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1 Introduction 
The information revolution is changing the way many people live and think.  Vast quantities and 
diverse types of information are being generated, stored, and disseminated, raising serious issues 
about how to make such information usable.  The need to understand and extract knowledge 
from stored information is becoming a ubiquitous task.  As examples, in everyday life people 



must sort through a variety of personal information such as email communications, schedules, 
news, finances, and computer directories.  Students can access countless digital libraries of 
educational materials.  Online shoppers must make decisions among dozens of alternative 
products, models, vendors, and prices.  New disciplines such as bioinformatics are leading the 
revolution in information-intensive science, using high-throughput data collection technologies 
such as microarrays and online data repositories.  Government intelligence analysts must sift 
through massive collections of information gathered on a daily basis from sensor networks and 
other sources. 
  
Information visualization has evolved as an approach to make large quantities of complex 
information intelligible.  An information visualization is a visual user interface to information, 
with the goal providing users with information insight [Spence, 2001].  The basic method is to 
generate interactive visual representations of the information that exploit the perceptual 
capabilities of the human visual system and the interactive capabilities of the cognitive problem-
solving loop [Ware, 2004]. 
 
The goal of this chapter is to highlight the critical high-level design issues in the information 
visualization design process.  Lower level details of visual display and human perception can be 
found elsewhere in this book.  Other aspects of the design process that apply to the design of user 
interfaces in general, such as evaluation methods, are also covered in other chapters.  While other 
major references focus on the ‘what’ and ‘why’ of information visualization [Card et al., 1999; 
Chen, 1999; Shneiderman & Plaisant, 2005; Spence, 2001; Ware, 2004; Wickens & Hollands, 
2000], here we emphasize the ‘how’. 
 

1.1 Insight 
Human vision contains millions of photoreceptors and is capable of rapid parallel processing and 
pattern recognition [Ware, 2004].  The impressive bandwidth of vision as a mode of 
communication leads to the efficient transfer of data from digital storage to human mind.  Yet, a 
more important benefit is the human ability to visually reason about the data and extract higher 
level knowledge, or insight, beyond simple data transfer [Card et al., 1999].  This enables users 
to infer mental models of the real phenomena represented by the data.   
 
For example, Figure 1 demonstrates the mapping of a database of census demographics.  From 
the visual representation, one can readily recognize the approximate proportional relationship 
between education and income, various outliers such as New York, NY, and predominance of 
large population counties in high income and education.  These insights are not explicitly stored 
within the dataset, but inferred through visual pattern recognition.  These insights are not so 
readily identifiable from the textual representation.  Clearly, the design of the visual 
representation is important.  A poorly designed visualization can hide insight, or even mislead 
with incorrect insight. 
 
 
<<Figure 1 here>> 
Figure 1 a & b: 
 



 
 

 
Figure 1:  Census demographics dataset of 3140 U.S. counties shown in (a) spreadsheet form, 
and (b) scatterplot form using Spotfire® [Ahlberg & Wistrand, 1995].  The plot shows counties 
by ‘income per capita’ vs. ‘percentage of adult population that has college degree’, with dots 
sized by ‘population’, and labels for some outliers.  The plot is interactive and reveals details of a 
county when selecting its dot, in the text sub-window at lower right.  Dots can be filtered by 
other county attributes, such as ‘median rent’, using the dynamic query slider widgets on the 
right. (Courtesy Spotfire) 
 
 
 
Visualization can enable a broad range of information insight, and several such insights are listed 
below (see also [Shneiderman & Plaisant, 2005; Wehrend & Lewis, 1990; Wickens & Hollands, 
2000; Zhou & Feiner, 1998]).  The first two are simplistic and can be readily supported by 
textual or query-based user interfaces such as spreadsheets or search forms, because they are 
precise and have solutions consisting of a single data entity.  However, the later are more 
complex and are well supported by visualization.  These involve open-ended questions with 
complex answers that require seeing the whole.  A strength of visualization is the capacity for 



discovery, the recognition of new insights unexpected by the users and potentially unforeseen by 
the visualization designers.   
Simple insights: 

• Summaries:  minimum, maximum, average, percentages 
• Find:  known item search. 

