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ABSTRACT 

Analyzing complex textual datasets consists of identifying 
connections and relationships within the data based on users’ 
intuition and domain expertise. In a spatial workspace, users can 
do so implicitly by spatially arranging documents into clusters to 
convey similarity or relationships. Algorithms exist that spatialize 
and cluster such information mathematically based on similarity 
metrics. However, analysts often find inconsistencies in these 
generated clusters based on their expertise. Therefore, to support 
sensemaking, layouts must be co-created by the user and the 
model. In this paper, we present the results of a study observing 
individual users performing a sensemaking task in a spatial 
workspace. We examine the users’ interactions during their 
analytic process, and also the clusters the users manually created. 
We found that specific interactions can act as valuable indicators 
of important structure within a dataset. Further, we analyze and 
characterize the structure of the user-generated clusters to identify 
useful metrics to guide future algorithms. Through a deeper 
understanding of how users spatially cluster information, we can 
inform the design of interactive algorithms to generate more 
meaningful spatializations for text analysis tasks, to better respond 
to user interactions during the analytics process, and ultimately to 
allow analysts to more rapidly gain insight. 

Categories and Subject Descriptors 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

General Terms 
Human Factors 

Keywords 
Text analytics, visualization, visual analytics, clustering. 

1. INTRODUCTION 
Analysts are often tasked with analyzing, understanding, and 
making sense of collections of text documents. One of the 
fundamental activities in performing such tasks successfully is to 
establish complex connections, relationships, and similarities 
within the data – a task at which humans inherently excel. One 
helpful approach to supporting analysts is to provide them with a 
spatial workspace in which they can spatially organize documents 
into clusters and other visual structures. The familiarity and 

flexibility afforded by a spatial workspace allows users to 
establish implicit relationships within the dataset [1]. Thus, users 
have the ability to create spatial relationships (e.g., by moving 
documents and creating clusters) without the requirement of 
explicitly formalizing the relationships. 

Large, high-resolution displays further enhance a user’s ability to 
perform sensemaking tasks spatially. The increased physical size 
and resolution of these displays (such as the one used in this 
study, shown in Figure 1) present users with a fundamentally 
different space. That is, when technological constraints such as 
limited display size and resolution are reduced, users are able to 
utilize a broader range of human abilities for their task [2]. For 
sensemaking tasks in particular, the positions of information in the 
workspace become meaningful to the users, and the overall layout 
of the information serves as a memory aid during their 
investigation [3]. 

Similarly, mathematical algorithms exist that computationally 
generate such spatially clustered layouts. Through a pre-
determined distance function, these algorithms attempt to compute 
relationships within the data, such as inter-document similarity. 
Thus, the basis of these algorithms is to extract structure from the 
dataset, compute similarities, and present users with a two-
dimensional view of the information showing an overview of the 
primary themes and general structure of the dataset. However, we 
contend that sensemaking is a far more complex process, and 
cannot be described solely by structure contained directly within 
the given dataset, and that user input is required. 

Sensemaking is the process of generating understanding and 
insight about a collection of information [4]. Drawing from 
human intuition and previously developed domain expertise, users 
can spot connections, see patterns, create stories, and ultimately 
generate insight. Thus, we are interested in the semantics of how 
users perform such sensemaking tasks spatially. That is, what 
inferences can we make from their process – both in terms of their 
interactions in the workspace, as well as the clusters and spatial 
structures they create? Further, how can these findings help guide 
statistical algorithms responsible for computationally clustering or 
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Figure 1. The large, high-resolution display system used in 
this study (total of 13.1 megapixels).  

 



spatializing information? 

