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ABSTRACT

At IEEE VIS 2018, we organized the Machine Learning from User
Interaction for Visualization and Analytics workshop. The goal of
this workshop was to bring together researchers from across the
visualization community to discuss how visualization can benefit
from machine learning, with a particular interest in learning from
user interaction to improve visualization systems. Following the
discussion at the workshop, we aggregated and categorized the ideas,
questions, and issues raised by participants over the course of the
morning. The result of this compilation is the research agenda
presented in this work.

Keywords: Machine learning, User interaction, Visualization, An-
alytics, Research agenda.
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1 INTRODUCTION

Interactivity in visualizations and analytical tools provides substan-
tial benefits to the sensemaking processes of users, with domains for
such tools ranging from investigative analysis of documents [48] to
exploration of scientific simulation results [24]. Recent investigation
in the visual analytics domain has begun to explore the benefits of
tools and algorithms that learn the intent of a user from their explo-
rations, thereby enabling a system to adapt the layout and contents
of a visualization to reflect the user’s mental model [4, 22, 26]. As
a result, the analytical process can be made more efficient as the
system learns from and adapts to the user.

A number of visual analytics tools provide interactive data projec-
tions that update based on learned user behaviors [25, 28, 30, 34, 52].
For example, Andromeda [43, 44] and Dis-Function [5] support
exploratory dimension reduction for high-dimensional quantitative
data. Scientific visualization introduces opportunities for learning
from interactions, such as analysis of data ensembles [31], interactive
visual querying of nonlinear solution spaces [11], in-situ analysis of
large scale data, and data foraging through extreme scale data [51].

This area of research at the intersection of visualization and ma-
chine learning is still novel, and much research remains to be done in
a number of areas. In this work, we present a research agenda to ad-
vance this field, generated through discussions by a group of experts
in this domain during the Machine Learning from User Interaction
for Visualization and Analytics workshop at IEEE VIS 2018. We dis-
cuss challenges and opportunities where further research is needed,
including needs for developer creativity to generate novel tools and
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user studies to better understand the effects of design decisions. This
discussion is accompanied by descriptions of state-of-the-art tools
that support research in this space.

1.1 Methodology
The content that coalesced into this research agenda was generated
by participants at the Machine Learning from User Interaction for
Visualization and Analytics workshop at IEEE VIS 2018. The high-
level goal of this workshop was to bring together researchers from
across the visualization community to discuss how machine learning
can be used to support visualization tools and workflows. While
many systems enable user interaction to explore data and parameter
spaces in analytics, this workshop examined how systems can learn
from user interactions to iteratively produce even more insightful
results. For example, beyond directly manipulating analytical input
parameters, users might interact with analytical outputs to better
direct the analysis congruent with their interest. This implies a
need to learn from the user interactions to transform them into
alterations of the parameters for the underlying analytics. In this
manner, learning from user interaction can aid sensemaking and
performance in analysis [18, 42].

At this workshop, two sessions were designed to include a set
of motivating papers, followed by dedicated time for discussion in
breakout groups. Approximately 50 attendees participated in these
discussion sessions. Discussion groups were semi-supervised by
the workshop organizers, and seeded with the discussion goal of
identifying applications and open research questions related to the
workshop topic. Each group included a note taker, who summarized
the group discussion in real-time using a shared Google document.

Following the workshop, the organizers collected these distributed
notes into a single document in bullet point form. Within this over-
arching document, we began an affinity diagramming process to un-
cover common themes, research topics, and open questions, among
other discussion points. This affinity diagramming process was iter-
ative, and we continued to refine topics and discussions in weekly
meetings over a period of several months. The topics that resulted
from these discussions (found in Sections 2-6) were then placed in a
sequence that represents computational and user-driven components
in an exemplary human-in-the-loop analytical system framework.

1.2 Human-in-the-Loop Organizational Structure
We have categorized this research agenda into five phases, which in-
terconnect in a hierarchical, cyclical structure reminiscent of Pirolli
and Card’s Sensemaking Process [37]. Our goal with this organiza-
tional structure is to capture the human-in-the-loop process (Fig. 1),
bringing forward relevant issues and related work at each step.

