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The Perceptual Scalability of Visualization 

Beth Yost, Student Member, IEEE and Chris North 

Abstract— Larger, higher resolution displays can be used to increase the scalability of information visualizations. But just how 

much can scalability increase using larger displays before hitting human perceptual or cognitive limits? Are the same visualization 

techniques that are good on a single monitor also the techniques that are best when they are scaled up using large, high-resolution 

displays? To answer these questions we performed a controlled experiment on user performance time, accuracy, and subjective 

workload when scaling up data quantity with different space-time-attribute visualizations using a large, tiled display. Twelve college 

students used small multiples, embedded bar matrices, and embedded time-series graphs either on a 2 megapixel (Mp) display or 

with data scaled up using a 32 Mp tiled display. Participants performed various overview and detail tasks on geospatially-referenced 

multidimensional time-series data. Results showed that current designs are perceptually scalable because they result in a decrease 

in task completion time when normalized per number of data attributes along with no decrease in accuracy. It appears that, for the 

visualizations selected for this study, the relative comparison between designs is generally consistent between display sizes. 

However, results also suggest that encoding is more important on a smaller display while spatial grouping is more important on a 

larger display. Some suggestions for designers are provided based on our experience designing visualizations for large displays. 

Index Terms—Information visualization, large displays, empirical evaluation. 

 

1 INTRODUCTION 

Geospatial intelligence analysts, epidemiologists, sociologists, and 

biologists all share a common problem. They are all faced with 

trying to understand potentially massive datasets that involve 

integrating spatial, multidimensional, and time-series data. The 

intelligence analyst has to integrate different events occurring at 

various geographical locations over time to prevent a terrorist attack. 

The epidemiologist has to integrate medical data, weather patterns, 

and absenteeism rates over time from various locations to predict or 

explain the outbreak of a disease. The biologist must consider the 

relationship between a biological structure and various experimental 

results measured over time to understand interactions between genes. 

Information visualizations can provide insight into these datasets.  
Because of the size of many of these datasets, scalability is an 

important issue. Different visualizations are better able to graphically 
scale (require fewer pixels), which is especially important on typical 
desktop displays [1]. However, even designs that may not 
graphically scale well for a desktop display can be scaled up to a 
greater extent using displays that are larger and/or have a higher 
resolution (DPI), an example of such a display being used for 
visualization is shown in Fig. 1. As technology continues to decrease 
in cost, this is becoming a more viable option. Many places such as 
NASA and AT&T already have large display walls [2][3]. 
Theoretically, any dataset could be visualized, regardless of the 
visualization, on an infinite size display.  

Therefore, as larger displays are used for visualization, the 
scalability limit may be shifted away from the graphical scalability 
limits imposed by the number of pixels and toward human limits. 
The most obvious examples of this occur when the display exceeds a 
resolution such that the human eye cannot perceive the pixels 
regardless of distance from the display, and when the display size 
gets to be so large that significant physical movement would be 
required by a user (as an example, consider the Vietnam Veterans 
Memorial Wall in Washington, D.C. which is 493.5 feet (150.42 
meters) wide with more than 50,000 names inscribed that are each 
0.53 inches (1.35 cm) high [4]). As the width of a display increases 

so does the use of peripheral vision, which is less sensitive to color 
and more sensitive to motion [5]. In these cases, the limit is created 
by human abilities rather than caused by the display technology.  

 

 

Fig. 1. Bar matrices embedded on a map shown on a 32 Mp display. 

 
This leads to the question of perceptual scalability of 

visualizations for large displays. When the screen isn’t the limiting 
factor, just how much data can a person effectively perceive? As 
more data is shown with increasingly larger displays, do we hit a 
breaking point, the limits of visualization? And how will 
visualizations for large displays need to fundamentally differ from 
visualizations on desktop displays? How are basic visualization 
design principles different on large displays? In this paper, we report 
on an experiment that begins to answer these questions by comparing 
three different visualizations across two different display sizes - a 2 
Mp display and a 32 Mp display.  

