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Abstract—Representing branching and comparative analyses
in computational notebooks is complicated by the 1-dimensional
(1D), top-down list arrangement of cells. Given the ubiquity of
these and other non-linear features, their importance to analysis
and narrative, and the struggles current 1D computational
notebooks have, enabling organization of computational notebook
cells in 2 dimensions (2D) may prove valuable. We investigated
whether and how users would organize cells in such a ‘“2D
Computational Notebook” through a user study and gathered
feedback from participants through a follow-up survey and
optional interviews. Through the user study, we found 3 main
design patterns for arranging notebook cells in 2D: Linear, Multi-
Column, and Workboard. Through the survey and interviews,
we found that users see potential value in 2D Computational
Notebooks for branching and comparative analyses, but the
expansion from 1D to 2D may necessitate additional navigational
and organizational aids.

Index Terms—programming, data science, software, computa-
tional notebooks

I. INTRODUCTION

Computational notebooks are popular tools for data analysis
and presentation [1]. Since open-sourced notebooks such as
Jupyter [2] emerged, millions of users from diverse fields have
adopted computational notebooks for their work [3]; entire
research communities, such as the astronomy community,
adopted computational notebooks for their work [4]. Com-
putational notebooks combine code, visualizations, and text
into a single document, which enables analysts to construct
and present a computational narrative [3], a reproducible,
collaboratively created narrative document that tells a story for
a particular set of audiences and contexts [5]. Computational
notebooks also allow interleaving of results with code and
in-place editing of code, which empowers analysts during the
iterative exploratory process of data analysis [3], [6] to quickly
test and refine models on their data and see the results.
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Current computational notebooks are not without limita-
tions; one such limitation is how they handle non-linearity
in both analysis and narrative presentation given the 1-
dimensional (1D) layout of cells. Rule, Tabard, and Hollan [3]
view support for non-linear narratives as a design opportunity
for computational notebooks. We identify two common types
of non-linearity: different operations on same data, and same
operations on different data. The former may occur when
an analyst tries different models, tweaks parameters, and
compares results to iteratively refine their work on a single
dataset. This may be valuable for presentation to a technical
audience interested in why a certain algorithm was used
instead of others. It can also occur when plotting different
graphs of the data for exploration or analysis. The latter may
occur when an analyst performs the same analytic steps on
two different sets of data, such as separate subsets of a single,
larger dataset; this may be valuable for comparing results.

Another limitation of current computational notebooks is
navigating long notebooks which contain many cells. The
vertical, 1D layout of a notebook, traversed through scrolling
up and down, is tedious to navigate with a long notebook;
finding a code fragment, a common task for debugging, is
difficult without memory of its location. To address this
issue, some authors take advantage of large screen space by
opening the same computational notebook in multiple side-by-
side windows, with each one showing a different part of the
notebook. While this method is helpful, its necessity suggests
a need for improvement.

To better represent non-linearity and improve navigation in
longer notebooks, the authors propose organizing computa-
tional notebook cells in 2 dimensions (2D); instead of ordering
cells from top to bottom as an ordered list, a 2D environment
may empower users to address non-linear narratives with
non-linear configurations and enable additional methods of
navigation in addition to scrolling up and down. The additional
space may also empower users to encode more meaning into



the space, much like how analysts used additional screen space
in studies of Space to Think [7], [8].

This paper contributes to ongoing research on computational
notebooks through the novel idea of a 2D Computational
Notebook, an exploration of the potential use and value of
2D space for organizing computational notebook cells, as well
as requirements gathering and considerations for the potential
design of 2D notebooks.

To accomplish this, we focus on the following research
questions:

1) Given a notebook with non-linear features, would users
utilize 2D space in their notebook organization?

2) How would users organize the notebook cells in 2D
space?

3) How would users encode the run order of cells into the
notebook layout in 2D space?

4) What strengths and weaknesses might 2D notebooks
have compared to 1D notebooks?

5) Would users be interested in using 2D computational
notebooks in their work?

To answer these questions, we conducted a study where
users organized images of computational notebook cells on a
Miro board [9], an online infinite 2D canvas website, which
was followed up by a survey and an optional interview. We
learned that users utilized 2D space for computational note-
books with a few distinct approaches, each enabling intuitive
understanding of the desired run order. These approaches
could lead to a set of common design patterns or templates
for future notebook tools. Furthermore, we found that 2D
computational notebooks may benefit tasks and narratives with
comparative analysis or branching paths, but that navigation
and cell organization may continue to be tedious without
effective aids.