A goal of visual analytics [5] is to combine the analyst’s domain 
knowledge essential for sensemaking with the computational 
support of clustering algorithms through interactive visualizations. 
For example, one approach to this is semantic interaction [6] that 
exploits the interactions users perform as part of their exploratory 
spatial analysis, and couples them with specific updates to the 
clustering algorithm, shielding the user from having to directly 
modify these parameters. Thus, throughout the iterative analytic 
process, the system incrementally learns about the user’s domain 
knowledge, and a spatial layout is co-created by the user and the 
system. This is an iterative process in which users guide the 
algorithms to produce layouts consistent with their mental models. 
In order to design such interactive algorithms, it is critical to 
understand 1) the basis upon which users cluster information, and 
2) what analytical reasoning can be extracted from the interactions 
occurring during their processes. 
In this paper, we present the results of a user study exploring these 
two challenges. We asked users to perform a spatial sensemaking 
task on a large, high-resolution display (shown in Figure 1) using 
a system, LightSPIRE (shown in Figure 2), that provides basic 
text analysis functionality (i.e., searching, highlighting, 
annotating, and document positioning). The tool provides only 
manual layout capabilities, with no algorithmic layout support. 
Users can manually spatially organize the documents however 
they desired to help them complete their analysis. We then 
analyzed the user-generated clusters in each user’s spatial layout 
to better understand the semantics of their clusters, as well as 
analyzed their process in terms of the interactions. 
Based on the findings of the user study, the contributions of this 
work are as follows. First, we discuss how the criteria on which 
users clustered information for sensemaking was not necessarily 
based only on structure found within the data. Users created 
clusters (and other spatial constructs) based on a combination of 
the structure within the data (e.g., the entities in the text), as well 
as their intuition and higher-level concepts. Second, we analyze 
the user interaction during their analytic process to show how 
certain interactions indicate important discriminating features in 
the data. Third, we discuss how these findings can influence the 
design of statistical models created for interactive visual analytics.  

2. Related Work 

2.1 Using Space for Sensemaking 
Visualizations exist that aid users in sensemaking by allowing 
them to manually organize information spatially. The cognitive 
benefits of allowing users to generate spatial layouts of 

information have been studied. For instance, Marshall and Rogers 
[1] found that users prefer to create implicit relationships between 
information by positioning related information closer together. 
They found that the ease, flexibility, and informality associated 
with creating these relationships spatially were important to users.  

From Andrews et al., we learn that users externalize semantic 
information about a dataset into the layout and organization of 
documents [3]. The spatial layouts created represent specific 
meaning about each individual user’s analysis. Therefore, user’s 
findings from their analysis task were present in their spatial 
layouts. This study extends on this work by quantifying these 
relationships in terms of the clusters generated, as well as the 
interactions utilized during the processes.  

Pirolli and Card present a model for sensemaking for intelligence 
analysis task [4]. This model illustrates the series of cognitive 
stages users proceed through when performing a sensemaking 
task. Most notably, we learn from their work that much of the 
success of sensemaking is based on the ability for humans to 
combine their domain expertise gained from previous experiences 
and the information from the dataset they are currently 
investigating. It is through this combination that they are 
successful in identifying complex relationships within the data 
and ultimately gaining insight. 

2.2 Spatialization and Clustering Algorithms 
Several algorithms exist with a similar purpose of mathematically 
generating two-dimensional layouts from which users can 
interpret important information about a dataset. In general, 
algorithms group or organize data based on similarity, which is a 
function of the features of the dataset. Dimensionality reduction 
algorithms can provide a 2-d spatial visualization of the clustered 
data. For example, algorithms like self-organizing maps [7] or 
generative topographic mapping [8] provide a direct method of 
visualizing text data spatially, but do not provide explicit cluster 
membership information. A survey of clustering algorithms can 
be found in [9] and is outside the scope of this paper. The primary 
criteria upon which these models generate layouts are structure 
extracted from the dataset, such as term frequencies, temporal 
attributes [10], etc. from textual datasets [11].  

However, we contend that in order for these algorithms to aid 
users during the entire process of sensemaking, their design needs 
to change from focusing primarily on the structure of the data to 
combining this structure with semantics derived from the user.  

2.3 User Interaction in Visualization 
One of the challenges for information visualization is to gain a 
deeper understanding of how users interact within visualization, 

 
Figure 2. LightSPIRE, a large-display spatial workspace used in this study for organizing text documents. We observed users 
spatially analyzing a textual dataset, using common interactions such as searching, highlighting, and positioning documents.  

 



and more importantly how these interactions are integrated into 
their analytic process [12]. Yi et al. have addressed this lack of 
understanding by presenting an extensive categorization of user 
interactions available in popular exploratory visualization tools 
[13]. However, interaction in visualization has been shown to be 
inherently complicated to categorize [14].  
Dou et al. have shown that through logging user interactions in a 
visualization of financial data, low-level analytical processes can 
be reconstructed [15, 16]. Most importantly, these results indicate 
that a detectable connection exists between the low-level user 
interaction and the analytic process of that user.  