2 RELATED WORK 

2.1 Large, High-Resolution Displays 

Most research on large, high-resolution displays has been about the 

technology used to create them.  Various papers have reported on 

techniques used to build the displays [6][7] and software such as 

Chromium and DMX that can be used to distribute graphics and 

create a single large desktop across multiple monitors [8][9][10].  A 

survey of these technologies can be found in [11]. While the 

technology behind the display is important for assuring a usable 

display in terms of how much delay is introduced during interaction, 

more relevant to our work are large display user studies. 
Large displays naturally lead to collaboration research because of 

size, cost, and privacy concerns.  Various papers have dealt with the 
use of large displays for collaboration [12][13][14].  In this work we 
focus on a single user.  Single user benefits have been shown for 
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physically larger low-resolution displays.  Even if the visual angle is 
maintained, simply having a physically larger display improved 
performance on spatial tasks [15] and there is evidence that the 
spatial performance gender gap is narrowed by the wider field of 
view provided on large displays [16].     

Current research on large, high-resolution displays for single 
users has also shown advantages. Both increased size and increased 
resolution appear to improve user performance when interacting with 
virtual environments [17]. People using a large, high-resolution 
display and physically interacting with it performed a simple search 
task faster than those using panning and zooming on a smaller 
display [18].  People were also faster at map reading tasks because of 
a reduction in the amount of virtual navigation [19]. Curving a large, 
high-resolution display further improved performance time by 
bringing the outermost pixels physically closer to the user [20]. 
However, research dealing specifically with visualization design on 
large displays is limited. 

2.2 Scalability of Visualizations 

Eick and Karr defined visual scalability as the ability of 
visualizations to effectively display large amounts of data. They 
structured the issue by providing the factors affecting it which 
include human perception, the visual metaphor, and the display as 
well as algorithms and computation [1]. Additionally, different 
techniques have been proposed for scaling up visualizations for a 
single monitor [21]. However, here our main focus is on the effect of 
using larger displays for increasing scalability.  

At least one author has questioned the usefulness of large, high-
resolution displays for visualization based on the limits of visual 
acuity [22]. Ware has also argued that a 4000x4000 display should 
be adequate for any visual task (not including collaboration) because 
it most efficiently matches ‘brain pixels’ to screen pixels [5]. 
However, little research has been conducted on user performance 
when using large displays to scale up visualizations. 

3 METHOD 

The goal of this study is to examine:  
 
1. How perceptually scalable are data visualizations for 

large displays? In other words, what happens to 

time/accuracy as both amount of data and number of pixels 

are increased? 

 

2. Are some designs more perceptually scalable than others? 

In other words, are relative comparisons between designs 

the same at different screen sizes? 

 
A visualization that is perceptually scalable should not result in 

an increase in task completion times when time is normalized to the 
amount of data. It also should not result in decreasing accuracy. 

A 2x3x7 mixed design was used. The independent variables were 
display size (with a proportional increase in data size), visualization 
design, and task respectively. Display size was treated as a between 
subjects variable while visualization and task were within subjects. 
Task completion time, accuracy, and subjective workload were 
recorded. Each independent variable is described in further detail 
throughout this section.  

3.1 Data 

The data used in this study was based on the U.S. Department of 
Justice, Bureau of Justice Statistics online Crime & Justice database 
(http://bjsdata.ojp.usdoj.gov/dataonline/).  It consisted of percentages 
of age, race, and gender demographics of homicide victims from 
1976-1989.  This made it a space-time-attribute dataset in that 
geospatially-referenced (different states) attributes (demographic 
groups) were reported over time (1976-1989). To prevent influence 
of previous knowledge and expectations, participants were not told 

where the data was from or that it was homicide related until 
completion of the study.  During the study they were only aware of 
the years, the demographic groups, and that each was associated with 
a value from 0-100.  The data was modified so that a singleton was 
the answer to every detail/find task and there was always a single 
definite answer.  For temporal overview tasks, the trends generally 
involved a 5-7 point increase or decrease each year with random 
variance added.  Because the display had a 10 to 3 aspect ratio, the 
top and bottom portions of the map were cropped to fit, leaving 28 
visible states.  State lines and state names were displayed.  