Complex insights: 
• Patterns:  distributions, trends, frequencies, structures 
• Outliers:  exceptions 
• Relationships:  correlations, multi-way interactions 
• Tradeoffs:  balance, combined minimum/maximum 
• Comparisons:   choices (1:1), context (1:M), sets (M:N) 
• Clusters:  groups, similarities 
• Paths:  distance, multiple connections, decompositions 
• Anomalies:  data errors. 

 

1.2 Design 
Like any user interface, effective information visualizations are difficult to design.  
Fundamentally, information visualizations make abstract information perceptible.  Abstract 
information has no inherent perceptual form, as in the case of databases or computer directories. 
Hence, there are no natural constraints on the types of visual representations that creativity can 
produce for abstract information, and the possibilities are limitless.  As a result, there is 
significant challenge, excitement, and opportunity in both creating novel visual representations 
as well as identifying the most effective representations amongst the endless possibilities.  In 
contrast, scientific visualization [Rosenblum et al., 1994] typically emphasizes the visualization 
of data that represent physical 3D phenomena, which offer some natural constraints on visual 
representations and focuses the challenges on realism. 
 
The two most challenging characteristics of information that make designing effective 
information visualizations difficult are: 

(1) complexity:  supporting diverse abstract information that may have multiple 
interrelated data types and structures. 

(2) scalability:  supporting very large quantities of information. 
Because of these characteristics, visual representations alone are not sufficient and interactive 
techniques must also be designed.  While the principles of static graphs and illustrations are 
fundamental to visualization design [Cleveland, 1993; Tufte, 2001; Wilkinson, 1999; Gillan et 
al., 1998], new human-computer interaction issues related to these two challenging 
characteristics become forefront in information visualization design. 
 
As an overview, the visualization design process involves iterative requirements analysis, design, 
and evaluation (e.g. [Rosson & Carroll, 2001]).  In the requirements analysis phase, it is 
important to identify the two primary inputs to design:  the characteristics of the information to 
be visualized, and the desired types of insights the visualization should enable.  Characteristics of 
the information include the data schema, underlying structures, and quantity.  Since the number 
of data attributes and desired insights may be large, identifying a prioritization of attributes and 
insights will be helpful in balancing design tradeoffs.  Other elements of requirements analysis 



include broader user tasks, users’ domain knowledge, data semantics, and computer system 
requirements.  In the design phase, major design decisions (presented in this chapter) include the 
visual mapping of the information, the representation of information structures, visual overview 
strategies, navigation strategies, and interaction techniques.   
 
The evaluation phase must be continually considered during the design process [Plaisant, 2004]. 
A claims analysis identifies the positive and negative impacts of a visualization design’s features 
on its insight capability, and seeks to overcome or balance these tradeoffs through iterative 
design [Rosson & Carroll, 2001]).  Begin with analytic evaluations to determine if designs meet 
requirements, such as scalability to data quantity and appropriateness for producing desired 
insights.  In later iterations, empirical evaluations involving users should be undertaken, such as 
the wizard of oz technique, usability testing, or controlled experiments [Chen & Yu, 2000; Tory 
& Möller, 2004a].  Desired insights identified in requirements analysis should be implemented as 
benchmark user tasks in the empirical evaluations.  Alternatively, since benchmark tasks often 
overly constrain the testing to simplistic insights that discount the discovery aspect of 
visualization, the insight-based methodology [Saraiya et al., 2004] attempts to measure the 
insight generated by visualizations by using an open-ended experimental protocol without 
benchmark tasks.  The following sections highlight the major design decisions in the information 
visualization design process. 
 

2 Visualization Pipeline 
The visualization pipeline is the computational process of converting information into a visual 
form that users can interact with [Card et al., 1999] (Figure 2). The first step is to transform raw 
information into a well-organized canonical data format.  The resulting format typically consists 
of a dataset containing a set of data entities each of which has associated data attribute values. 
Various data processing steps can be used to manipulate the data as needed.  Derived data, such 
as data mining or clustering results, can be very useful for assisting in insight generation [Fayyad 
et al., 2001].  The second step, the heart of the visualization process, is to map the dataset into 
visual form.  The visual form contains visual glyphs that correspond to the dataset entities.  The 
third step embeds this visual form into views, which display the visual form on screen and 
provide various view transformations such as navigation. The view is then presented to the user 
through the human visual system.  Users interpret the view to (partially) reconstruct the 
underlying information.  Finally, users can interact with any of the steps in the pipeline to alter 
the resulting visualization, and make further interpretations.  This entire pipeline comprises an 
information visualization. 
 