We select user interaction as the starting point of our discussion
(Sec. 2), which is logged and recorded by the system (Sec. 3). This
process can occur iteratively with one or more interactions, until a
learning process is initiated (Sec. 4). Following this learning, the
new state of the machine learning (ML) model is communicated
to (Sec. 5) and interpreted by (Sec. 6) the user, which acts as a
second iterative process as the user works to understand the new
model. After evaluating the results of their previous interaction(s),
the process can begin again with a new set of interactions.



Figure 1: This research agenda captures five interconnected phases represented by each of the ovals: a user interacting with a system (Interactive
Visualization (VIS) of Machine Learning (ML) Data), the system logging those interactions (Capture Logs), the system learning from those
interactions (Personalization), the system communicating its learned response to the user (Explainable AI), and the user interpreting that learned
response (User-in-the-Loop Evaluation). Each of these phases can be roughly categorized by whether the user performs the given phase, the
visualization/analytical system, or machine learning within the system. This is division is denoted by the relative position of each of the phases in
the central portion of this figure to the different phases. Each phase is explained in more detail in Sections 2-6.

2 INTERACTIVE VISUALIZATION OF DATA

We begin our human-in-the-loop process discussion at the point
where the user is about to interact with the system. The system
has already constructed a visualization of a dataset for the user to
explore, and the user has already evaluated the current visualization
and determined how well it supports their analysis goals. This vi-
sualization could represent either the initial state of the system, or
it could be at some later stage within the analysis process. In this
section, we discuss how the user understands the interaction tech-
niques available to them and determines which best supports their
goal. Our discussion focuses on three separate issues: how should
systems guide user interaction, what descriptions are available to
allow the user to interpret these interactions, and where does the user
even start? This user-centric understanding is tightly coupled with
the system capturing interactions to continue learning about the user,
as discussed in more detail in the next section. These two phases
form an iterative process in which the user may perform multiple
logged interactions in order to reach a specific analytical goal.

2.1 Guiding Users Towards Interactions

To help the user understand what they can or perhaps should interact
with, machine learning can be used to help guide the user towards an
interaction. Two major research questions related to system guidance
are How should systems provide this guidance? and How will
users interpret the effect of a recommended interaction?

One form of system guidance is making use of recommendation
algorithms to highlight information of interest to an analyst, thereby
assisting them in focusing their exploration on relevant information.

When considering how to accomplish such recommendations, an
important question is, Which interactions and data should users
be guided towards? This question remains a significant research
challenge in which the answer largely depends on the system’s
perceived importance of data. The idea of information scent and
scented widgets [7–9, 36, 53] embeds navigational cues and interac-
tion effects into potential user actions. Such techniques could guide
users towards interesting or unique data, recommend commonly-
used interactions, or highlight attribute values that have not yet been
explored, thereby resulting in additional insight on the data. Further,
the system itself could request information from the user directly via
an active learning approach, guiding the user towards interactions
that the system believes will best improve the model [45].

A related question is, What visual metaphor should the system
use to convey this guidance? For one example, StarSPIRE [4] and
Cosmos [17] recommend documents (i.e., data to explore) to the user
by filtering documents to display based on the perceived relevance
of those documents to the user’s current analysis. This perceived
relevance is mapped to the corresponding node sizes of the displayed
documents, providing the user with more information regarding this
recommendation that denotes which of those documents may be
most relevant to them. Alternatively, ModelSpace [6] (see Fig. 2)
shows a projection of the system states that an analyst has already
explored, providing a visual reminder of unexplored regions that
should be evaluated for completeness.