3.2 Visualizations 

Three different visualizations were used.  Of these three, two were 
space-centric designs using embedded visualizations and one was an 
attribute-centric design.  By space-centric we mean a design where 
the multidimensional data is overlaid onto a single large spatial 
structure, in this case a United States map.  By attribute-centric we 
mean a design where each attribute of the multidimensional data is 
on a separate spatial structure.  The attribute-centric design strategy 
is analogous to both small multiples [23] and visualization 
spreadsheets [24].    The differences are summarized in Table 1.  
There is a basic trade-off between scanning views when information 
is separated, and clutter when information is integrated [25]. 

 
 

Table 1. Basic Trade-offs Between Designs 

 Space-Centric Attribute-Centric 

Design 

Approach 

Single view, multiple 

embedded attributes 

Multiple views each with 

a single attribute 

Type of Visual 

Complexity 

Glyphs/visual 

encoding 

Number of views 

Size of View Full display size Display size / # of views 

 

3.2.1 Attribute-Centric Design: Small Multiples 

 [MULTS] A separate United States map was shown for each 
attribute (where an attribute is a time and demographic group).  On 
each map a single colored bar was displayed at each state location 
representing that state’s population value for that demographic group 
and year (see Fig. 4).  A global legend matching the bar color and 
height to the value was shown in the bottom left corner.   

 

3.2.2 Space-Centric Designs: Embedded Visualizations 

For the space-centric designs a single large map was displayed and 
each state had an embedded visualization of all of the attributes 
related to that state.  Two different methods of encoding the data 
were used: bar matrices and time series graphs. 

 
 
 
 
 
 

 

Fig. 2. BARS embedded visualization. 

 
 
 
 
 

 

Fig. 3. GRAPHS embedded visualization. 
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Embedded visualizations were used for the space-centric designs 
because in general, there is a reasonable limit of being able to 
represent about 8 distinct dimensions with complex glyphs [5].  
Additionally, bar matrices were used instead of a technique such as 
parallel coordinate plots so we could compare structure and attribute-
centric techniques using the same visual encoding.   
[BARS] Bar encoding: This visualization represented values as a 

matrix of colored bars at each geographic location.  It was created so 
the encoding was consistent with the MULTS visualization, but the 
bars were grouped by their geographic location rather than by their 
space/time pair (see Fig. 2). A global legend matching bar colors to 
values was shown in the bottom left.  
[GRAPHS] Line encoding: This was an attempt to improve on 

BARS by combining the y-axes and also increasing familiarity since 
many people have seen time series graphs before (see Fig. 3). 
Because of the difficulty matching colors, a local legend was 
included with each embedded time series graph.  The legend was 
created so that it matched the order of the last time point for that 
location.  However, while the legends were in a different order based 
on the data at each location, the colors used for each demographic 
group remained the same across locations.  

3.3  Display Size 

We used a 24 monitor tiled display (Fig. 1).  It was arranged in 8 

columns that were 3 monitors high.  Each monitor was a 17-inch 

diagonal LCD, 1280x1024 (~96 DPI) for a total resolution of 10,240 

x 3,072 or approximately 31.5 million pixels.  The total size of the 

display was roughly 9 feet wide and 3.5 feet high.   
Two different display conditions were used:  
 

1) An approximately 2 Mp 2-monitor portion of the display 

with 3 time points by 3 demographic groups (9 attributes) and 

252 total data points 

 

2) An approximately 32 Mp 24-monitor display with 14 time 

points by 14 demographic groups (196 attributes) and 5488 total 

data points.   

 
The data to screen size ratio is not a perfect match because some 

of the display was left blank to maintain an equal number of time 
points and demographic groups in the MULTS condition.  However, 
the size of each individual map in the MULTS condition was 
constant between screen sizes as well as the size of each of the bars 
and the text in the BARS condition.  An example of the scaled up 
version of the attribute-centric visualization (MULTS) is shown in 
Fig. 5, and examples of the embedded visualizations (BARS and 
GRAPHS) are shown in Fig. 6. 

 

 

 
Fig. 5. Small multiples (MULTS) in two display conditions. 