Our work described in this paper addresses a related topic area – 
analyzing the relationships between the spatial layouts users 
create while exploring a dataset, and investigating how the user 
interactions within that process can be correlated to the solution 
users generated. We discuss how these findings can extend to help 
enhance the effectiveness of clustering algorithms.  

3. Method 
The purpose of this study is to analyze users’ spatial clustering of 
information to aid with their sensemaking task. Participants in the 
study analyzed a textual dataset to understand and uncover a 
fictional terrorist activity using a simple spatial document 
organizational tool called LightSPIRE. We chose this task and 
dataset, as it is representative of intelligence analysis tasks that are 
largely focused on sensemaking. 
This study explores two primary questions: 

1. Analysis of Spatial Layout. What structure exists within the 
user-generated clusters? That is, given the clusters created by 
the users, what structure can be algorithmically detected? 

2. Analysis of Process. What can we learn from users’ 
interactions during the analytic process that can help guide 
algorithms? What indicators of analytical reasoning can be 
derived from these interactions? 

3.1 Equipment 
Users of the study were given a spatial document organization 
tool, LightSPIRE, for their task. LightSPIRE (shown in Figure 2) 
provides a workspace where documents can be manually 
organized using basic, familiar interactions. The primary 
interaction afforded by LightSPIRE is movement of the 
documents. Users also have the choice to view documents using 
two levels of detail, full-text and filename only (documents could 
not be deleted). A search function allows users to query the 
dataset for text strings. Search hits are shown within the 
documents as permanent, green highlights. The documents that 
contain the current search query are shown in a darker red until 
another search is performed or the search is cleared. Users also 
have the ability to highlight text (in yellow) as they are reading 
the documents. LightSPIRE captures and logs all of these 
interactions for post-study analysis.  

The workstation used for this study is a large, high-resolution 
display (LHRD), shown in Figure 1. The workstation is 
constructed using ten 17” LCD monitors arranged in a 5x2 grid 
(total resolution: 6400 x 2048, or 13.1 megapixels), curved around 
the user to provide optimal access to all areas of the workspace 
[17]. The display is driven using a single workstation running 
Windows XP, thus allowing familiar mouse and keyboard 
interaction with the workspace. Using LightSPIRE on this LHRD, 
users gain the ability to display the entire dataset in full-text if 
desired, as well as create an environment where spatial location of 
the information conveys meaning to the user [3]. Users were also 

given access to a whiteboard and a notepad for notes, although no 
users made use of these. 

3.2 Dataset 
The intelligence analysis training dataset used for this study 
consisted of 50 textual documents containing a hidden fictitious 
terrorist plot. The dataset includes a known ground truth, and 
includes a scoring rubric to assess the findings of each user. It also 
includes a list of “important” documents (22 out of 50) that are 
relevant to supporting the solution. Thus, we are able to draw 
conclusions on effectiveness of the solutions based on the scoring 
rubric, and analyze the interactions and spatial layouts based on 
which documents are important to the solution. 

3.3 Procedure 
Users were given practice with the workspace and LightSPIRE 
prior to beginning their analysis. During this time, all the 
functionality of LightSPIRE was shown to them, and they were 
able to ask any questions. Then, they were given instructions to 
analyze the dataset to uncover any suspicious activity, gathering 
as much information to support (and refute) their hypothesis as 
possible. No information was given regarding the important and 
unimportant documents. They were informed of the one-hour time 
limit for their analysis, after which they would be asked a series of 
questions about their solution. During this post-task questionnaire, 
the workspace would remain visible, but they would not be 
allowed to interact with it (other than looking at it and reading). 
This semi-structured interview provides users the ability to 
explain their solution in as much detail as possible, then goes on 
to ask details about relationships between people, places, and 
events to determine how well users could uncover these complex 
relationships during their investigation. Finally, we asked users to 
sketch (on a blank piece of paper) a drawing to identify and label 
their clusters, and help us better understand the meaning of the 
layout they created. The entire duration of the study lasted 
approximately two hours. 

3.4 Data Collected 
LightSPIRE was designed to log all of the user interactions, 
including search terms, cursor movement and activities, document 
movement and positioning, and document opening and closing. 
From these logs, we can analyze the users’ process at the 
interaction level. In addition, screenshots of the entire workspace 
were taken at 10-second intervals. The screenshots allow us to 
analyze the clusters and spatial layouts generated by the users. A 
description of the spatial layout was made through the sketch 
produced by each user at the end of the study, where clusters and 
other spatial constructs were clearly labeled. The entire study was 
video recorded primarily to capture the conversation between the 
user and the investigator, as well as capture any gestures made 
towards the workstation during the post-study questionnaire. 