<<Figure 2 here>> 
Figure 2:   
 
 



 
Figure 2:  The visualization pipeline, converting information into interactive visual 
representations (adapted from [Card et al., 1999]). 
 
 
 

2.1 Visual Mapping 
The visual mapping at the second step is the heart of visualization, and must be designed 
carefully.  The goal is to communicate information from computer to human.  The medium of 
communication is a visual representation of the information.  The dataset is computationally 
mapped into visual form by some function F, which takes the dataset as input and generates the 
visual representation as output.  Then, when the visual representation is communicated to the 
users, they must cognitively reverse the visual mapping by inverting function F to decode the 
information from the visual representation.  It is yet unclear how, when, and to what degree F-1 is 
cognitively applied in the perceptual process, and a variety of models exist [Ware, 2004].  While 
some cognitive reasoning operates on the visual representation itself, eventually meaning must 
be decoded.  Nonetheless, this visual communication process implies four important 
characteristics of the visual mapping function F: 

• Computable:  F is a mathematical function that can be computed by some algorithm.  
Although there is significant room for creativity in the design of these functions, the 
execution of the functions must be algorithmic. 

• Invertible:  It must be possible to use F-1, the inverse of mapping function F, to 
reconstruct the data from the visual representation to a desired degree of accuracy.  If this 
is not possible, the visualization will be ambiguous, misleading, or not interpretable. 

• Communicable:  F (or preferably F-1) must be known by the user to decode the visual 
representation.  It must be communicated with the visualization, or already known by the 
user through prior experience.  In usability terms, this is a learnability issue. 

• Cognizable:  F-1should minimize cognitive load for decoding the visual representation.  
This is a human perception and performance issue. 

 
The visual mapping step is accomplished by two sub-steps (Figure 3) [Card et al., 1999].  First, 
each data entity is mapped into a visual glyph.  The vocabulary of possible glyphs consists 
primarily of points (dots, simple shapes), lines (segments, curves, paths), regions (polygons, 
areas, volumes), and icons (symbols, pictures).  Second, attribute values of each data entity are 
mapped onto visual properties of the entity’s glyph.  Common visual properties of glyphs 
include spatial position (x, y, z, ?, ?), size (length, area, volume), color (gray scale, hue, 
intensity), orientation (angle, slope, unit vector), and shape.  Other visual properties include 
texture, motion, blink, density, and transparency. For example, in Figure 1, the U.S. counties are 
mapped to circular points.  Income and education levels of each county are mapped respectively 
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to the horizontal and vertical position of the point, and population value is mapped to the size of 
the point. 
  
<<Figure 3 here>> 
Figure 3:   
 

 
Figure 3:  A vocabulary of glyphs and some visual properties of glyphs (adapted from [Card et 
al., 1999]). 
 
 

2.2 Visual Properties 
In general, data attributes should be prioritized according to the problem requirements and 
desired insights.  The prioritization can then be applied to map the higher priority data attributes 
to the most effective visual properties.  Spatial position properties are the most effective, and 
should be reserved to layout the dataset in the visual representation according most important 
data attributes.   
 
The remaining visual properties, called retinal properties [Bertin, 1983], can be used next.  The 
effectiveness of these properties are determined by many interdependent factors including 
preattentive processing [Healey et al., 1996], perceptual independence (separability) [Ware, 
2004], data type (quantitative, ordinal, categorical) [Card et al., 1999], polarity (greater than, less 
than) [Ware, 2004], task [Carswell, 1992; Wickens & Hollands, 2000], and attention [Chewar et 
al., 2002].  Commonly accepted orderings of the effectiveness of these attributes are based on 
empirical evidence (e.g. [Cleveland & McGill, 1984; Nowell et al., 2002]), as well as experience 
[Bertin, 1983; Mackinlay, 1986].  The order shown in Figure 3 is intended for quantitative data.  
For categorical data, color and shape become more predominant. Some visualization design 
systems attempt to use such rules to automatically generate effective mappings (e.g. Apt 
[Mackinlay, 1986], Sage [Roth et al., 1994]). 
 