II. BACKGROUND AND RELATED WORKS

This research builds on three bodies of related work: the
design of computational notebooks, computational narratives,
and the use of space in analysis.

A. Design of Computational Notebooks

The design of today’s computational notebooks, such as
Jupyter Notebooks [2], was influenced by Knuth’s concept of
literate programming [10], in which an author ”weaves human
language with live code and the results of the code” to produce
a computational narrative [5]. To this end, computational
notebooks address diverse challenges of data analysis. Support
for incremental and iterative analysis, rich explanation of an
analyst’s thoughts and processes, and sharing of code, text,
and visuals in a single document [3] make computational
notebooks an excellent tool for data analysis.

However, computational notebooks do present some strug-
gles, or pain points, for users; Chattopadhyay et al. [11]
list several pain points for users of computational notebooks,
which includes exploration and analysis.

For example, one major struggle with the iterative process of
exploration and analysis is how messy notebooks can become

[3], [12], [13]. Analysts have described notebooks and their
code as “ad hoc” or “throw-away” [6], [14] and in need of
cleaning [3] before being ready for presentation. Part of the
reason for this messiness, as found by Kery et al. [13] is that
data analysts, as part of the process of exploring alternatives,
replicate code across many cells that must later be refactored,
a process that is both tedious and error-prone [13], [15]. In
short, the process of exploration and analysis appears at times
to run counter to the goal of developing a clean and coherent
computational narrative.

Some proposed solutions to this issue include enabling
forking and backtracking of stateful alternatives [15] and
version control systems for computational notebooks [16],
[17]. Of note is that Weinman’s work on forking [15] does
introduce a constrained use of 2D space, which may support
the idea of using 2D to address computational notebook issues.

Another approach to addressing such issues for computa-
tional notebooks is the development of best practices such
as documenting every exploration, as Rule et al. [3], [18]
encouraged and proposed. Support for following best practices
can resolve many issues; we support such work to identify and
encourage use of best practices, and do not think such guide-
lines detract from the potential of 2D space for organizing
computational notebooks. Rather, we suggest that these two
solutions are complementary, and appropriate use of 2D space
could itself be a form of future best practice.

B. Computational Narratives

One of the strengths of computational notebooks are their
ability to combine code, text, and visualizations to form com-
putational narratives, a series of ordered and connected events
related to computational analyses; this ability is useful because
humans process information better as stories or narratives [3].

As noted by Perez & Granger [5], computational narratives
are developed for a particular set of audiences and contexts;
given different audiences and contexts, different storytelling
strategies may be necessary [19]. For an audience that just
wants to see the results of an analysis, a completely linear
narrative with only those cells relevant to the final outputs
can make sense. However, some tasks that such an audience
may want to do, such as comparing results between different
subsets, may benefit from a non-linear narrative structure.
Weinman et al. [15] found that “the ability to proximally
compare” different visual representations of data was critical
to analysis processes. In addition, an audience that wants to
understand and evaluate the entire analytic process may find
a non-linear narrative structure better for the task, as it can
expose alternatives tried and compared to the final results
used, enhancing reproducibility. Weinman et al. [15] found
that analysts used forking paths to compare results of machine
learning models as part of their exploratory analysis; while
their work investigated forking as an analysis tool, the ability
to see what options an analyst tried, as well as the results
of said options in a proximally comparable way, could be a
powerful feature of non-linear narratives structures.



C. Utilizing Space in Analysis

Enabling users to effectively utilize space for analysis tasks
is an ongoing area of research. Two relevant research threads
in this area include Space to Think and Code Bubbles.

1) Space to Think: Andrews, Endert, and North [7] studied
the use of large, high-resolution displays for sensemaking,
and found that the additional space provided by the displays
aided users in two particular ways: first, it enabled users to
externalize memory, which allowed users to focus more on the
task at hand rather than on recalling important info; second,
it enabled users to encode meaning into the space, such as by
clustering similar information together. This work has since
been expanded through study of the additional space provided
by virtual reality devices [8], as well as collaborative uses of
large spaces through increased and varied content contribution
[20].

2) Code Bubbles and VisSnippets: A similar line of re-
search exploring the use of space in programming would be
Code Bubbles by Bragdon et al. [21] and VisSnippets by
Burks, Renambot, and Johnson [22].