3.5 Participants 
This study consisted of observing 15 users. The users were all 
male, undergraduate computer science students. While these 
participants had no prior training in intelligence analysis, the 
domain expertise required to correctly solve the dataset is basic 
intuition and reasoning. The participants were offered an 
opportunity to receive one of three monetary prizes of $50, $35, 
and $25 for the top three most accurate and complete solutions 
(based on the scoring rubric provided with the dataset) to provide 
motivation for their task.   



4. Results 
The results of this study are presented as follows. First, we 
analyze the final spatial layout the users created. We analyze the 
spatial layout produced by each user to gain a better 
understanding of the structure of the user-generate clusters. 
Second, we analyze the user interactions during the users’ 
processes of creating these layouts. 

4.1 Analysis of Spatial Layout 
The initial layout of the 50 documents was identical for each user. 
Each of the documents were minimized (showing only the 
filename), and arranged based on their filename (i.e., doc_01, 
doc_02, etc.) in the top left corner of the workspace. Each 
document was only present once in the workspace.  

4.1.1 Primary Spatial Layout 
What are users’ overall layout strategies? The analysis of overall 
spatial layout reveals three distinct patterns of how users chose to 
spatially organize their information.  
Topical Clustering. Nine out of the fifteen users in this study 
chose to organize their workspace based primarily on creating 
clusters of topically related documents. Figure 2 shows a 
representative example of a workspace organized by clustering. 
Users organized information into clusters to synthesize their 
hypotheses. For example, at times users labeled their clusters 
“Aryan activities” to represent a cluster that was focused around 
the documents within the dataset that relate to that information. 
However, users also created clusters labeled “junk” or “related but 
not big picture”, indicating that clusters can also represent forms 
of insight about the dataset.  

Temporal Clustering. Five of the fifteen users organized their 
workspace based on the temporal information in the documents. 
These users arranged their information from left to right based on 
the dates included with each document (see Figure 3). For this 
group, the users chose to place no relevant information on the y-
axis of the workspace. When asked, one user replied that “[he] 
used the vertical dimension of the display to make room to fit 
documents if the dates overlapped”. For example, one user 
outlined an area of the workspace and labeled it “August”. We 
classify each one of such areas as a “cluster” for the purposes of 
this work. 

Hybrid Clustering. One user generated a particularly interesting 
layout (shown in Figure 3). He started his investigation by 
organizing the documents based on a timeline on roughly the top 
half of the workspace. Then, he began investigation the 
relationships and interesting events within the dataset. As he 
found interesting terms or events, he pulled these documents out 
of the timeline and clustered them in the lower portion of the 
display. However, the documents retained their relative temporal 
positioning, as he took caution to only move the documents 

vertically, so as not to disturb the temporal left-to-right 
organization. As a result, we noticed this user balanced a tradeoff 
of maintaining temporal awareness of the documents, as well as 
gaining an understanding of the important events and topics 
within the dataset by establishing “rows” of related items.  

4.1.2 Cluster Structure 
We analyze the raw clusters created by each user during the task, 
and later identified in their post-task interview. The 15 users 
created a total of 86 clusters. The number of documents contained 
in each cluster ranged from 1 to 25 documents, with a mean of 7.3 
documents per cluster. 
How do documents within a cluster relate to each other? 
Intra-cluster Co-occurrence First, we analyze if one or more 
terms occurs in all the documents within a cluster. 26 of the 86 
clusters (30%) had at least one term in common among all the 
documents in the given cluster. 10 out of the 15 users made these 
clusters containing common terms. 13 of these 26 clusters had a 
month as one of the common terms (these clusters belonged 
primarily to the Temporal Clustering users). As can be expected, 
for clusters of smaller sizes, there were more shared common 
terms. Only 5 of these 26 clusters contained more than two 
documents. For these 5 clusters with more than two documents, 
the number of common terms never exceeded four. Hence, for the 
remaining 70% of clusters the structure of the clusters is not based 
on any co-occurring terms in all the documents. 