Finally, for any remaining attributes, interaction techniques can be applied.  In general, the direct 
visual mapping of information is the most effective for rapid insight, while interaction techniques 
require slower physical actions by the user to reveal insights. When mapping additional data 
attributes would overly clutter the visual representation and reduce comprehension of more 
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important attributes, interaction techniques can be used instead.  Interaction techniques enable 
users to alter the visual mapping function or other stages of the visualization pipeline, based on 
additional attributes.  By viewing the resulting changes in the visual representation, users can 
infer additional information about those attributes.  For example, the dynamic queries technique 
provides interactive query widgets for other attributes, and can be used to dynamically filter the 
entity glyphs [Ahlberg & Wistrand, 1995] (Figure 1). 
 

3 Information Structure 
The visual mapping process provides an initial starting point for visualization design, but more 
advanced methods are needed as data complexity increases.  Identifying underlying structures 
within the target information helps to further guide the design process. These structures provide 
high-level organization to a dataset, and often provide guidance for the design of appropriate 
visualizations.  Since these structures are likely to be very important to users’ mental models of 
the information, they are typically mapped to the spatial position attributes and form the primary 
layout of the visualization.  In general, there are four common types of information structures 
(adapted from [Shneiderman, 1996; Card et al., 1999; Spence, 2001]), discussed in the following 
subsections.  These are not strict or mutually exclusive classifications, but useful guidelines.   
  

3.1 Tabular Structure 
Tables consist of rows (entities) and columns (attributes).  This is often referred to as multi-
dimensional or multivariate data, because each attribute defines a dimension of the data space 
within which each entity identifies a single point.  Examples include databases and spreadsheet 
tables, such as the census data in Figure 1.  Visualizations of tables that contain a small number 
of attributes can be designed relatively easily using the visual mapping process.  However, such 
visualizations lack scalability to many attributes due to the limited number of non-conflicting 
visual properties to choose from.  To address this problem, a variety of creative methods have 
been developed for tables of many attributes.  Primarily, these involve the use of more complex 
glyphs and spatial layouts.  
 
TableLens [Rao & Card, 1994] (Figure 4a) preserves the tabular spreadsheet visual 
representation, but converts cells to horizontal bar glyphs with cell values mapped to bar length.  
This exploits the length property, which is excellent for encoding quantitative data.  Also, since 
the bars are very thin, many values can be packed onto the screen, providing an excellent 
overview of a large dataset.  TableLens encodes each data entity (row) with multiple glyphs 
(bars), one glyph for each of the entity’s attribute values (columns). Interactively selecting a set 
of rows will expand them to reveal the detailed data values in textual form.  Users can vertically 
sort the table by any attribute.  By spatially arranging the data according to one attribute, 
distributions and relationships to other attributes can be seen.  However, it is perceptually 
difficult to relate two non-sorted attributes. Hence, users must interactively sort each attribute to 
explore all potential relationships. The proximity compatibility principle [Wickens & Hollands, 
2000] predicts that representations that use a single glyph per data entity, such as in scatterplots 
(Figure 1), would be better than TableLens for recognizing relationships between attributes.  But 
as previously indicated, such representations are more limited in scalability.  Herein is the 
tradeoff: TableLens provides an overview of many attributes with reasonable capability for 



relationship insights.  Whereas, scatterplots provide excellent insight on relationships, but only 
for the 2 attributes mapped to x and y (and potentially a small number of other attributes using 
color, size, etc.). 
 
To analyze the scalability of TableLens, consider an approximate screen resolution of 
1000x1000 pixels.  If each bar glyph is only 1 pixel thick, 1000 data entities (rows) can be 
shown.  Columns will need to be approximately 50-100 pixels wide to enable reasonable visual 
discretion of quantitative data such as percentages, leading to 10-20 attributes visible.  Hence, 
this approach can display a tabular dataset containing 1000 data entities and 20 attributes.  Much 
larger datasets can be explored in TableLens by using its aggregation and interactive navigation 
(e.g. scrolling) strategies, but only 1000x20 values can be simultaneously perceived at a time.  
For datasets larger than the screen size, TableLens aggregates adjacent rows by showing 
averages or minimum and maximum values.  
 
