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ABSTRACT
Observation-Level Interaction (OLI) is a sensemaking tech-
nique relying upon the interactive semantic exploration of
data. By manipulating data items within a visualization,
users provide feedback to an underlying mathematical model
that projects multidimensional data into a meaningful two-
dimensional representation. In this work, we propose, im-
plement, and evaluate an OLI model which explicitly defines
clusters within this data projection. These clusters provide
targets against which data values can be manipulated. The
result is a cooperative framework in which the layout of the
data affects the clusters, while user-driven interactions with
the clusters affect the layout of the data points. Addition-
ally, this model addresses the OLI “with respect to what”
problem by providing a clear set of clusters against which
interaction targets are judged and computed.

CCS Concepts
•Human-centered computing → Visualization tech-
niques;

Keywords
Observation-Level Interaction (OLI), sensemaking, data clus-
tering, semantic interaction, visual analytics

1. INTRODUCTION
Observation-Level Interaction (OLI) is a direct manipula-

tion technique that supports sensemaking by allowing users
to actively manipulate the layout of data within a visual-
ization. Through these interactions, an underlying model
is updated, effectively letting the visualization system learn
the intentions of the user by interpreting their actions as ei-
ther exploratory or expressive [10]. Previous work has shown
that coupling OLI with data visualization is helpful for data
exploration [13].

A common method of presenting information to support
OLI is with node-link diagrams. Using this technique, data
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points are encoded in nodes, with the relationships between
them encoded in the links. Using dimension reduction tech-
niques such as Weighted Multidimensional Scaling [15] to
compute link lengths based on the attributes of items, the
distance between these nodes will reflect the relative similar-
ity of each pair of data items. A group of nodes with many
similar attributes will naturally begin to form implicit clus-
ters in the data layout.

Indications and feedback from previous studies [1, 9] have
shown that users favor clusters in the sensemaking process.
These include systems with explicit clusters that are cre-
ated to spatially organize information on the display (for
example, iVisClustering [17]) and those that naturally de-
velop due to the underlying layout updating through ex-
pressive interactions (for example, Andromeda [21]). It is
therefore surprising that clusters are not explicitly defined
in many OLI systems; rather, they implicitly exist in the
layout structure. We are interested in exploring this new
design space, to learn how to best integrate clustering al-
gorithms into the active research area at the intersection of
dimension reduction and OLI.

In this work, we propose, implement, and evaluate a sim-
ilar model designed for quantitative data, which explicitly
defines clusters within the layout of the data. In this model,
the direct manipulation of nodes internal to these clusters
represents the exploratory OLI interactions, while manipu-
lations into and out of clusters represents expressive interac-
tions. Through the expressive interactions, a feedback loop
develops between the user and the layout algorithm. User
manipulations with nodes and clusters suggest intentions re-
garding the importance of data attributes to the layout al-
gorithm, which in turn updates the layout algorithm and
hence the clusters with this information. Iterating through
this sensemaking feedback loop provides insight to the user.

In addition, explicitly defining the clusters in this model
allows us to easily solve the OLI “with respect to what”
problem (discussed in [21]). In a visualization with dozens
or hundreds of points, it is difficult to identify what each ex-
pressive data manipulation is moving with respect to: is the
user moving the current node away from some set of points
(and which points), or towards some set of points (and which
points), or is the user merely organizing the node in an ex-
ploratory interaction? To solve this problem, we uses clus-
ters as the primary metaphor for interaction, limiting our
expressive interactions to only include cluster membership
changes: adding and removing nodes from clusters.

As OLI has evolved from its introduction [10, 18], the
sensemaking pipeline has grown from a statistical model [8]



Figure 1: A comparison of the layout of the Case
Study dataset both without (left) and with (right)
clusters defined. Without clusters, the user can in-
teract with the points to learn information about
the properties of the animals (collie and chihuahua
are close together, blue whale and giant panda are
not), but are generally presented with a distribution
of points without structure. With clusters, more in-
formation is readily provided to the user regarding
the groups that nodes fall into.

to more complex multi-model pipelines [4] and systems com-
bining OLI with parametric interaction [21]. Our contribu-
tion in this work is the proposal, implementation, and eval-
uation of this cluster-based OLI model. Though previous
works include explicit data clusters and OLI interactions,
this is the first system to explicitly define clusters and clus-
ter interactions for OLI. Our intention here is to explore
one solution in the clustering/dimension reduction/OLI de-
sign space as a stepping stone towards exploring the overall
design space.