Transitivity An alternate but simplistic explanation of cluster 
structure is that pairs of documents within a cluster are related via 
terms that are common between them (i.e., clusters represented as 
connected graphs where nodes are documents and edges represent 
shared entities between the two documents). Therefore, any two 
documents within the cluster can be connected transitively via one 
or more other documents. We refer to such a cluster as a transitive 
cluster. For example, one user created a cluster with three 
documents in which one pair of documents did not have any 
words in common (shown in Figure 6). However, a pair of 
documents shared the term “Arrested” and another pair shared the 
terms “Cartels” and “Drug” and a transitive relationship between 
the documents in the cluster can be given by: 
doc_39(Arrested)! doc_15(Arrested, Cartel)!doc_28(Cartel, Drug) 

Hence, while these three documents produce a connected graph, 
they do not share a common term between all three. The 
abstraction of a large corpus of text documents as a similarity 
network (the notion of similarity being induced by terms that are 
shared between document pairs) has been used by [18, 19] in a 
“Storytelling algorithm” to connect seemingly unrelated 
documents via a path referred to by the authors as a story. While 
the ordering of documents in the transitive relationship between 
two documents might bear some semantic meaning to the users, 

                
Figure 3 Annotated screenshots of two final layout states. The annotations (white frames and purple text) were added by the 
investigators based on the cluster boundaries and labels provided by the post-task interviews. (Left) shows an example of the 
Hybrid Clustering spatial layout, where the user organized the documents temporally from left to right, while the separation along 
the y-axis was used to organize topics of interest. (Right) is an example of the Topical Clustering layout, where the user chose to 
organize the documents in clusters based on topics important to the solution. 



we do not account for ordering in our analysis (i.e., our graphs are 
undirected).  
Based on this, 71 of the 86 clusters (83%) are transitive, excluding 
temporal information. We chose to exclude the temporal 
information of the documents for these connections, as the month 
names occur frequently throughout the dataset, creating large 
connected groups based on solely this information.  

Transitive Terms We analyze the terms that cause links between 
documents within the cluster to determine which terms cause the 
transitivity. We call these terms transitive terms. Our goal is to 
understand the distributional properties of the transitive terms, and 
how often they occur within the cluster compared to occurring in 
the remaining dataset. The first statistic we look at is the 
proportion of documents in which the transitive term occurs. We 
observe that the proportion of documents with a transitive term 
within the user-generated cluster is 20% higher, on average, than 
the proportion of documents outside the cluster that contain the 
term (t(2442) = -46.50, p < .0001). Transitive terms have very low 
rates of occurrence outside of their clusters, and in some cases the 
only occurrences are within the single cluster.  

4.1.3 User-Generated Cluster Labels 

How do documents within a cluster relate to the cluster label? To 
determine if the labels can provide an indicator as to which terms 
within the cluster are important, we compare the user-generated 
cluster labels to the content of the documents within the cluster. 
For example, for a cluster named “Germany and Trucks”, we 
extract the entities “Germany” and “Trucks”. Then, we analyze 
the percentage of documents within the cluster that contain the 
word “Germany” and the percentage containing “Trucks” (case 
insensitive and stemming). We report on the highest percentage of 
these, as we are not concerned with choosing an entity from the 
label that best represents the cluster of documents (addressed by 
work such as [20]). Rather, we present the results of how well the 
best-matched entity within a label matches the entities of the 
documents within a cluster. 
The percentages of documents within each cluster that contain the 
best-matching entity from the label are shown in Figure 4. These 
results show that 12 of the 86 clusters (14%) can be characterized 
based on a single entity extracted from the user-generated label 
(i.e., 100% of the documents in the cluster contain the given 
entity). 10 of them are clusters of two or fewer documents (shown 
in Figure 4). Whereas 67 of the 86 clusters (78%) do not contain 
the given entity in more than 50% of the documents within the 
cluster.  

Additionally, the users who chose temporal clustering to organize 
their workspace still showed inconsistencies between their 
temporal clusters and the documents actually contained in those 
clusters. For example, one user was very careful to maintain a 
relative ordering between documents based on the date included 
in each document. However, analyzing his layout, this ordering 
did not hold true for the majority of the layout. Another user 
chose to cluster the information through a broader temporal 
criteria (i.e., he clustered based on the months the documents 
occurred). However, 3 of his 5 clusters contained documents from 
months other than the month with which he labeled the cluster. 