The Cartesian coordinate system uses orthogonal axes to visually map 2 or 3 attributes of a 
tabular dataset to space.  However, orthogonal axes fundamentally limit scalability of attributes.  
As an alternative, Parallel Coordinates [Inselberg, 1997] (Figure 4b) displays attribute axes as 
parallel vertical lines.  Each data entity is mapped to a polyline that connects the entity’s attribute 
values on each attribute axis.  Hence, attributes are mapped to the vertical position of the 
respective vertices of the polyline.  Users can recognize clusters of similarly entities and 
relationships between adjacent attributes.  Patterns of crossing lines between adjacent axes 
indicate an inverse relationship between those two attributes, while non-crossing lines indicate a 
proportional relationship.  To combat occlusion and clutter, interactively selecting entities 
highlights their polylines across all axes.  A scalability analysis of Parallel Coordinates would 
give a result similar to that of TableLens.  Other arrangements of axes include radial [Kandogan, 
2000], or circumferential [Miller, 2004].   
  
<<Figure 4 a & b here>> 
Figure 4 a & b:   
 

 
 



 
Figure 4:  (a) InXight TableLens [Rao & Card, 1994] (Courtesy InXight), and (b) XmdvTool’s 
[Ward, 1994] Parallel Coordinates [Inselberg, 1997] (Courtesy Matthew Ward).  Both show the 
same dataset about automobiles.  Clearly, USA dominates the market in large, powerful, gas-
guzzling cars.  Two outliers, cars with large engines yet high MPG, are highlighted in TableLens 
revealing their detailed values.  TableLens sorts the data by one attribute, while Parallel 
Coordinates sorts all the attributes simultaneously. 
 
 
 
Use of more complex iconic glyphs includes star plots [Chambers et al., 1983], which map data 
attributes to the length of the radial needles emanating from a star icon, and Chernoff faces 
[Chernoff, 1973], which attempts to exploit the human ability to rapidly recognize facial features 
and expressions.  While these iconic methods do not scale up very well, they are useful for 
combining with other information structures (such as networks) because they leave the spatial 
position properties available for other uses [Ward, 2002]. 
 
The reverse approach is to simplify the glyphs and visual representations by splitting the 
attributes up into separate views.  For example, four attributes can be displayed using the x and y 
axes of two scatterplots.  An interactive technique called brushing-and-linking relates the two 
plots [Becker & Cleveland, 1987].  When users select glyphs in one plot (brushing), the 
corresponding glyphs for the same underlying data entities are highlighted in the other plot 
(linking).  Scatterplot matrices take this to the extreme, showing plots for all combinations of 
attributes pairs [Cleveland, 1993].  This brushing-and-linking technique can also be used to view 
a single dataset in several different visual representations at the same time, such as plots and 
geographic maps, and to relate the different contexts [Roth et al., 1996; North et al., 2002] (see 
Section 6.2). 
  



3.2 Spatial and Temporal Structure 
This structure has a strong one-, two-, or three-dimensional component in which navigation is 
likely to be required.  1D examples include timelines, music, video streams, lists, linear 
documents, and slide shows.  2D examples are road maps, satellite images, photographs, and 
blueprints.  3D examples are MRI and CT medical scans, CAD/CAM architectural plans, and 
virtual environments.  Continuous functions, including those with domains greater than 3 
dimensions, also fall in this category [Tory & Möller, 2004b]. These spatial and temporal 
structures are the most natural for mapping onto spatial displays. 
 
For example, the Music Animation Machine [Malinowski, 2004] (Figure 5a) provides a simple 
timeline representation of music that scrolls as the music plays.  Notes are represented as 
horizontal bars, with vertical position representing pitch, horizontal position representing timing, 
length indicating duration, and color indicating other attributes such as instrument, timbre, or 
hand (in the case of piano).  Similarly, LifeLines [Plaisant et al., 1996] represents events in a 
person’s medical history, but in a more compact form with zooming for navigation.  For 
timelines that contain periodic cycles, such as calendars, visual spirals can be used to proximate 
the cycles while maintaining a continuous line [Carlis & Konstan, 1998].  Streaming video can 
be viewed as a 3D video cube (2D frames + 1D time) [Elliott & Davenport, 1994]. 
 