 

 

 

 
Fig. 6. Embedded visualizations (BARS, GRAPHS) in two display 
conditions. 

 

 

3.4 Tasks 

There were 7 types of tasks, 3 detail tasks and 4 overview tasks.  For 
each of these there was a task related to time, attributes, and space.  
Additionally, there was a spatiotemporal overview task.  The tasks 
are shown in Table 2.  A modified version of the task was used for 
each of the different visualizations and each type of task was 
performed twice with a given visualization.  This meant participants 
completed 3 visualization x 7 tasks x 2 trials = 42 tasks. 

 
 
 
 
 

Fig. 4. MULTS attribute-centric design with nine attributes on the 2 Mp display. 
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Table 2. Task Types and Examples 

(D = detail, O = overview, T = time, A = attribute, S = space) 

 Task Structure Example Task 

DT Find a year, given an 

attribute and location. 

Which year was the population of 

14-17 the highest in Kansas? 

DA Find an attribute, given a 

year and location.  

Which population was highest in 

South Dakota in 1976? 

DS Find a location, given a year 

and an attribute. 

Which state had the highest 

population of under 14 in 1977? 

OT Identify a trend across time 

for all attributes and 

locations. 

In general, populations have gone 

[up then down, down then up, up, 

down]? 

OA Identify a trend in attribute 

values for all years and 

locations. 

In general, most populations 

values are in the range [<25, 25-

50, 50-75, >75]? 

OS Identify a trend in location 

for all years and attributes. 

In general, populations are the 

highest in the [North, South, 

East, West]? 

OST Identify a relationship 

between locations and times 

for all attributes. 

In general, populations increase 

the fastest in the [North, South, 

East, West]? 

 

3.5 Procedure 

Participants were randomly assigned to either the 2 or 32 Mp display 
condition.  After signing a consent form, participants filled out a 
demographic form.  Participants in the 32 Mp condition were given a 
stool that could easily be moved, and in the 2 Mp condition they 
were given a regular office chair.  For the 2 Mp condition the second 
and third displays from the right in the middle row were used.  There 
was also a video camera placed overhead recording physical 
interaction with the display.   

Participants answered all questions with one of the visualizations 
before moving on to the next design.  There were three sets of tasks 
and datasets that were isomorphic.  The tasks were presented in the 
same order to each participant, but each used a different ordering of 
visualizations.  Detail tasks were asked before overview tasks and a 
modified version of the NASA TLX was used after each type of task.  
This asked users to rate the mental demand, physical demand, overall 
effort, perceived performance, and frustration for the previous tasks. 
Upon completion of the experiment the users were asked to 
subjectively compare visualizations. 

3.6 Participants 

There were 9 male and 3 female participants in this study.  Most (10) 
were undergraduate and graduate computer science majors.  
Participants were recruited from a graduate level information 
visualization class; hence they were relatively experienced 
visualization users.  No reimbursement was given for their voluntary 
participation. Participants were randomly assigned to either the 2 or 
32 Mp condition, with one female in the 32 Mp condition and two 
females in the 2 Mp condition.    

On a pre-experiment questionnaire participants were asked to rate 
their familiarity with computers, large displays, information 
visualization, and geographic information systems on a scale from 1-
5 with 1 being strongly disagree and 5 being strongly agree.  The 
mean familiarity ratings for the two groups of subjects are shown in 
Table 3.  None of the reported differences in familiarity between the 
2 and 32 Mp groups were statistically significant. 

 
Table 3. Mean Familiarity Ratings per Display Condition 

(1 = strongly disagree, 5 = strongly agree) 

 Computer Large 

Display 

Info Vis Geographic 

Information 

Systems 

2 Mp 4.83 4.25 4.42 3.75 

32 Mp 4.7 4.2 4.5 4.0 

 

4 RESULTS 

4.1 Performance Time 

The task completion times were first normalized by the number of 
data attributes so that a meaningful comparison between display 
sizes could be made.  This meant that the times in the 2 Mp 
condition were divided by 9 and the times in the 32 Mp condition 
were divided by 196 (the respective numbers of attributes).  Without 
normalizing the data it would be expected and unsurprising to see 
that all 32 Mp times were significantly longer than all 2 Mp times.  
Normalizing the data allowed for a fair comparison.  While the rest 
of the statistics are done using the normalized times, the actual mean 
task completion times are shown in Table 4. 