Related to the previous questions, How should the system guide
user interactions in such a way that analysts will understand
the potential effects of an interaction? ML responses are com-
plex and difficult to predict, which might cause fear or uncertainty



Figure 2: A screenshot of ModelSpace [6], which visualizes the differ-
ent states that have been explored by each user.

of interaction should be performed. For example, users who are
unfamiliar with complicated ML algorithms that are being used to
create the visualization may believe an interaction will have a small
impact. When the interaction results in a much larger change, the
user may be confused since their mental mapping for the effects
of the interaction was different than the results show. An example
of a visual metaphor a system can use to guide interactions that
may reduce this confusion is providing a preview of the resulting
changes to the visualization after the interaction. Such previews
help the user decide if the given interaction will produce desired re-
sults. Similarly, the ability to undo an action may provide a solution
though which the user can return to a previous state if the interaction
produces undesired results. The ability to undo an action is also
critical. The Speculative Execution model proposed by Sperrle et
al. [47] presents another solution to this challenge, computing po-
tential future model states and presenting them in comparison to the
current system state. This permits analysts and domain experts to
see the effects of interactions before they are initiated (see Fig. 4).

2.2 Matching User and System Understandings of Inter-
actions

When a user misunderstands the interactions available to them, they
can become frustrated, misuse the system, follow bad exploration
paths, or reach incorrect conclusions. Therefore, it is important
to understand How can we mitigate users’ misunderstandings of
the available interactions and their effects? A proposed solution
is to generate standardized interaction terminology to provide the
user with an understandable mapping between each interaction and
the system’s reaction to performing that interaction.

However, to provide such terminology, it is important to know
How and when do user misunderstandings of interactions oc-
cur? Using a simple menu system as an example, misunderstandings
and frustration can occur if a menu item is poorly labeled, leaving
the user to guess or misinterpret what the menu item does. If instead
the menu is well-designed and follows established conventions, like
“Save” always being under a menu category called “File,” users can
easily navigate and use the menu system effectively.

Once how and when users’ misunderstandings of interactions can
occur are better understood, this knowledge provides some insight
into the users’ mental mapping of interactions to system responses
and updates. Therefore, an important consideration is, How should
the system provide an interaction (i.e., how should an interac-
tion be designed) such that the user learns how the system maps
the interaction to its influence on the visualization?

For example, in Andromeda [42] (Fig. 3), parametric interactions
(PI) are mapped closely to model parameters. This mapping is ex-
pressed to the user by displaying and manipulating attribute weights

Figure 3: Andromeda supports parametric interaction (PI) with inter-
active slider widgets and observation-level interaction (OLI) with direct
manipulations in the projection.

with interactive sliders, an intuitive interaction familiar to users. In
contrast, Andromeda maps observation-level interactions (OLI) to
direct manipulations of the projected observations. Ideally, the user’s
understanding of this interaction should be that such direct manip-
ulations express desired similarity and dissimilarity relationships
between observations. However, this mental mapping can be more
difficult for users to grasp, in part because the mapping between
the interaction and model parameters is less clear in OLI. However,
another reason may simply be that users are not as accustomed to
directly interacting with projections of data as they are with sliders.
In other words, users perceive sliders as having a higher interaction
affordance than projected observations.

2.3 System Starting Point

Thus far, we have assumed that the user has a visualization with
relevant data displayed for them to interact with. However, this may
not be the case, especially when provided with an initial visualization
to begin the data exploration process. Indeed, because the view
that is provided to a user will anchor them in their current and
future sensemaking interactions, an important research question
is, Which initial visualization is most appropriate for the given
user tasks and data? This question becomes more complex is a
system provides multiple views or perspectives of the data.

For example, systems such as StarSPIRE [4] and Cosmos [17]
begin with no data displayed; users must explicitly search for data to
begin seeing anything on the screen. This means that the visualiza-
tion will not bias the user towards any data. However, the tradeoff
is that the user must have some idea of what they want to begin
exploring in their data. Alternatively, systems like Andromeda [43]
display all available data in the initial visualization. An advantage of
displaying all the data initially is that users can get an overview of
the entire dataset, allowing them to gain a high-level understanding
from the beginning. The tradeoff is that such visualizations do not
scale as well to larger datasets. However, there is also the potential
to explore initial visualizations between these two extremes. Addi-
tionally, more complex systems that include multiple visualizations,
such as dashboards, exacerbate this issue since how to initialize each
individual visualization will have to be determined.