From these results, we confirm our hypothesis that users form 
clusters not solely based on entities or keywords within the data. 
Cluster labels such as “important people”, “unknown”, “events 
that have happened”, “random unrelated events”, 
“miscellaneous”, “terrorist activity timeline”, “big events in 
southern cities”, etc. indicate they are based on higher-level or 
process-oriented concepts. Further, we found that users struggled 
to answer what is the meaning of their clusters. This could be 
because clusters were created based on implicit and informal 
relationships perceived by the users (as described in [1]). Thus, 
asking users to formalize these relationships proved challenging.  

4.2 Analysis of Process 
How can interactions provide effective discrimination of relevant 
structure? We analyze each user’s analytic process in terms of the 
user interactions performed in LightSPIRE. Our goal is to gain a 
better understanding of how each interaction is used during the 
sensemaking process, and how models might exploit these 
interactions as a means for unobtrusively capturing information 
from the user about important discriminating features of the data. 

4.2.1 Search 
Search is a frequent operation in text analytics. Performing a 
search in LightSPIRE returns results visually within the layout. 
That is, documents containing the search result change color to 
red until the search is cleared. Even after the search is cleared (or 
another search is performed), the text matching the search query 
within the documents stay highlighted in a neon green. We divide 
the use of search into two categories: constructive and awareness. 

 
Figure 5 The distribution of the percentage of documents 
within each cluster that contain the cluster label keywords. 
Of the 86 user-generated clusters, 28 clusters did not have 
their label keywords present in any of their documents. 67 
clusters do not contain the label keywords in more than 50% 
of the documents. 

 
Figure 4 The size of a cluster compared to the percentage 
of documents within the cluster that contain the user-
generated label. Notice that only clusters of 5 or fewer 
documents match 100%. 



Constructive search indicates that the results of the search were 
used to create a cluster, whereas awareness search was performed 
to highlight where in the layout a term occurs.  

Users performed a total of 2263 searches (broken down by user in 
Figure 7), 207 of which were constructive (9%), and 2056 of 
which were awareness (91%). A total of 326 unique terms were 
used in the search. Thus, many were repeated, as evidenced by the 
high number of awareness searches performed. Of these search 
terms, 222 contained a one word, 100 contained two, and only 4 
were three words in length. 
A constructive search consisted of performing a search, then 
creating a cluster based on the documents in which the search 
term appeared. For example, one user found the term “u-haul” 
interesting while reading a document. He proceeded to search on 
this term, found that it appears in other documents, and dragged 
each of these documents to a location to “construct” a cluster.  

This usage pattern for search might initially indicate that clusters 
are formed as a result of search terms, and therefore can be 
classified by a collection of entities. However, the structure of the 
clusters often changed during the investigation as the user gained 
more insight into the dataset. Clusters changed from their initial 
creation based on an entity (e.g., the “u-haul” cluster, containing 
only documents containing that entity), to a collection of 
documents whose connection or similarity is not based on that 
particular entity (e.g., the “transportation of suspicious material” 
cluster). This is evidence of incremental formalism [21]. 

Search can provide a good indicator as to what documents are 
important. We analyzed all the search hits (i.e., a document 
containing the search term is considered a search hit), and with the 
list of important documents provided with the dataset, found that 
the average number of times an important document was hit was 
higher than the non-important documents (Figure 8). The average 
number of times an important document was hit by each user is 
14.2 times, compared to 6.9 times for non-important documents 
(t(28) = 4.47, p < .0001).  

4.2.2 Highlighting 
Analysts frequently highlight information while reading. 
LightSPIRE allows for two types of highlighting. When users 
perform a search, the text within each document that contains the 
search term is highlighted green. Also, users can perform a 
standard yellow highlight of a phrase within a document using 
their cursor.  

The design decision to create persistent highlights from search 
terms stemmed from the user feedback from a previous study [3], 

where the users mentioned that creating highlights within 
documents served as a means for not only marking important 
information within the documents, but also created non-uniform 
visual representations of these documents. That is, the highlights 
served as a way to transform the documents into visual glyphs, as 
the pattern of highlights within a document was meaningful to the 
user. 9 of the 15 users made use of standard highlighting, while 6 
used only the highlights from search. 