 
Table 4. Task Completion Time Means (seconds) 

 2 Mp 32 Mp 

 Mults Bars Graphs Mults Bars Graphs 

DT 6.85 5.31 4.64 33.10 11.31 22.64 

DA 5.59 3.96 4.13 18.84 15.84 11.50 

DS 3.34 18.75 21.35 16.04 63.27 53.08 

OT 14.17 8.40 4.86 27.96 11.39 6.07 

OA 6.78 5.89 6.22 21.15 17.59 18.76 

OS 3.99 2.05 7.44 18.94 7.82 17.36 

OST 12.79 6.39 5.43 29.04 12.96 11.54 

 
A 3-way mixed model ANOVA with visualization and task being 

within subjects factors and display size being a between subjects 
factor was used to analyze normalized task completion times per 
attribute.  There was a significant 3-way interaction between 
visualization, display size, and task.  Also relevant was a significant 
main effect by display size F(1,10)=54.67, p<0.001, such that the 
normalized time per attribute on the 32 Mp display (0.11s) was faster 
than on the 2 Mp display (0.84s).  Note that although the normalized 
time per attribute was faster, the actual task completion time was 
longer (see Fig. 7).  While there was more than a 20x increase in data 
size (from 9 to 196 attributes), there was less than a 3x increase in 
task completion times (from 7.54s to 21.25s).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Task completion times. 

 
Because of the significant 3-way interaction, we first looked for 

display size by visualization interactions for each task.  We next 
considered, for each display size, the visualization by task 
interactions.  Post-hoc analysis was done using Tukey’s HSD. Visual 
representations of all results are shown in Fig. 8 and Fig. 9. 
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Fig. 8. 2 Mp differences in time per attribute. Bars are 95% confidence 

intervals. Tasks with significant differences are marked with a ‘*’, and 

have non-overlapping bars. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. 32 Mp differences in time per attribute. Bars are 95% 

confidence intervals. Tasks with significant differences are marked 

with a ‘*’, and have non-overlapping bars. 

 
There were significant display size by visualization interactions 

for the DS task F(2,20)=11.49, p<0.001, the OT task F(2,20)=4.11, 
p=0.032, and the OS task F(2,20)=5.19, p=0.015.  These interactions 
are shown in Fig. 10, Fig. 11, and Fig. 12.  The space-
centric/embedded visualizations saw the most improvement on the 
DS task with the large display.  Graphs saw an 8.76x improvement 
and bars had a 6.45x improvement while mults only had a 4.54x 
improvement in time per attribute when moving from the 2 Mp to 32 
Mp display.  This is likely because finding a location when given a 
year and attribute was already perfectly suited for mults so there was 
less room for improvement.  The decrease in time for the embedded 
visualizations may be a result of users mentally filtering a greater 
portion of the information by remembering where the year x-
coordinate was with respect to an embedded visualization.  Some 
users reported remembering the relative location of an attribute and 
using that to filter as they scanned the embedded visualization for 
each state.  However, while graphs and bars did see a greater 
percentage of improvement, mults was still significantly faster than 
both bars and graphs for the DS task, regardless of display size (see 
Table 5 for p values).    

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10. Interaction between display and visualization for DS task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11. Interaction between display and visualization for OT task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12. Interaction between display and visualization for OS task. 

 
For identifying trends across time (OT), mults saw a great 

improvement on the large display (11x), but improved less than bars 
(16x) and graphs (17x).  However, while mults was only 
significantly slower than graphs on the small display, it was 
significantly slower than both graphs and bars on the large display.  
Again, the relative comparisons still held. 