2. RELATED WORK
A common method of sensemaking with multidimensional

data is to project the dataset into two dimensions. With
this scatterplot or node-link diagram, users can draw con-
clusions from relative data positions. User manipulation of
data items can be used to learn the distances between nodes,
as shown by Dis-Function [5]. Data projection systems can
be grouped into two collections: those which do and do not
explicitly define clusters.

In the realm of explicit cluster definition, the iVisClus-
tering system [17] includes a Cluster Relation View which
encodes cluster membership using node color in a graph
representation. TIARA [19] likewise clusters related text
keywords into topical collections with importance changing
across time, visually encoded in a streamgraph. Similarly,
the Galaxy View in the IN-SPIRE system [23] projects the
relationships between text documents into a two-dimensional
space, with topic clusters defined. iCluster [20] organizes
peers in peer-to-peer networks with common interests into
clusters. Vizster [12] defines explicit clusters in the form of
community structures in social networks. No OLI-style in-
teractions are supported in these systems; the data is merely
projected.

In contrast to explicit clustering systems, Andromeda [21]
projects high-dimensional data into two dimensions using a
method combining OLI with parametric interaction. Though
similar data points implicitly cluster into groups, explicit

clusters are not defined. Similarly, StarSPIRE [4] enables
OLI interactions on document collections that are projected
into a two dimensional space, allowing similar documents
to implicitly cluster together. In this system, the distance
between nodes represents relatedness. iPCA [14] includes a
projection view in which data items are projected onto two
user-selected principle components. Apparent clusters can
develop in the data in each of these systems, but are not
explicitly defined.

Interactive clustering is also an active research area, with
a wide variety of techniques to address user interaction with
clusters. Chuang and Hsu provide a survey of human cen-
tered interactive clustering, listing a set of properties for
effective interactive clustering algorithms [6]. Both Bilenko
et al. [3] and Cohn and Caruana [7] explore the area of semi-
supervised clustering, in which the user iteratively provides
classification information to a machine learning algorithm
that learns improved clusters with each iteration. A sim-
ilar technique is used by Basu et al. in their interactive
clustering system, allowing users to create explicit groups of
items and receive suggestions for new items to add to each
group [2]. Stahnke et al. introduce a set of “probing” in-
teractions to explore projections of high-dimensional data
in order to allow users to better interpret the meaning and
quality of the visualization.

3. MODEL AND IMPLEMENTATION
Our model of this cluster-based OLI framework is shown

in Figure 2. This bidirectional pipeline is divided into for-
ward and backward directions, where the forward direction
handles the data projection and the backward direction re-
sponds to user input. The following implementation makes
use of the Euclidean distance function, a force-directed lay-
out for dimension reduction, and k-means clustering; how-
ever, the model generalizes to any distance function, dimen-
sion reduction technique, and clustering algorithm.

3.1 Forward Direction
Distance Function The forward direction for data pro-

jection begins with computing a distance δ(ni, nj) between
each pair of data items ni and nj . This distance, described
in Equation 1, is the Euclidean or L2 distance between the
normalized attributes of ni and nj , including a weight wa

applied to each attribute a to denote the importance of that
attribute to the current projection. At system initializa-
tion, each of the weights associated with the dimensions in
the dataset are set to 1, indicating that each weight has no
larger or smaller effect on the resting length of each link than
any other weight. These weights are updated in response to
user interaction in the backward pipeline direction to create
new projections, detailed in the next subsection.

δ(ni, nj) =

√ ∑
a∈attr

wa ∗ (ni,a − nj,a)2 (1)

Force-Directed Layout Once a distance is computed
for every data pair, we load the data into a force-directed
node-link visualization such that every data item ni is en-
coded as a node and every distance d(ni, nj) between pairs
of data items is encoded as a link with the distance value
mapped to the resting length of the link. To address the
nondeterministic layout challenge inherent to force-directed
placement, node positions are initially set to the same loca-



Figure 2: The framework and implementation of our cluster-based OLI model. Moving forward (right) along
the pipeline, data is represented in a node-link diagram where link lengths encode similarity. A force-directed
algorithm places the nodes to minimize force exerted by the links as they converge to their resting weights,
while a modified k-means algorithm determines clusters in the data. Users then interact with the visualization,
either through exploratory interactions which solely adjust the visualization (the force directed layout and
forward) or through expressive interactions which follow the pipeline backward. In this case, the system
determines the clusters affected by the interaction, computes similarity measures to learn which weights to
update, and changes the weights associated with attributes in the layout, leading to the next forward flow
along the pipeline. Though we use Euclidean distance, a force-directed layout, and k-means clustering, the
model generalizes to any distance function, dimension reduction technique, and clustering algorithm.

tion every time the system is initialized. The nodes begin
at locations uniformly and radially spaced about the center
of the display. The force-directed layout algorithm is run
repeatedly until it converges to a relatively stable layout, at
which time we begin to visualize the layout.