3 CAPTURE LOGS

The interactions performed by a user indicate their current intent
or goals in their analysis. Therefore, logging these task-oriented
interactions can help the system disambiguate these intents and goals
to further assist the analyst in achieving said goals. In this section,
we discuss the challenges of deciding what to log, provenance of



Figure 4: The Speculative Execution concept from Sperrle et al [47].

logs, and the importance of context. These logs are used in the next
phases to update models and personalize visualizations.

3.1 The Art of Logging
Ultimately, logs are how the machine is able to capture the user’s
progress and forms the foundation for understanding user intent.
Therefore, ensuring that logs are being captured in a manner that
enables the personalization (accomplished in the next step) based
on this learned knowledge is important. A critical question to ask
is, How can we determine what the important interactions are?
Logging every pixel of mouse movement and timing every fractional
pause is certainly an unsustainable scale of data but guarantees
interaction coverage. In contrast, determining that an interaction
happened by waiting for a purposeful action such as a mouse click
or keystroke may miss important contextual information for that
action.

A structured means of considering this challenge which still has
inherent open questions is to determine What to log, when to log,
and how to log? “What to log” focuses on the type of interactions
being performed (e.g., clicks and keystrokes); not every interaction
may be important (e.g., hovering to see a tooltip). In contrast, “when
to log” refers to when such logs should be generated (e.g., only
tracking the first click on an object rather than all clicks). These two
considerations relate to a notion of scalability of the logs; capturing
every interaction means that the logs will become difficult to analyze
efficiently or effectively. Lastly, “how to log” centers on media to
gather or generate logs, such as eye tracking or audio recording.
These considerations dictate what information the system ultimately
is able to use in the personalization step and, by extension, how the
information can be used.

However, a single interaction does not convey much information;
a sequence of interactions can convey much more about the user’s
intent and their current goal. Therefore, being able to track interac-
tions over time is another important consideration. This points to
a notion of provenance of interactions and maintaining provenance
in the logs [15, 38], and leads to another open question: How can a
generic system retrieve high-level interactions from a sequence
of lower-level interactions? For example, the system can use prove-
nance data to learn which interactions are important or preferred.
With this information, the system can keep more detailed logs about
the important interactions [21], which can help dictate what can be
or should be learned from such interactions.

3.2 Contextualizing the Interaction
The idea of provenance leads to considering context in the interaction.
What is the user interacting with? What data is currently being
used or considered? What is the user’s current state in their

analysis process? These different facets of context help situate
the interaction within the user’s analysis process. Thus, context
can enable the system to personalize the visualization in the next
update based on the user’s current process as opposed to only the
user’s current state. This information about the user’s process may
include information such as what subset of data is most relevant to
the user and the scope of the user’s current process. In this sense,
logging (particularly with context) opens the “black box” of the user
to help the system better understand the user’s analysis process and
goals [35].

To assist with identifying context, the interactions can be taxono-
mized based on how or when they are used and what data they are be-
ing used with. Such a taxonomy would help identify what contextual
information should be captured alongside the interactions. If a no-
tion of context for an interaction can be predefined, then the system
can also begin determining what the user’s intent behind using that
interaction may be. Existing interaction taxonomies [3, 46, 50, 54]
would benefit from contextual extensions.

4 PERSONALIZATION

With the interaction logs, the system can attempt to infer the user’s
intent and provide an updated, personalized visualization to help
with the user’s analysis. This personalization can focus on user
characteristics, like personality and experience level, as well as their
intent. However, such personalization can be difficult to achieve
depending on the information that is logged and how indicative it is
towards these personalization goals. The system can communicate
this personalized new state back to the user, which will be described
in the next section.

4.1 Predicting User Intent
Predicting the intent of the user will help the system provide a vi-
sualization that is tailored to the user’s goals, but predicting their
intent is complicated. The user may also have multiple, parallel
analytical goals when exploring their data. Even if the user has a
single or primary goal, they will likely perform multiple interactions
to achieve that goal. How can a system deal with this cardinality
issue, appropriately mapping interaction sequences to the goals
of the user? In one proposed solution by Dowling et al. [16], the
system consists of a computational pipeline that maps specific sub-
sets of interactions to individual models the pipeline (see Fig. 5
for an example). This provides a structure to begin mapping user
interactions to overarching goals.