For the OS task, which required identifying a spatial trend, 
graphs improved the most (9.34x compared to 5.72x for bars and 
4.59x for mults).  In the 2 Mp condition, bars were significantly 
faster than graphs for the OS task.  This was the only significant 
difference between the bar encoding and the line encoding.  
However, this difference was no longer significant in the 32 Mp 
condition.  This is also the only significant difference that appeared 
on the small display but not on the large display.  This suggests that 
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the encoding may play a greater role on the smaller display while the 
spatial grouping is of greater importance on the larger display. 

An additional observation from Table 5 is that for all three tasks 
involving time (DT, OT, and OST), the advantages of bars over 
mults did not show up on the small display but did appear on the 
large display.   This also suggests that the spatial grouping is of 
greater importance on the larger display and encoding on the smaller 
display since grouping was the only difference between these 
designs. 

 
Table 5. Significant Normalized Time Differences 

 2 Mp 32 Mp 

DT ----- MULTS(0.17s) 

>BARS(0.06s,p=0.0206) 

DA ----- ----- 

DS MULTS (0.37s) 

<BARS (2.08s, p=0.0042) 

<GRAPHS (2.37s, p=0.0014) 

MULTS(0.08s) 

<BARS (0.32s, p<0.0001) 

<GRAPHS (0.27s, p=0.0001) 

OT MULTS (1.57s) 

>GRAPHS (0.54s), p=0.0237) 

MULTS (0.14s) 

>BARS (0.06s, p=0.0035) 

>GRAPHS (0.03s, p=0.0005) 

OA ----- ----- 

OS BARS (0.23s) 

<GRAPHS (0.83s, p=0.0153) 

----- 

OST ----- MULTS(0.15s) 

>BARS (0.07s,p=0.0063) 

>GRAPHS (0.06s,p=0.0036) 

 

4.2 Accuracy 

In general, users were able to correctly answer almost all of the 
questions; the actual numbers are shown in Table 6.  For accuracy 
there was a visualization by task interaction (p=0.001) along with a 
main effect by visualization and main effect by task, but no other 
interactions.  The difference between display sizes was not 
significant (p=0.312).  The only significant differences occurred in 
task DS such that graphs (67%) were significantly less accurate than 
both bars (92%, p=0.0192) and mults (100%, p=0.0019).  This was 
likely the result of the integration of y-axes and perhaps difficulty in 
distinguishing colors. 

 
 

Table 6. Total Correct Answers (12 max) 

 2 Mp 32 Mp 

 Mults Bars Graphs Mults Bars Graphs 

DT 12 12 10 9 12 8 

DA 12 12 11 11 12 12 

DS 12 10 7 12 12 9 

OT 11 11 12 10 12 11 

OA 12 12 12 11 11 11 

OS 12 12 12 12 12 10 

OST 12 12 12 10 12 12 

 
 

4.3 Task Workload 

Users reported mental demand, physical demand, effort, perceived 
performance, and frustration on rating scales from 1 to 10 after all 
detail tasks with each visualization and again after all overview tasks 
with each visualization.  A MANOVA showed all interactions and 
main effects as significant. Therefore, univariate analysis was done 
followed by post-hoc analysis using Tukey’s HSD for individual 
comparisons.  The mean scores for each condition are shown in 
Table 7.  

 
 

 

Table 7. Task Workload Means 

DETAIL TASKS 

 2 Mp 32 Mp 

 Mults Bars Graphs Mults Bars Graphs 

Mental 3.08 3.83 7.00 6.08 5.42 7.50 

Physical 3.00 3.00 4.08 8.00 6.67 5.92 

Effort 3.42 3.42 6.08 7.08 6.33 7.42 

Performance 8.17 7.50 6.67 8.25 8.25 7.75 

Frustration 0.83 1.00 3.75 5.67 3.92 5.08 

OVERVIEW TASKS 

 2 Mp 32 Mp 

 Mults Bars Graphs Mults Bars Graphs 

Mental 4.75 3.17 3.42 7.25 4.67 4.42 

Physical 3.08 2.25 3.33 5.75 2.92 2.67 

Effort 4.67 2.75 3.17 7.08 3.92 3.58 

Performance 7.50 8.00 7.75 6.67 8.92 8.25 

Frustration 1.50 0.75 1.08 5.58 2.25 2.83 

 
 