Code Bubbles [21] is an approach for integrated develop-
ment environments (IDEs) that uses the bubble metaphor; a
bubble is an interactive and editable fragment of such items
as code, documentation, or debugging displays. In addition,
bubbles can be clustered together to represent a “concurrently
visible working set.” Their work found similar benefits for the
expanded use of space in Code Bubbles as Andrews, Endert,
and North [7] found for the use of large displays. Specifically,
Bragdon et al. [21] found that developers appreciated being
able to externalize information from their “limited working
memory” through “bubbles and annotations.” In addition, they
found that the ability to position bubbles strategically made
developers more efficient through the use of “spatial proximity
and spatial memory.”

VisSnippets [22] is a system designed for collaborative data
exploration that uses blocks of reusable code called ”snippets”
connected via arrows to form a 2D visual dataflow display;
this system empowers quick exploration of “complementary
and contrasting analyses” through reuse of snippets a group
has made over time.

Both Code Bubbles and VisSnippets design 2D spaces for
coding; our work expands by considering the use of 2D space
for computational narratives and studying its usage.

III. METHODOLOGY

To answer our research questions, we designed a study
consisting of a screening questionnaire, a user study task, a
post-task survey, and an optional interview. We designed the
user study task to answer research questions 1-3; participants
organized cells of a computational notebook using a layout
strategy of their choosing in this part. For the post-task survey
and optional interview, we focused on research questions 4
and 5.

A. Recruitment and Screening

We recruited 50 participants via academic listservs of
students and faculty from two universities. Each participant
completed a screening questionnaire asking whether they had
experience with both Python and computational notebooks
such as Jupyter. We selected 43 participants with experience in
both tools to continue; 25 volunteered to complete the study.
Next, we invited 6 participants to take part in a semi-structured
interview; those invited used different strategies in their 2D
computational notebook cell layout or provided thoughtful
survey responses worth exploring further. Of those invited,
5 were interviewed.

B. User Study Task

For this study, we created a computational notebook that
consists of an analysis of publicly available COVID-19 data;
the notebook focused on Virginia overall and two of its
counties: Fairfax and Henrico. Knowledge of Virginia was
neither required nor expected from participants. The analysis
contained several non-linear features; it included three differ-
ent charts for Virginia overall, showing the same data with
different analyses, while the two counties had the same anal-
yses done with different data; each county had 3 graphs, 2 of
which were predictive. Furthermore, the analysis was divided
into sections, with markdown cells noting the beginning of
each section.

Each notebook cell (code cell along with its output view)
was converted into an image and randomly placed into a
jumbled pile at the center of a Miro Board [9]. Miro Boards
provide an infinite 2D canvas that allow users to move images
around at will, connect them with arrows, create labelled
frames that images can be put onto, and add sticky notes with
text, among other features. We chose to use Miro Boards in
part because of these additional features that are not currently
present in computational notebooks to explore what kinds of
additional visual features might be relevant to the design and
implementation of 2D computational notebooks.
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Fig. 1. User Study Task Starting Point



We gave each participant access to a personal Miro Board
arranged as seen in Figure 1 and instructed them to take no
more than 40 minutes to complete the user study task described
below:

The Miro Board has a collection of 26 cells from
a Jupyter Notebook for analysis of COVID-19 data
scrambled into a pile. Your task is to take the cells
in the notebook and organize them in 2D space as
if you were going to present the notebook layout
to a new hire on your data analysis dev team
who is looking to learn not only the results of the
analysis, but also the process through which the
results were developed, and will continue developing
the notebook with you. You may not only move cells
around, but also use whatever tools the Miro Board
provides that help you make a compelling, useful
layout.

We designed this prompt to set presentation and develop-
ment as key considerations for participants as they created
their visual layouts. Unfortunately, due to COVID-19 and our
desire to enable as many participants to perform the study
as possible, we were unable to view participants while they
completed the task.

To analyze the visual layouts created, we accumulated all
of the layouts created by participants along with their mini-
maps and put them into a single Miro board for comparison
and pattern finding. Comparison and pattern finding was done
with an open coding approach with multiple coders.

C. Post-Task Survey

We instructed participants to complete the post-task survey
after they finished the user study task. This survey consisted
of 19 seven-point Likert-Scale (strongly disagree to strongly
agree) questions investigating participants’ attitudes towards
the potential of 2D Computational Notebooks, as well as
several qualitative questions asking about the visual layout
they created, why they created the layout they did, and
their initial thoughts on the potential of 2D Computational
Notebooks. We analyzed the qualitative data using open coding
to identify themes, and the Likert-Scale data using frequencies
for each choice; these frequencies were then used to calculate
the mean and median responses. Since Likert-Scale data is
technically ordinal and thus not truly quantitative, we include
the median as a potentially more reliable measure.