Clustering As the force-directed layout converges to a
solution, we begin to draw clusters surrounding groups of
nodes. These clusters are computed using a modified k-
means algorithm, which has been altered to include a maxi-
mum cluster radius that allows some nodes to exist external
to all clusters. Similarly to the initial node placements, clus-
ter centroid positions are initialized uniformly and radially
spaced about the center of the display, and converge to-
wards a final cluster layout as the force-directed algorithm
continues to update the node positions. The k-means clus-
ters are kept stable by seeding the new clusters with the
previous centroid positions each time the display refreshes.
We selected k-means as an efficient and simple clustering
algorithm. The user is afforded control of both k and the
size of each cluster in pixels from the centroid (the system
defaults are k = 5 clusters and a 200 pixel radius for each
cluster). Clusters are drawn using the Graham scan algo-
rithm for convex hulls [11].

Visualization & User The user does not need to wait
until a final layout of nodes and clusters is reached before
beginning to interact with the system. They can begin per-
forming interactions from the moment that the layout begins
to render on the display, which triggers the backward direc-
tion of the pipeline as described in the next subsection.

3.2 Backward Direction
The user interacts with the nodes via direct manipula-

tion, using click-and-drag actions to move nodes around the
screen and mouse over interactions to see the details of a
node. Keyboard inputs allow the user to change the num-
ber and size of clusters. As noted in the introduction, users
can perform both exploratory and expressive interactions in

OLI systems. These interactions take two different back-
ward paths through the pipeline.

Exploratory interactions are defined as interactions that
alter the layout of the projection but do not affect the model.
In contrast, expressive interactions will alter the model, in
turn also affecting the layout of the projection. To address
the “with respect to what” OLI challenge, we separate ex-
ploratory and expressive interactions based upon their ef-
fects on the clusters.

Exploratory interactions are interactions with nodes in
which the user does not move a node into or out of a clus-
ter; in other words, moving a node internal to a cluster to a
new location in the same cluster, or moving a node external
to all clusters to a new location external to all clusters. We
note that it is possible that an exploratory interaction will
cause nodes to shift membership of nodes between clusters
in response to this interaction. However, these membership
changes are due to the force-directed layout rather than any
change in underlying model parameters. Additionally, mov-
ing nodes will pin their location on the display, which forces
a further alteration to the force-directed layout so that links
support the new position of the node. Again, this does not
change the distance model parameters.

Clustering−1 We define three expressive interactions that
update weights in the graph: adding a node from the exter-
nal region to a cluster, removing a node from a cluster to the
external region, and transferring a node from one cluster into
another. The third interaction, transferring a node between
clusters, is interpreted as a sequence of the first two actions,
removing the node from the first cluster and then adding it
to the second cluster. Thus, we will discuss only the inser-
tion and removal processes in detail. The goal of each of
these interactions is to learn the projection and clustering
parameters based on the intent of the cluster assignments
that the user performs, thus creating a new projection and
set of clusters that reflect the user action.



3.2.1 Adding Nodes to Clusters
Distance Function−1 If a node is moved from the exter-

nal region into a cluster, we aim to understand why the user
decided that the node belongs to this cluster by analyzing
what attributes in this node are similar to those attributes
present in the cluster, and also what attributes in this node
conflicts with in the cluster. To make this judgment, we use
a heuristic approach to efficiently approximate an inversion
of the distance function. We compare each attribute a of the
cluster centroid c with the corresponding attribute of the
newly added node n. This comparison is a calculation simi-
lar to that of our initial distance computation, normalizing
the difference in value for each attribute between node and
the cluster centroid, and is shown is Equation 2. Note that
here we use L1 or Manhattan distance rather than Euclidean
distance, because we consider each attribute independently
with the goal of sorting them rather than considering the
attributes collectively to calculate an overall distance. The
motivation behind this computation comes from the user
interaction – the user has decided that node n belongs to
cluster c, and so the attributes that are most similar be-
tween the node and the cluster are important to the user.
Therefore, the model should reflect the importance of these
attributes in the visualization. Similarly, the attributes that
are most different between node and cluster are irrelevant to
the user and hence less important to the model.