If the system had advance knowledge of which interactions denote
which user intents, it could develop a taxonomy or grouping of such
interactions to assist in learning these intents. Additionally, the
system can use a series of interactions to gain more information
about the user’s intent, making techniques such as human-in-the-
loop analytics particularly powerful since such techniques require
regular feedback from the user.

Semantic interaction takes this idea a step further. When per-
forming semantic interactions, the user is shielded from the details
of the underlying models, but as a result, it may be less clear how
their interactions influence the model and thereby influence future
visualizations. Though a number of systems that incorporate se-
mantic interactions have been implemented, it is still unclear What
is the optimal means of translating semantic interactions into
model updates? These systems run the gamut from making purely
heuristic updates to solving equations to determine precise parame-
ter updates. Understanding the underlying cognitive state of the user
can give some clues as to the intent of the user [1].

4.2 Personalization for User Personality
An alternative perspective on personalization is to utilize the user’s
personality traits. These personality traits can help further refine
the system’s response to user interactions to provide an improved



Figure 5: An example computational pipeline and system from Dowl-
ing et al [16], in which interactions with document relevance are
handled by the Relevance Model and interactions with document
positioning are handled by the WMDS Model.

Figure 6: After a system detects frustration, it can display suggested
interactions [33].

visualization and overall experience. For example, if the system
knows that the user is confused or frustrated [33], perhaps it can
guide the user toward a useful interaction or relevant data. An
example of such a suggested interaction is demonstrated in Fig. 6.
However, frustration is a short-term trait that can change with time;
other traits like expertise are longer-term. Knowing which traits are
long-term vs. short-term, How can a system learn these traits for
an individual user? Incorporating such knowledge in the system’s
personalization is an active challenge and open research direction.
Additionally, How can user personality characteristics best be
used to create better and more useful visualizations and user
experiences?

Further, personality traits may be characterized by different types
of users [20, 32, 41, 55]. For example, the system could leverage a
grammar of interactions for model tuning to assist expert users (e.g.,
model builders) in their goals. This grammar may be different for
other types of users, such as domain experts or managers.

4.3 Information that is Used / Should be Used

To accomplish the aforementioned goals for personalization, What
information do we need from logs to accomplish personalization
goals? Aboufoul et al. propose a method to identify the cognitive
processes of users based upon logged interactions [1] (Fig. 7). The
previously captured logs of interactions can help map user intents to
higher-level goals, but the system needs a taxonomy of interactions

Figure 7: Using user behaviors and interactions to predict correspond-
ing hidden mental states [1].

and intents. Such a taxonomy can therefore assist in linking interac-
tions and intents to manipulations of machine learning parameters.

The type of information that is logged directly affects the system’s
ability to infer from such a taxonomy. Here, we see the role of con-
text mentioned in Section 3.2 take effect. For example, the timing of
these interactions can provide insight into the user’s current thought
process or state in analysis. Additionally, if the user is focused on a
subset of data, the system could take this context into account as it
determines how best to personalize an updated visualization for the
user. Thus, by taking advantage of many sources of information, the
system can create a personalized updated visualization.

5 EXPLAINABLE AI (XAI)

After the system has updated and personalized the underlying mod-
els, the system should now provide an updated visualization and
corresponding explanation of the current state of underlying models.
Ideally, the system providing this feedback will enhance user trust
by opening the “black box” of machine learning, thereby enabling
the user to understand how the system reached this state. In this
section, we discuss the difficulty of providing understandable expla-
nations to the user. Once the user has received this feedback, they
can go on to properly evaluate these changes and their suitability in
their current analysis process. The communication from the system
and the interpretation from the user is a tightly-coupled and itera-
tive process, similar to that between the Interactive Visualization
and Capture Logs phases (see Fig. 1). Another IEEE VIS work-
shop, VISxAI1, was dedicated to Explainable AI. As such, there was
limited discussion at the MLUI 2018 workshop on this topic.

Figure 8: The relationship between suggested and assigned keywords
encoded in font size.