D. Semi-Structured Interviews

For the interviews, we delved further into how each partici-
pant organized their layout, the reasoning behind their layout,
and potential benefits and tradeoffs of 2D computational
notebooks as compared to 1D computational notebooks. Each
interview lasted 45 minutes to 1 hour. We transcribed each
interview and used open coding to identify themes.

IV. RESULTS
A. User Study Task Results

Through analyzing the 25 different visual layouts, summa-
rized in Figure 2, we answered research questions 1-3. Most

participants utilized 2D space in their layout, with the layouts
grouped into 3 distinct approaches. Furthermore, the authors
easily interpreted the run order of all participants’ layouts
except for the layout by participant P09.

1) High-Level Design Patterns: We identified 3 high-level
design patterns to organizing the notebook cells in 2D: Linear
(7 instances), Multi-Column (8 instances), and Workboard (10
instances). Here we describe each of these approaches and
their subgroups, where applicable.

The Linear design pattern is defined by its use of a single
column of cells as the backbone of the computational notebook
layout. This approach had three subgroups: Traditional, Split-
Cell, and Split-Column. Traditional Linear (4 instances) is
equivalent to a 1D Computational Notebook in layout. Split-
Cell Linear (2 instances), as seen in Figure 3 is nearly
equivalent to a 1D Computational Notebook except that at least
1 cell in the column is “split” into a row of cells; this is similar
to the Split Cells extension [23] for Jupyter Notebooks except
that the row of cells can extend beyond the width of one cell.
Split-Column Linear (1 instance) starts with a single column
as the backbone before splitting into two or more columns,
much like Fork-It [15].

The run order of Linear layouts was always top-to-bottom,
with Split Cells and Split Columns being run left-to-right.
Depending on the cells or columns split, however, running in
any order or in parallel could be possible and may represent
cognitive branching.

The Multi-Column design pattern arranged cells in
columns that were ordered from left to right. The linear
columns represented “chunks” or sections from the overall
linear notebook, each chunk with its own train of thought.
Unlike the Split-Column Linear approach, all columns are top
aligned, starting at roughly the same y position at the top of
their layout, instead of branching off from an initial column.
As an exception to this rule, 5 users aligned two columns
containing the county analyses, thus pushing the second county
column slightly lower due to the markdown cells at the top
of the first (as in Fig 4). The run order for this approach was
universally column-major order: top-to-bottom linear within
each column, and left-to-right flow of columns.

The Workboard design pattern involved more complex 2D
layouts than the Linear and Multi-Column design patterns,
and had two sub-groups: Grouped Combinations and Directed
Graphs. The Grouped Combinations (6 instances) organize the
notebook cells into sections, which may differ in strategy (e.g.
Linear, Multi-Column), and the sections are also organized
according to a strategy. For example, sections may be arranged
in a linear, top-down fashion while each section adopts a
multi-column, left-to-right approach. Participant P09, the only
participant whose run order was not intuitive, was classified as
part of this; they appeared to arrange sections in a top-down
manner and may have meant for sections to run in a clockwise
rotational manner, starting with the upper left code cell. The
Directed Graph approach (4 instances), on the other hand, uses
arrows to develop more complex, flowchart-like run orders (as
in Fig 5). These flows are similar to node-link diagrams which
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of Suzuki et al. with block-based programming [24]. Each of
the 4 Directed Graph instances used a top-down progression,
with 2 also sticking to a left-to-right progression.

2) Representations of Non-Linearity: In addition to analyz-
ing the different visual layout approaches, we also took note
of whether and how participants utilized 2D space to display
non-linear features, such as different data, same analysis, of
the computational notebook. Of the 25 participants’ layouts, 20
layouts appeared to utilize the 2D space for at least one kind
of non-linearity mentioned in this paper’s introduction. For

Fig. 5. Example Workboard approach, with arrows uses to represent branching
flow as a DAG.

different data, same analysis, 15 layouts aligned similar charts
for the Fairfax and Henrico data subsets horizontally, like in
Figure 4 and 4 layouts aligned these charts vertically, like in
Figure 3. Those who used the Multi-Column design pattern
almost universally aligned the charts horizontally; the only
layout who did not do this kept the analyses in one column.




