principle components
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that eliminate outliers, and one that visualizes the attributes based on
their mean and standard deviation. While each of these scatterplots
could arguably be a visualization that uses a simplified definition of
similarity to produce the scatterplot, we consider these scatterplots to
be too simple to be classified true similarity-based projections, as they
don’t use all the observations or attributes in a similar manner to MDS
or PCA. Therefore, we propose the visualization described by Turkey
et al. only partially supports this goal.

2.2 Goal 2: Exploring the Projections
2.2.1 Manipulating Importances to Explore Similarities
Given the general focus on projections of observations and interactions
therein as opposed to that of attributes, it is perhaps expected that none
of our selected comparison techniques enable this manipulation of ob-
servation importances. However, Andromeda (via PaI), Dust & Magnet
(via increasing the magnitude of a magnet), and Star Coordinates (via
increasing the length of an attribute’s axis) enable manipulation of
attribute importances to explore observation similarities.

2.2.2 Manipulating Similarities to Explore Importances
Techniques such as Andromeda (via PrI) and Dis-Function (via drag-
ging and dropping nodes) enable direct manipulation of the observation
similarities to explore the attribute importances. In Andromeda, the re-
sult of this interaction is reflected in the position of the attribute sliders,
whereas Dis-Function portrays this information in a bar graph. While
LAMP affords a similar interaction, the importance given to each of
the attributes is not portrayed to the analyst. Similarly, Doc-Function
enables analysts to use a similar interaction technique on a projection of
attributes, but the importance given to each observation is not available
to the analyst. We therefore argue that LAMP and Doc-Function both
only partially support this goal.

2.3 Goal 3: Relating Importances to Each other
While no other techniques related observation importances to attribute
importances, the Intent Radar is the only other technique in our list
that relates attribute importances to observation importances. This is
accomplished by visually encoding each attribute’s importance as its
distance from the center of the radar. This information is then used
to determine the importance of each document, with the documents
provided to the right of the radar visualization.

2.4 Other Mechanisms to Generate Insight
Although our implementation of SIRIUS provides a unique interface
that enables powerful interactions and insights, it is not a comprehen-
sive implementation; there are other insights commonly afforded in
other exploratory data analysis techniques for high-dimensional data.
For example, distributions show how a particular piece of data compares
to all others or how common certain values are. This helps analysts
understand the given dataset at a high level as analysts generally have
low cognitive dimensionality, as described by Self et al. [7]. Similarly,
clustering data helps analysts be able to automatically group data to-
gether, which also helps give a high level overview of the dataset. We
discuss each of these types of common insights in detail with regards
to our selection of techniques.

1



Table 1. A summary of the comparisons between SIRIUS and existing visual analytics techniques for high-dimensional data. “O” or “A” denotes that
the given technique has the specified ability, whereas “o” or “a” denotes that the specified ability is only partially supported or only supported under
certain circumstances. A more thorough description of why each cell contains it perspective marks is provided in the supplementary materials.
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Goal 1: Similarity-based projection of observations (O or o) and attributes (A
or a (Sect. 2.1) OA O O O O O OA oa oa A A

Goal 2: Manipulate attribute importance (A or a) or observation importance (O
or o) to explore observation similarities or attribute similarities (e.g. PaI on the
attributes or observations), respectively; Sect. 2.2)

OA A A A

Goal 2: Manipulate observation similarities (O or o) or attribute similarities (A
or a) to explore attribute importances or observations importances (e.g. PrI on
the observations or attributes), respectively; Sect. 2.2)

OA O O o a

Goal 3: Relate attribute importances to observation importances (O or o) or
vice versa (A or a) (Sect. 2.3) OA O

O
th

er Distribution of observations across attributes (O or o) or attributes across
observations (A or a)

O oa o Oa o Oa o OA

Clustering of observations (O or o) or attributes (A or a) o O OA A

The most common insight afforded by our selection of techniques
is the distribution of observations across attributes, which can be seen
in Andromeda (seeing the raw data values for selected nodes along the
attribute sliders), Dis-Function (the parallel bars view), the visualiza-
tion provided by Turkey et al. (by manipulating the axes of the first
scatterplot), and Doc-Function (searching and the Highlight feature).
The Data Context Map only partially supports this insight by allowing
analysts to manipulate the ranges for the contour lines, through which
analysts can eventually learn the distribution. Star Coordinates also par-
tially supports this insight by allowing analysts to select value ranges of
interest for each axis, which can reveal the distribution of observations.
Alternatively, analysts can manipulate the size and orientation of the
attribute axes to view the distribution of observations across a single
attribute. Similarly, the Dust & Magnet visualization partially supports
viewing distributions of observations across attributes by having obser-
vations move faster towards a moved attribute if it has a higher value
for that attribute. However, Dust & Magnet and Dis-Function also
partially support insights regarding the distribution of attributes across
observations through visual encodings of node color and size, and the
raw data matrix (respectively). Dimension Projection Matrix/Tree par-
tially supports this insight by allowing analysts to refine the attributes
used in a single projection of observations in the matrix to one attribute
for each axis. Doc-Function directly affords analysts this insight by
hovering over or clicking keywords.

Finally, LAMP, and Dimension Projection Matrix/Tree show clus-
tering of observations. LAMP determines clusters both via k-nearest
neighbors and via a silhouette coefficient. Dust & Magnet partially
supports this insight by coloring the observations by a analyst-selected
categorical attribute. Dimension Projection Matrix/Tree directly sup-
ports automatic clustering of observations or of attributes by clicking
on a corresponding button in a toolbar which performs the clustering
using a kNN graph. However, the Intent Radar clusters attributes by
mapping the results from agglomerative clustering to both color and
position.
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