5.1 Providing Feedback to the User

This step of the loop focuses on how to open the “black box” of
the underlying machine learning algorithms to help the user better
understand the updates that the system has performed. Thus, this
step is equivalent to explainable artificial intelligence (XAI). Given
how rich this area of research is [13, 14, 19, 29, 39], we wish to
simply focus on components of XAI that are relevant to the user’s

1http://visxai.io/



Figure 9: An uncertainty ribbon showing the interquartile range of
perturbation pressure in a weather model simulation ensemble [40].

perspective on this step of the process. In particular, an open ques-
tion is, What types of feedback will benefit the user most? For
example, feedback can be given in terms of how specific model pa-
rameters changed (requiring expert knowledge of the model itself),
or feedback can be provided in more natural and intuitive manners
to the user (which may obscure details regarding how specific model
parameters have changed). As a result, two major considerations
in how to provide this feedback to the user are (1) how simple the
explanations should be and (2) how much background knowledge is
required to understand the explanations. For example, the literature
tagging application from Agarwal et al. [2] demonstrates a straight-
forward visual explanation of relationships between suggested and
assigned keywords through font size and hovering (Fig. 8).

5.2 Interpretability and Uncertainty
Related to these major considerations are two other facets of XAI: in-
terpretability and uncertainty. These facets of XAI focus on not just
how the user can understand the high-level changes that occurred
in the underlying models but also the implications and accuracy of
these changes. For example, in many dimension reduction tech-
niques, several similar projections may be produced with the same
parameters. If the user can understand this uncertainty in the projec-
tion, perhaps they can better understand more nuanced relationships
in the data, thereby creating a more detailed mental model of the data
that further aids their analysis process. However, displaying infor-
mation regarding uncertainty in a manner that is understandable or
interpretable to the user is a challenging task. As such, a number of
uncertainty visualization mechanisms have been designed, including
the uncertainty ribbons created by Sanyal et al [40] (Fig 9). Indeed,
How do users even interpret uncertainty? A system that commu-
nicates uncertainty in its output could be interpreted on a scale that
ranges between open and honest with its current knowledge and
useless because it will not provide a precise answer. Similar ideas
centered on the interpretability of the machine learning feedback are
also a growing area of research [10, 23, 49].

6 USER-IN-THE-LOOP EVALUATION

After the user has received feedback from the system regarding the
updated models, they can begin to evaluate the updated visualization
and its suitability in their current analysis process. This evaluation
process is tightly coupled with the feedback provided by the system

Figure 10: The experiment dashboard in HyperTuner [27].

and requires one or more metrics, which may be chosen by either
the system or the user. Choosing the correct metrics and how to
integrate them into human-in-the-loop systems is a challenge; these
metrics are ultimately determined by the user based on their current
goal, which may be difficult to externalize in an explicit or easily
measurable manner. After performing this evaluation on the updated
visualization’s suitability to their task, the user can interact with
the visualization once again to continue their analysis process and
provide additional feedback to the system.

6.1 How to Evaluate
The goal of evaluating the system is for the user to determine the
suitability of the updated visualization in their current analysis pro-
cess. How should a user properly evaluate the solutions that are
presented by the system? This evaluation will be influenced by
the feedback provided to the user in the previous step; however, this
evaluation will be based on user-defined metrics from their own
mental model for the visualization’s suitability. To support this
evaluation, the system should be designed to provide the evaluation
metrics that are more informative to the users. For example, if the
user’s various tasks mandate fast responses from the underlying
model, then the system could be built to provide a measurement of
how much performance could increase based on which subsets of
the data are used in the subsequent calculation (i.e., after the next
interaction). For example, HyperTuner [27] gives analysts the ability
to perform a hyperparameter search interactively, evaluating a collec-
tion of models in a sequence of experiments and passing the results
of predefined metrics back to the user (see Fig. 10). Further, Corbett
et al. [12] present a set of ten heuristics for evaluating interactive
machine learning systems.

In a similar vein, How should the user and the system handle
bias? If the user’s higher-level tasks or goals are concerned with
bias, the system may be built to provide metrics of bias as part of
its feedback. Alternatively, it may learn (through user interaction)
that bias is important to the user in their current evaluation and
therefore learns to provide metrics for bias. Similarly, users can
provide information on past models that they evaluated to be useful.
Therefore, the system can learn about its visualization’s suitability
in the user’s current analysis process through user interaction in the
next step (and subsequently logging and personalization).