Overall, the large display users were significantly more frustrated 

(4.22 vs. 1.49, p=0.019) and reported more physical demand (5.32 
vs. 3.13, p=0.055) than the small display users (see Fig. 13).  The 
only visualization specific differences that were seen were between 
mults on the different display sizes.  Users in the large display 
condition reported more mental demand (6.08 vs. 3.08, p=0.043) and 
physical demand (6.88 vs. 3.04, p=0.007) for mults than users in the 
small display condition.  Within the small display conditions, users 
reported more physical demand with graphs (3.71) than with bars 
(2.63, p=0.0024).  Within the large display condition, users reported 
more physical demand from mults (6.88) than graphs (4.29, 
p=0.0272). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 13. Workload on display sizes. Significant differences have a ‘*’. 

 
There were also some differences between visualizations based 

on the task.  For detail tasks, users reported more mental demand 
with graphs (7.25) than both bars (4.63, p<0.001) and mults (4.85, 
<0.001) as well as more effort with graphs (6.75) compared to both 
bars (4.88, p=0.0116) and mults (5.25, p=0.0468).  For overview 
tasks, mults required more effort (5.88 vs 3.33 for bars and 3.38 for 
graphs, p<0.001), had a lower perceived performance compared to 
bars (7.08 vs. 8.46 for bars, p=0.0256) and also had higher 
frustration levels (3.45 vs. 1.5 for bars, p=0.03).  These findings 
match the proximity compatibility principle [25] in that the 
embedded time series graphs required more mental demand and 
effort for detail tasks – where mental separation would need to occur, 
and for overview tasks mults required more effort, resulted in more 
frustration, and lower perceived performance – tasks where 
integration was necessary. 
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4.4 User Preference 

User preference was different based on the display size (see Fig. 14 
and Fig. 15).  In the 2 Mp condition, four of five users preferred 
mults followed by bars and then graphs (the 6th user gave a circular 
answer).   However, in the 32 Mp condition four of five users 
preferred bars first followed by graphs and then mults.  Users always 
preferred bars to graphs, but mults was the most preferred on the 
smaller display and the least preferred on the large display.  
Therefore user preference for visualizations was different based on 
the display size/amount of data. 

 

 

Fig. 14. Frequency of user visualization preference for 2 Mp display 

(rank of 1=best, 3=worst). 

 

Fig. 15. Frequency of user visualization preference for 32 Mp display. 

5 DISCUSSION 

As large displays continue to decrease in cost, we must continue to 
explore how various visualizations scale for these large displays.  In 
this study, although overall task time increased, the time per number 
of attributes actually decreased. There was more than a 20x increase 
in data size for the large display, but less than a 3x increase in task 
completion times.  This means that overall, across tasks and 
visualizations, these designs were perceptually scalable in terms of 
time.  We also did not find a significant decrease in accuracy on the 
large display, with a change only from 95% to 92%, again 
suggesting these designs are perceptually scalable.  Despite having 
32 Mp, we did not hit the limits of visualization.  Users were able to 
successfully physically navigate to complete detail tasks and were 
also able to gain a large overview and perceptually integrate 
information across a display almost 9 feet in width.   

It also appears that in general, based on time and accuracy, the 
relative comparison of these three designs was consistent across 
display sizes.  However, there were some differences.  The fact that 
the only time difference between bars and graphs disappeared on the 
large display, and that the difference between mults and bars showed 
up on almost every task on the large display suggests that the line vs. 
bar encoding was most important on the small display.  This matches 
previous research suggesting that visual encoding can be more 
important than grouping on small displays [26].  However, as the 
visualization was scaled up using the display, the spatial grouping 
became much more important.  This spatial grouping likely increased 
visual aggregation and reduced the amount of physical navigation. 
This was echoed both by the shift in user preference from mults on 
the 2 Mp display to bars on the 32 Mp display and also by the 

significant increase with the mults design in physical and mental 
effort.  Results also support the proximity compatibility principle 
[25] and go against the idea that small multiples might show the 
most benefit when more than 16 views are displayed [27]. This 
shows great promise for using embedded visualizations for 
geospatially-referenced data on large displays. 