These layouts may have utilized the space in this way to ease
comparisons between Fairfax and Henrico data. For same data,
different analysis, 4 layouts aligned the charts for all Virginia
counties horizontally, like in Figure 3.
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3) Low-Level Features: In addition to analyzing high-level
strategies, we also noted use of certain low-level features, as
seen in Figure 6. Common low-level features included columns
of cells, rows of cells, and arrows to denote flow.

Beyond that, the authors noticed several features used for
grouping related cells, such as boxes (or frames) around
similar cells or spatial clustering of similar cells in the same
general area, with clusters separated by white space. A few
participants even used Miro’s [9] virtual sticky notes feature
to label different clustered sections or make notes to help
others understand their layout. Finally, two participants appear
to have left a few cells apart from the rest in 2D space; while
this may be due to the participants deciding to stop after 40
minutes without finishing, it could also illustrate the use of
empty 2D space as a form of scratch space or potential discard
pile for cells that may not be deemed relevant.

In terms of run order strategies, we noted two approaches:
explicit run order identification, and implicit run order iden-
tification. Explicit run order identification involves the use
of arrows between cells to clearly note the run order, while
implicit run order identification relied on intuitive rules, such
as top-down execution of cells (or collections of cells) in a
column and left-right execution in a row.

As for the use of arrows, we further delved into features
present with those arrows. One participant labeled their arrows
to denote the order in which multiple adjacent arrows were
run. In addition, several different types of arrow usage were
present. One-to-one arrows (8 instances) had one arrow come
from a starting cell and going into an ending cell without
any adjacent arrows going into the ending cell or coming
out from the starting cell. One-to-many arrows (5 instances)
had multiple arrows come from a starting cell and go to
multiple different ending cells. Finally, many-to-one arrows
(3 instances) had multiple arrows, each coming from different
starting cells, go into one ending cell. There were no instances
of many-to-many arrows.

B. Post-Task Survey Likert-Scale Results

Overall, participants rated the idea of 2D notebooks pos-
itively in comparison to their prior experience with 1D
notebooks. All survey questions had at least a majority of

Fig. 7. Survey results with Likert-scale frequencies. Darker color indicates
higher values.

votes on the positive side of the Likert scale. According
to participants’ survey responses, summarized in Figure 7,
the tasks that are most likely to be facilitated by a 2D
computational notebook are comparison activities, especially
comparing results with different model parameters, different
data, or different visualizations. However, some participants
expressed skepticism about the usability of 2D computational
notebooks for debugging, locating particular pieces of code,
and performing analysis and development. Some participants
doubted that navigation would be easier to perform in the 2D
space.

C. Qualitative Survey Questions & Interview Results

We analyzed participants’ qualitative survey and interview
responses, and found several themes. We grouped these themes
into several categories: 2D Notebook Benefits, 2D Notebook
Challenges, 2D Notebook Features, and 2D Notebook Im-
pressions. The first two focus on potential benefits of 2D
Notebooks and design challenges for 2D Notebooks, respec-
tively. 2D Notebook Features focuses on additional features
that participants noted helped them make a compelling layout.
Finally, 2D Notebook Impressions documents participants’
attitudes towards the potential of 2D notebooks.

Table I shows our organization of themes by category
and summarizes each theme with a sample participant quote.
The table notes the number of participants whose comments
expressed the same sentiment, either in a written qualitative
survey response or interview format, as each theme.

V. DISCUSSION

1D notebooks struggle with branching code paths, com-
parative analysis, and navigating longer notebooks. Due to
these limitations and research into Space to Think, we sought
to explore the potential of 2D Computational Notebooks to
empower meaningful use of 2D space and to address certain
issues of computational notebooks.

A. Organizing Notebooks in 2D

The linear split-cell approach, which can be done to some
extent in Jupyter Notebooks using the Split-Cell extension,
and the linear split-column approach, which is similar to
Weinman et al.’s work on Fork it [15], shows how thoughtful




Category

2D Notebook
Benefits

2D Notebook
Challenges
2D Notebook
Features

2D Notebook

Theme

Comparative Analysis
Presentation
Organization
Externalized Memory

Collaboration
Branching Code Paths
Tedious Navigation
Cognitive Load
Arrows

Boxes or Frames
Table of Contents
Run All In Column

Good

TABLE I
QUALITATIVE THEMES IN SURVEY & INTERVIEW RESULTS

Sample Quote

I think the 2D notebook will be super useful for any kind of comparison analysis.”