We found these two types of highlighting were used to indicate 
relevance at two different scales. Search terms were more concise 
indications of terms or entities that the user found interesting and 
relevant. This is evidenced by the analysis of search term length, 
showing that users searched mostly to find single words. In 
contrast, the standard form of highlighting was used to indicate 
broader portions of documents as important (e.g., sections or 
phrases). Users performed a total of 220 highlights, containing an 
average of 5 words per highlight (sometimes spanning entire 
sentences). One user even chose to perform a standard highlight 
spanning an entire document that he referred to numerous times, 
and wanted to “find [the document] more easily”.  

We analyze the standard highlights with respect to the cluster 
labels to determine if the labels match to the highlights. Only 9 of 
the 86 cluster labels contain entities that were highlighted by the 
users in the documents. This shows that while highlighting can 
indicate content relevant to the user, cluster structure is more 
complex.  

4.2.3 Document Movement 
Being a spatial workspace, one of the most predominant user 
interactions is the movement of documents to position (and re-
position) documents throughout the analysis. As expected, users 
positioned documents within their workspace as a means of 

 
Figure 8 Comparison showing how often important 
documents were search result hits compared to non-
important documents. 
 

 
Figure 6 Users performed searches during their 
investigation for two reasons: constructing clusters 
(constructive), or to recall where the search term appears 
in the spatial layout (awareness). 
 

 
Figure 7 Example of a cluster that can be described by 
transitive relationships (shown by arrows). While a single 
term is not present in all three documents, we can form 
transitive connections between the documents via the terms 
“arrested” and “cartel”.  
 



externalizing insights about the datasets [3]. However, in this 
study we are more interested in what information we can quantify 
about this interaction regarding the user’s analytic reasoning.  

The analysis of movement was performed based on the number of 
times a document was moved, and the average distance each 
document traveled per move (in number of pixels). Important 
documents were moved an average of 7.1 times, compared to 5.7 
times on average for non-important documents (t(28) = -1.63, p < 
.05). While important documents were moved more frequently, 
their moves were more local, indicated by the average path length 
(in pixels) the document traveled each time it was moved. An 
important document traveled an average distance of 654 pixels per 
move, compared to an average of 792 pixels for non-important 
documents (t(28) = -1.65, p < .05). Thus, important documents 
were moved 25% more times, but 17% less distance per move.  

Documents displayed in full detail versus the smaller, minimized 
views reveals a metric for discriminating between important and 
non-important documents. Given the added resolution and size of 
the display used, 12 out of 15 users chose to maintain all 
documents in full detail. The three who minimized some 
documents only did so for un-important documents.  

While these metrics were statistically significant, the most notable 
difference between important and non-important documents in 
terms of movement were seen through the observations and post-
task interviews. We observed that the important documents served 
as spatial landmarks for the users. That is, these documents 
anchored a concept to a specific location in the workspace, from 
which the remaining layout crystalized. The typical behavior 
observed for moving important documents was to perform one 
large movement to position the document in the workspace, with 
many future short movements to refine the information within the 
cluster. In contrast, users quickly deemed non-important 
documents as irrelevant, placing them in such a cluster (e.g., 
“junk”). Other times, users did not refine the positioning of these 
documents within a cluster, but rather repositioned them into new 
clusters, often distant from the previous positions.  

5. Discussion 
The results of this study reveal new opportunities in the area of 
statistical models designed for co-creating spatial layouts. We 
initiate a challenge to statistics and data mining researchers to 
design models to support the interactive sensemaking process. 
First, designers can use the structure we analyzed from the layouts 
users created to design algorithms that better mimic users’ 
clusters. For example, transitivity is a good metric in that it 
successfully extracted structure from the user-generated clusters. 
Therefore it could provide a good metric for use in spatial layout 
algorithms. In contrast, algorithms based on strict term co-
occurrence between documents are not likely to coincide well 
with user’s mental models. Algorithms can be designed to support 
the three layout strategies observed. To support incremental 
formalism, models can evolve from term co-occurrence to more 
complex metrics over time, such as transitivity.  
Second, the user interactions present in the spatial sensemaking 
process can be used to guide models during the analytic process 
for co-creation of the spatial layout. For example, algorithms can 
observe and incrementally respond to the process of users 
clustering data. When users perform sensemaking, they gain 
understanding of the data at a higher level. Models must be able to 
co-create clusters based on these higher-level concepts. These 
concepts are based not solely on term co-occurrence, transitivity, 
or other metrics, but incorporate the user’s reasoning. The user 

interactions can serve as cues to help models understand these 
higher-level concepts.  