6.2 Trust
Having a proper evaluation of the system may aid the system in es-
tablishing trust with the user. But, How does a user decide to trust
what they see? How the user evaluates the updated visualization
is reliant on how much the user trusts the update and associated
feedback from the previous step. To help the user trust the system



more, the system can learn what a user needs to trust the visualiza-
tion and feedback. Similarly, it is important for the system to know
or learn how and when breakdowns of trust occur to further guide
how it provides feedback to the user or personalizes visualizations.
Thus, a related questions is, Can a system learn what users need
in order to trust a system? In other words, trust may change over
time, meaning the system may have to re-evaluate the user’s trust as
the system progresses from one state to the next. This is a complex
and open research direction.

7 DISCUSSION

7.1 System Self-Correction, or How to Overcome Incor-
rect Inferences

One concept that spans multiple steps in our process is the idea of
a system self-correcting or overcoming incorrect inferences. This
concept targets the fact that trying to learn user intent (as is done
in the personalization step) may lead to incorrect conclusions. The
result of such incorrect conclusions is that the user will be provided
with an updated visualization that they evaluate as not being suitable
in their current analysis process. The system should find ways to
correct for these errors.

A method for this correction that we have already discussed is to
continue to try learning the intent from users based on their logged
interactions. However, how different might the updated visualization
be if the system assumed that it was likely wrong in trying to infer
the user’s intent? When the system learns that it was, in fact, wrong,
does it understand why its models failed to then know how to correct
for this error? For example, how does the system compensate for the
fact that it can understand relationships in the data (like correlation),
but users can understand other relationships as well (such as causal
relationships)? From a slightly different perspective, what is the
difference between a system knowing how to self-correct and a user
telling it to correct (through interaction)?

The optimal method to perform this correction is largely based
on the specific user in question. For example, expert users are more
likely to recognize and understand when the system is providing a
nonsensical visualization, whereas novice users may not. Similarly,
expert users can give more detailed feedback, such as what the
boundaries of the models should be and what the edge cases are.
Therefore, it is important for the system understand the type of user
and their personality as well as the data itself and which subsets of
the data the user is interested in.

While it is certainly important to look at examples of systems
that have a notion of self-correction, it is also useful to look at
examples of systems that do this poorly. A frequently-cited example
is Microsoft’s Clippy. Clippy has become known as an example of
what an AI should not be. The graphic popped up and interrupted
the user frequently, many times with incorrect assumptions about
what the user was currently trying to accomplish. Furthermore, it
never retained knowledge of whether it was right or wrong in trying
to learn the user’s intent, meaning Clippy never tried to learn user
intent differently or did any self-correction. Such mistakes, while
perhaps impossible to avoid entirely, should be understood so that
any issues the user encounters as a result can be mitigated.

7.2 Future Work / Limitations

The ideas presented here are a reflection of the research and discus-
sion that happened during the IEEE VIS 2018 Workshop on Machine
Learning from User Interaction for Visualization and Analytics. As
opposed to a thorough literature exploration of the phases in the
human-in-the-loop process (Fig. 1), we instead present an overview
of the common themes and ideas that arose from the workshop. Ad-
ditionally, we identify and discuss current research questions and
considerations of researchers at the workshop. Thus, a thorough
survey of interactive machine learning, human-in-the-loop analytic

systems, and human-centered machine learning literature could un-
cover issues and open questions is not discussed in this work, and
we anticipate that the future research directions in these areas will
be much richer than the set of ideas presented here.

8 CONCLUSION

Machine learning from user interaction can offer many new opportu-
nities for visualization and analytics, as demonstrated by the number
of open research questions. As such, much work remains to be
accomplished in this space, and initial research successes demon-
strate encouraging results. Overall, the workshop discussants came
to the clear conclusion that the visualization research community
should continue with future MLUI workshops and other publication,
outreach, education, funding, and community building initiatives for
this topic.
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