”This is a great tool for presenting data to layman audiences.”

”The 2D board is definitely hugely beneficial to organize code in a meaningful manner.”

”If I'm able to have everything listed in one document, I wouldn’t have to be switching into web
browser tabs to look at documentation or things like that.”

72D space opens up the opportunity for multiple people working multiple spaces at the same time.”
"I think 2D notebooks are better for the task with many branches.”

”The zooming in and out and continuous scrolling to reorganize the tiles seemed tedious.”
”Organizing [notebook cells] might be a little tedious however, and needs to be planned in advance.”
”The arrows were very useful, as they helped direct the flow of the narrative.”

”The boxes also helped in grouping cells together.”

”Main thing lacking is a table of contents created to link to the different sections.”

”I would love to be able to "Run all the code in this column” or “Run all the code in the columns to
the left/right”.”

"I really enjoyed using this 2D computational notebook. It felt like a great and much easier way to

Num.
Responses
5

4
2
1

o

—_—_ -0 = N = —
(=}

[\8)

Impressions
Usability issues

Skeptical
work best.”

modifications to 1D notebooks enable the use of 2D space
within a traditional notebook environment. The prevalence of
the Many-Column approach among participants, which can
be argued to be an extension of the Split-Column Linear
approach, suggests that a notebook extension to create multiple
columns might be a feasible and effective way to enable 2D
Space usage, like with the Split-Cell extension.

On the other hand, most users liked the flexibility of cell
placement in the 2D computational notebook sketch using
Miro [9]. In particular, participants that created Workboard
layouts designed highly varied and creative layouts to express
different aspects of the notebook structure. Given this, as well
as the fact that all but one of the 21 2D layouts’ run order
could easily be intuited, a fully 2D Computational Notebook
could be a valued tool, even in the presence of 1D notebooks
with some limited 2D capabilities.

B. Enabling Strengths of 2D Notebooks

Practically all participants thought that the 2D Notebook
environment would be useful for comparative tasks, such as
comparing visualizations and comparing different parameters
for model runs. They typically accomplished this by placing
the cells or sequences of cells side-by-side, such as in the
two aligned columns in Figure 4. Thus, 2D computational
notebooks should be designed to enable users to compare
results from different cells or even different branches of code
in a flexible and easy-to-use way; in the context of multi-
column designs, this might mean being able to change the
order and alignment of the columns to better enable direct
visual comparisons.

One interesting finding, based on the layouts and interviews,
was the potential to run certain notebook segments in parallel.
Users often specified these as parallel side-by-side branches in
the cell layout, or with one-to-many arrows. This could be an
excellent tool for data exploration and comparative analysis.

reorganize some of my Jupyter notebooks!”

"I think if the 2D Computational Notebook is developed in user-friendly and self-explanatory way, I
would definitely choose to singly use a 2D Computational Notebook.”

”In terms of working with other programmers and developers, I feel that the linear layout would still 2

—

For example, data analysts may want to try different machine
learning models with a dataset for a classification task. By
running adjacent columns of code in parallel, they can get
results quicker and better compare model performance. They
might then choose which path is best and mark it accordingly.

Finally, more sophisticated controls for running the cells in
a 2D notebook may prove useful. Instead of just being able
to run all cells or run a particular cell, a user may want to
run a group of cells, such as those in a particular column
or cluster. This would require being able to designate groups
of cells to be operated on together. Some participants used
explicit grouping features, such as boxes or columns or rows,
to express such semantic grouping.

C. Addressing Tradeoffs of 2D Notebooks

While the 2D Computational Notebook concept shows
promise, the results indicate some potential downsides.

One downside that some participants noted was that of
tedious navigation. Given the participants’ experiences, as de-
tailed in the survey and interview responses, aiding navigation
in intuitive, efficient ways seems a critical challenge for the
design of 2D computational notebooks. Some suggestions for
dealing with this issue include sectioning code cells using
boxes or frames and enabling quick jumping to different
sections, and enabling search utilities not only for keywords
in code, but also in section and cell labels. In addition, a mini-
map with interactive capabilities, such as being able to click
on a cell and jump straight to it on the screen, may prove
useful for easing navigation issues. One participant created
an overview map that represented the flow of their notebook
layout in miniature form. Finally, it may be useful to allow
semantic zooming, where certain headers in markdown cells
remain at a readable size even as a user zooms out.