∀a ∈ attr, δ(ca, na) = |ca − na| (2)

After this similarity analysis is complete for each attribute,
we sort the attribute collection based on the strength of simi-
larity score computed, with the sorted positions of attributes
with tied similarly scores placed arbitrarily. A function is
then applied to each of these sorted attributes to update
the weights of each of the attributes, so that attributes that
show the greatest similarity pull nodes closer together while
attributes that do not push nodes further apart. The at-
tributes that display strong similarities between the node
and the cluster have their weights reduced, so that when
the link lengths are recalculated, nodes that have similar val-
ues for this attribute are pulled closer together. Similarly,
attributes displaying difference between the node and the
cluster have their weights increased to expand link lengths
after the recalculation phase. Attributes near the middle of
the pack have little change, with weight updates close to 1.

Following the weight updates, the system proceeds through
the forward direction of the pipeline again, recomputing dis-
tances and resting lengths and updating the layout and clus-
ters accordingly. As the layout is stabilizing, new insights
can be drawn about the properties and layout of the nodes,
and the system is ready for new interactions.

We note that it is possible for a note already positioned
inside of a cluster to be forced out of the cluster because of
a subsequent interaction. This is both because the system
learns gradually rather than immediately and because we do
not enforce must-belong and must-not-belong cluster mem-
bership constraints unless the nodes are pinned in place. A
number of user-driven cluster assignments are required for
the system to converge to a user-intended ideal projection.
We chose to allow the system to update after every user
interaction (rather than to allow a number of interactions
followed by an “update layout” trigger) to allow users to im-
mediately begin to learn and draw insights from individual
interactions.

3.2.2 Removing Nodes from Clusters
Distance Function−1 If a node is dragged from a cluster

into the external region between clusters, we aim to under-
stand why the user decided that this node does not belong
to its assigned cluster through a similar heuristic to the Add
Node procedure. Again, we compare the attributes of the
centroid of the cluster with the attributes of the removed
node and sort the scaled outcomes.

Following this sorting, we again update the weights on the
attribute collection based on the order of similarity scores.
However, attributes that display strong similarities between
the node and the cluster now have their weights increased
to expand the length of links (interpreting formerly strong
similarities as attributes that the user is not interested in
clustering), while attributes that display differences between
the node and the cluster have their weights reduced to shrink
links (noting that this attribute is more important to the
user than it was in the previous layout). Again, after all
weights have been updated, new resting lengths are com-
puted for each link, and the force-directed algorithm shuffles
nodes into a new layout, with cluster membership updating
as necessary.

4. CASE STUDY
Here, we show one example of exploring a dataset via

cluster-based OLI. The dataset used in this case study is
a collection of 49 animals, each defined by 85 numeric at-
tributes that describe the animal’s color, physical character-
istics, habitat, and behavior [16]. The data is loaded into
the system using the default settings, creating five clusters
with cluster membership size set at 200 pixels from the cen-
troid. These clusters, along with the user actions described
below, are shown in Figure 3.

Before any user interactions take place, the similarity rela-
tionships already in the data have clustered 46 of the animals
into groups with similar characteristics. Clockwise from the
top, these groups can be summarized as predators (including
animals such as the lion and tiger), pets (chihuahua and Per-
sian cat), aquatic animals (dolphin and seal), large grazers
(buffalo and sheep), and small foragers (skunk and rabbit).
Three animals (bat, polar bear, zebra) were not immedi-
ately assigned to any cluster. There are also several animals
that are misclassified according to this interpretation of the
clusters, including the grizzly bear in the pets cluster and
the giant panda in the small foragers cluster. For the pur-
poses of clarity and mental map stability in this case study,
we perform the exploratory action of fixing one node from
each cluster in place, an action that has no affect on the
underlying weights.

In exploring the data, one might begin by resolving the
pet grizzly bear issue by removing the grizzly bear node
from the pet cluster and placing it in the predator cluster.
This combination of two cluster transfers (out of pet, into
predator) is an expressive action that results in a weight up-
date. Following this action, the “fierce” weight has dropped
from 1.000 to 0.437, indicating importance to that attribute
in the current exploration and pulling nodes closer together
through its impact on the resting length of all edges. In
contrast, the “orange” color weight has increased from 1.000
to 1.651, indicating a lack of importance to that attribute
and increasing the contribution of that attribute to the rest
lengths of all links.



Figure 3: Four steps through the interaction discussed in the Case Study section. In Frame 1, the system
is initialized with 5 clusters (green convex hulls). The user drags the grizzly bear node into the predator
cluster (blue arrow), which updates the weights and pulls the polar bear node into the pet cluster (orange
arrow). In Frame 2, the user corrects this by putting the polar bear into the predator cluster (blue arrow).
In Frame 3, the user drags the otter and beaver nodes into the aquatic cluster (blue arrows), which cause the
bat to join the small foragers, the zebra to join the large grazers, the giant panda to escape the small foragers
and travel towards but not yet into the large grazers, and the walrus to transfer from the large grazers to
the aquatic cluster (orange arrows). Frame 4 shows the final alignment.