For example, models can expand the “data” upon which these 
models calculate their similarity measures – broadening the scope 
of the distance metric. These models should incrementally adapt 
based on the interactions of the user throughout the analytic 
process. To do so, models must be based not solely on the hard 
data (i.e. the structure within the dataset), but also the user’s 
reasoning derived from interaction (i.e., soft data). Soft data is 
defined as a captured and interpreted representation of a user’s 
semantic knowledge regarding a dataset [6].  

As evidenced by the results of this study, the user-generated 
layouts are often based on information that is outside the scope of 
the hard data. For instance, the user-generated cluster labels do 
not always map directly to a set of entities within the dataset, 
implying a need to add this information to the model. Cluster 
structure was not obvious until users identified and labeled the 
clusters, but was an important part of their sensemaking process. 
Knowing which of their three spatial strategies the user has 
chosen would help models understand the meaning of the clusters.  
Some soft data, such as search terms, can help distinguish 
between what hard data is relevant and not. Search terms can help 
indicate both what documents are important (based on being a 
more frequent search result), as well as which terms (or entities) 
to weight more heavily (indicated directly from the search terms). 
Document movement can be an indicator of not only similarity, 
but the pattern of movements can indicate the importance of the 
document. Users’ cognitive similarity metrics are not limited to 
term co-occurrence or transitive relationships. This may indicate 
that users develop similarity based on higher-level concepts. 
Sometimes highlighted phrases were an indication of a user’s 
reasoning, based on cluster labels.  

In contrast to the results from Dou et al. and Chang et al. [15, 16] 
who successfully recovered reasoning from user’s interactions, 
our measures indicate that doing so systematically yields lower 
probabilities. However, we have confirmed that analysts encode 
meaning into spatializations through complex spatial structures, 
using a rich set of cues. We can detect hints of meaning through 
these rich cues, such as the spatial layout and the interactions. All 
of them provided some benefit, but no single one gave an absolute 
indication of reasoning. Thus, a probabilistic approach that 
integrates all of them is the most likely path for success. A tactful 
combination of the soft data can be exploited by clustering 
algorithms to help guide and enhance their outcome, 
incrementally during the course of interaction. 

For example, an algorithm can exploit document movement in a 
spatial metaphor to learn and incrementally update similarity 
measures within a dataset. Observation-level Interaction [22] uses 
this form of soft data to couple the movement of data within a 
spatialization with updating parameters of popular clustering 
algorithms. In these models, users are given the ability to interact 
within the visualization, rather than directly with visual controls 
of parameters of the statistical model. While doing so, it is the 
responsibility of the model to update the parameters that 
correspond to the manipulation within the visualization. This is 
similar to the concept of metric learning, where models adjust the 
weighting of dimensions according to the user’s input [23]. As 
another example, semantic interaction [6] exploits document 
movement, highlighting, annotating, and search to update the 
model and co-create a spatial layout. The system interprets the 
interaction and updates the layout incrementally.  



6. Conclusion 
In this paper we present the results of a study observing users 
analyzing a textual dataset spatially. We analyze the final layouts 
created by the users, and the captured user interactions performed 
while generating the clusters. We found how specific criteria 
within this process (including both the generated clusters and the 
interactions used) can indicate important and discriminating 
structure within the dataset. 

Through analyzing the clusters created by the users, we found that 
only 15% of the 86 clusters contain at least one co-occurring term 
in all the documents within the cluster. Instead, we found that 
users tend to create clusters using transitive relationships between 
documents within a cluster. The challenge then, is determining 
which terms to use to create these relationships. Many of the 
clusters users created are based on higher-level or process-level 
concepts during sensemaking. Thus, these concepts rarely relate 
directly to keywords, making simple term co-occurrence metrics 
less useful.   

The interactions performed by the users (i.e., document 
movement, highlighting, searching) in spatially analyzing the 
dataset can provide indicators towards what structure within the 
dataset is important (or discriminating) to the user. For instance, 
important documents were returned as search results more 
frequently than non-important documents. Further, users’ 
highlights sometimes indicated terms or phrases within a 
document that are important to the cluster definition. 

This collection of interaction data, referred to as soft data, can be 
vital to unobtrusively gain an understanding of what aspects of a 
dataset a user finds important. As such, by incorporating both 
hard data (extracted directly from the dataset) and soft data, 
models can calculate more useful similarity metrics for users, and 
ultimately generate layouts from which users can gain insight.  
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