While many open issues regarding information visualization on 
large, high-resolution displays remain, there were some basic 
observations from this study and from the pilot tests that may prove 
useful for designers.  In general, consider how various encodings 
will be affected by viewing distance and angle.  As an example, 
the size of bars will be affected by the distance from a display.  In 
our pilot study, users preferred the colored bars to plain white bars 
because it was very hard to compare the size of bars from one side of 
the display to the other, but color could still easily be compared.  As 
another example, the orientation of a glyph may be affected by the 
viewing angle, therefore these are not good choices.  However, if the 
displays are of good quality then color may not be affected, making 
it a good choice.  Our use of dual encoding of color and size seemed 
an effective compromise. 

A second suggestion is that if you want to use a large display to 
scale a visualization, choose a visualization with scalable 
graphical encodings.  For example, 3D occlusion problems and the 
number of different perceivable colors cannot be improved with a 
larger display, so these graphical encodings are not scalable.  With 
respect to our study, using 14 demographic groups was already 
pushing the limits of embedded time series graphs because of the 
slight difference in color used to encode each line.  On the other 
hand, the bar design does use scalable graphical encodings because it 
can be scaled infinitely as long as there are enough pixels. 

A third observation is that even if legends and labels are larger, as 
a user physically navigates the display they often lose sight of that 
that information.  Therefore, consider having both local and global 
legends on a large display.  The local legends on the graphs meant 
that users had to walk close to the display to read the legend before 
moving further back to get an overview.  If they had a global legend 
then that would not have been necessary.  Bars and mults only had 
global legends, which meant sometimes users had to step back to see 
the global legend in the middle of doing a detail task.  Additionally, 
the demographic group labels and the year labels were placed along 
the left and the bottom for the mults design.  Some users lost track of 
which column or row they were viewing.  Therefore, it would have 
been useful to place labels at multiple strategic locations.  
Carefully placing labels may help users maintain physical context. 

6 CONCLUSION 

In this paper we reported the results of a study comparing three 
different visualizations on both a small and large display.  Results 
showed that the designs used were perceptually scalable – not 
resulting in an increase in normalized performance time or a 
significant decrease in accuracy.  Accuracy only decreased from 
95% to 92%, and a 20x increase in data resulted in only a 3x increase 
in task completion times.  Using a combination of perceptual 
abilities and physical navigation people were able to effectively use a 
32 Mp display (2x Ware’s proposed 16 Mp display [5]).   

Results also showed that relative comparison between designs 
with respect to time and accuracy was typically the same regardless 
of the display size.  However, based on user preference and 
workload, graphical encoding seems to be more important with less 
data on a small display whereas spatial grouping seems to be more 
important with more data on a large display.  On the large display, 
both embedded visualization designs were generally significantly 
faster than small multiples.  User preferences also switched on large 
displays, with most users preferring both of the embedded designs.  
In addition to the results of the study, we presented some of our 
observations from designing visualizations for large displays. 
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7 FUTURE WORK 

In the future we would like to explore how the results would be 
affected if we had increased the number of spatial locations as 
opposed to the number of data attributes.  Additionally, we would 
like to explore interactive visualizations with larger datasets and on 
larger high-resolution displays.  Basic issues for interaction on large 
displays such as what types of input devices best allow you to 
interact and the discovery of new techniques [28][29] have been 
explored.  Less attention has been given to how visualization specific 
interactions such as brushing and linking, overview, and navigation 
techniques will need to be modified for these displays.  Because of 
the use of peripheral vision, should propagated changes in linked 
views be delayed until you look at that view or perhaps occur more 
gradually?  How might we use cascading overviews or adjust the size 
of overview and detail views with a very large display?  In addition 
to interaction related issue there are many basic perceptual issues 
that remain to be answered. Is the order of effectiveness of graphical 
encoding [30][31] the same on a large display as on a smaller 
display?  How does visual aggregation compare to computational 
aggregation and when does it become advantageous simply because 
it reduces visual complexity?  Those are just a few of the many open 
issues with respect to designing visualizations for these displays.   
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