Another potential downside is the possibility of increased
cognitive load. When a user has to consider cell organization



in addition to analysis, the additional cognitive load may
prove burdensome. On the other hand, given the potential of
notebooks to become “messy” [14] in 1D, it may be possible
that considering cell organization during analysis may help
avoid the problem of messiness to some extent.

Still, there are ways to address the possibility of increased
cognitive load. First, a templating mechanism could be de-
signed, in which users select from a set of common templates
to pre-organize cells or provide initial structure. The templates
should be based on our above observed high-level strategies.
After selecting a template, the notebook might provide visual
affordances such as pre-labeled sections in 2D space, and
interactive affordances to fill in cells in the template. For
example, a many-column template could provide a set of initial
empty columns to fill in with cells.

Furthermore, AI methods could be developed to semi-
automate cell organization through such actions as suggesting
templates based on code structure and static analysis [25],
semantic interaction [26], and active placement of cells. For
example, an Al might recognize non-linear branches of ‘same
analysis with different data’ and suggest a parallel multi-
column template. Wenskovitch et al.’s work [25] on visual-
izing dependencies and relationships between computational
notebook cells uses a dynamic graph structure that might be
built upon to enable such methods.

D. Assessing Interest in 2D Notebooks

The results of the user study task provide evidence that,
given the opportunity and reason to do so, users are willing to
organize computational notebooks in 2D. The fact that, out of
25 participants, only 4 opted to align the cells in 1D (with one
leaving a couple cells in “scratch space”) supports this idea.
With 19 out of 25 participants agreeing that they would add
2D Computational Notebooks to the set of analytic tools they
use, the survey responses also support this assertion.

E. Limitations

This study has some limitations: the use of a completed
notebook sketch, and the user study task-prompt wording.

1) Use of Completed Notebook Sketch: This study was
performed on a sketch of a 2D Computational notebook in
Miro [9] using images of cells from a 1D notebook, which
makes it difficult to draw conclusions about how users would
actually develop programs and narratives in a 2D computa-
tional notebook. The authors attempted to alleviate this issue
by designing the user study prompt to get participants thinking
about further development of the notebook. Still, having partic-
ipants create the notebook from scratch instead of starting with
all of its pieces could lead to different preferences in strategies
and attitudes. However, this would require significantly more
time and expertise from participants. We plan to explore this
in future work.

2) User Study Task-Prompt Wording: When designing the
study prompt, we considered how to hint that 2D layouts are
an option without requiring 2D layouts. Our concern here was

that, without any hinting, participants might default to the fa-
miliar 1D layout without any consideration of the possibilities
of 2D layouts to address non-linear features. In reflection, we
realize that the prompt could be read as strongly suggesting
the creation of 2D layouts. Still, participants’ survey responses
explaining the reasoning behind their layouts largely suggest
that participants found 2D space valuable for the notebook
with non-linear features given to them.

VI. CONCLUSION

Computational notebooks have become a popular tool for
data science and analysis; at their best, these notebooks enable
crafting of meaningful, replicable computational narratives.
However, the 1D nature of computational notebooks makes
certain kinds of narratives harder to communicate and certain
analytic tasks more difficult to perform. Thus, we sought to
investigate the potential of 2D computational notebooks to
address the non-linear narratives and improve upon the 1D
computational notebook design.

Our work shows that 2D computational notebooks have
potential and that users are interested in them as an addi-
tional tool. The ability to easily compare results, visually
represent branching analyses, and present non-linear narra-
tive structures in a semantic way seemed valuable to our
participants. Participants’ layouts were approximately evenly
split between three major strategies: primarily linear, multi-
column, and workboard strategies. The workboard strategy
included directed graph layouts and complex nestings of other
strategies. Approximately half of the participants also made
use of additional annotation features, such as arrows, labels,
and boxing.

However, 2D computational notebooks appear to have some
potential difficulties for further research and innovation. The
addition of a second dimension, while empowering more
flexible placement of items, does complicate navigation. If
2D computational notebooks are to be successful, effectively
aiding navigation appears to be a priority. In addition, given
the increased complexity brought by organizing the layout of
cells in 2D, layout aids such as templating may prove helpful
in minimizing the effort necessary for organization during
analysis. Still, it appears that 2D computational notebooks
could very well provide a potent ‘space to think’ for data
scientists.
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