This action has absorbed the polar bear node into the pet
class incorrectly, so the user can also move the polar bear
node into the predator cluster, an expressive action that
further reduces the“fierce”weight to 0.224. Because of these
actions, the otter has now moved into the pet cluster and the
beaver was already there, so the user may perform expressive
actions to drag those into the aquatic animals cluster. After
those interactions have completed, the “water” weight has
decreased to 0.263, and the “fierce” weight has decreased
further to 0.116. Other attributes that the model found
important include 0.103 for meat-based diets and 0.531 for
having hooves, while attributes such as nocturnal (2.259)
and hairless (2.327) were not judged as important to the
current exploration of the user.

Most importantly, without user interaction on these nodes,
these actions had the effects of putting the zebra into the
large grazers cluster, removing the giant panda from of the
small forager cluster and moving towards large grazers, added
the bat into the small grazers, and moved the walrus from
large grazers to aquatic animals. The final state is shown in
the right-most panel of Figure 3.

5. DISCUSSION
A number of the weight updates and animal shifts through

the interactions in the case study are worth noting. For
example, the zebra transitioned into the large grazers cluster
and the giant panda left the small foragers cluster despite
no user interaction with these nodes. The weight that the
system judged to be most important was neither “water” nor
“fierce” but “domestic,” with a 0.050 weight. Still, similar
weights to “fierce” such as “hunter” were also reduced to
small values (0.184). The weights judged least important
to the user interactions are “slow” (2.435), “fast” (2.318),
and “active” (2.326), demonstrating that the system learned
that the user was interested in the diet and habitat of these
animals, not their speed.

It is also interesting to think about the relationship be-
tween clustering algorithms and dimension reduction algo-
rithms. In a way, making cluster assignments is equivalent
to 1D dimension reduction, noting that the cluster assign-

ment is the primary dimension of organization. Our system
goes a bit beyond that, still respecting the 2D position of the
force-directed layout while also encoding an extra dimension
of cluster membership.

5.1 Future Work
We have several targets for future work in OLI clustering.

At the moment, our clusters are computed using k-means
based on the Euclidean distance between nodes in the two-
dimensional projection of the data laid out by the force-
directed algorithm. Although visual clutter is more likely
with the possibility of clusters overlapping, we would like to
explore the idea of creating the clusters in high-dimensional
space and then projecting them into 2D, to understand if
different insights are drawn by switching the order of these
operations.

We would also like to include interactions on the clus-
ters themselves, supporting cluster mergers and cluster splits
without needing to individually drag each node to its target.
Collapsing clusters to a single glyph will help lead towards
OLI on bigger datasets, as more data can be included in the
available screen space. Adding additional visual cues to the
clusters and nodes themselves would make it system actions
such as a node exiting or entering a cluster more evident
to users. For example, briefly making the node color flash
when the giant panda node left the small foragers cluster.
Finally, we would like to update the back-end model of the
system from the heuristic weight-based method to a true
layout model inversion.

5.2 Limitations
One limitation to the implementation of this framework is

the solution we implemented to address the nondeterministic
layout challenge: we always initialize nodes and centroids
in the same locations. Because of this, the same clusters
will develop every time, potentially biasing the user towards
these clusters and hindering new directions of exploration.
Altering this initial placement to be more random is a trivial
solution to this source of bias.

Additionally, we currently leave both the choice of the k
parameter and the radius threshold of each cluster as user-



defined parameters. The system could certainly make use
of automated algorithms such as the elbow method [22] to
determine the optimal number and size of clusters. We left
control of these parameters with the user in order to afford
as much freedom in the data exploration as possible.

6. CONCLUSION
In this work, we have proposed a cluster-based framework

for OLI interactions. Our implementation of this framework
includes a feedback loop between the user and the back-end
model, in which the layout of the nodes informs the clusters,
while the user interactions between the nodes and clusters
update the weights that compute the layout. Though our
specific implementation makes use of the Euclidean distance
function, a force-directed layout, and k-means clustering, the
overall model generalizes to any distance function, dimen-
sion reduction technique, and clustering algorithm. We show
in a case study an example of sensemaking using a dataset
of animal characteristics, demonstrating that the model can
learn from user interactions and affect the layout of nodes
and clusters that are not interacted with directly by the user.
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