In 3D data spaces, the main challenge is viewing the interior of the 3D structure beyond the 
exterior surface when occlusion is problematic.  Architectural walk-through applications 
(polygonal data) typically use first-person perspective projection, with 6 degree-of-freedom 
navigation for a life-like experience [Stoakley et al., 1995].  For medical imagery (volumetric 
data), strategies include slicing and transparency.  For example, the Visible Human Explorer 
presents 2D slices that can be animated through the 3D body [North et al., 1996].  In 3D volume 
rendering, transparency can give users x-ray vision into the space by adjusting the opacity of 
different materials within the space through interactive control of the visual transfer function 
[Kniss et al., 2001]. 
 
Hyper-dimensional continuous spaces must somehow be reduced to 3 or fewer dimensions for 
display.  Worlds within Worlds [Beshers & Feiner, 1993] (Figure 5b) displays subspaces of 
hyper-dimensional functions by nesting a 3D coordinate frame within another 3D coordinate 
frame.  The location of the origin (0,0,0) of the inner frame within the outer frame determines the 
values of the outer frames dimensions used to generate the subspace for the inner frame.  By 
interactively sliding the inner frame around the inside of the outer frame, the full space can be 
explored.  Repeated nesting can enable greater numbers of dimensions.  Other methods include 
hierarchical axes [Mihalisin et al., 1991], and slicing [van Wijk et al., 1993].   
 
 
<<Figure 5: (a) (b) here >> 
Figure 5 a & b: 
 



 
 

 
Figure 5: (a) Music Animation Machine [Malinowski, 2004] showing a portion of Bach’s 
Brandenburg Concerto #4, 3rd movement (Courtesy Stephen Malinowski).   
(b) Worlds within Worlds [Beshers & Feiner, 1993] nests inner coordinate frames within outer 
frames to decompose hyper-dimensional spaces (© 1993 IEEE). 
 
 
 



3.3 Tree and Network Structure 
This structure contains specific connections between individual entities.  In graph theory terms, a 
network consists of a set of vertices (entities) connected by a set of edges (connections), which 
can be either directed or undirected.  Like data entities, connections can also contain attributes.  
Examples include communications networks, literature citations, or web hyperlinks between 
pages.  Tree structures are a special subset of networks, and are distinct and common enough in 
digital information to warrant separate treatment.  Trees have a hierarchical structure that 
connects data entities by parent-child connections.  To be a tree, each child entity should have 
only one parent.  Examples include computer file directories, menu systems, organization charts, 
and taxonomies such as the Dewey decimal system. Other useful variants of tree structures exist, 
such as multi-trees [Furnas & Zacks, 1994] and polyarchies [Robertson et al., 2002].  New types 
of insights involve understanding the connection structure, such as the breadth or depth of the 
tree.  The primary challenge for visualization is the spatial layout of the network or tree to reveal 
the structure of the connections.  The secondary challenge is to also visualize data attributes of 
the entities and connections. 
 

3.3.1 Trees 
For tree structures, two primary approaches for visually representing parent-child connections 
exist:  link, and containment.  The link approach uses node-link diagrams.  Entities are mapped to 
visual nodes, and connections are mapped to visual links between the nodes.  Alternative spatial 
layouts of node-link diagrams include nested-indented (as in Windows Explorer or Mac Finder), 
top-down or left-right as in SpaceTree [Grosjean et al., 2002], radial as in Hyperbolic Tree 
[Lamping et al., 1995], or 3D ConeTrees that combine radial and left-right [Robertson et al., 
1993] (Figure 6a).  These systems emphasize the display of a single data attribute as a text label 
on the nodes.  Node-link diagrams tend to be space consuming, due to the amount of white-space 
needed within each of these spatial layouts, making it difficult to get beyond 100 or 1000 nodes 
visible.  Since large tree structures cannot be completely displayed on screen, each of these 
layouts requires interactive navigation.  The focus+context technique (section 5) is a natural 
match for tree navigation, enabling users to drill-down within an individual branch of focus in 
the tree while maintaining context of the path to the root and siblings.  Hyperbolic Trees shrink 
the size of nodes near the periphery to pack more nodes on the display.  3D approaches such as 
ConeTrees exploit the 3rd dimension for additional space to layout the tree, but due to occlusion 
it is unclear whether that extra space is useful.  The most important factor in 3D designs is the 
interactive navigation [Wiss & Carr, 1999].  Simple 6 degree-of-freedom camera movement 
through a static 3D scene is clearly not effective in these structures.  ConeTrees employs a much 
more efficient interaction technique, cascading rotation of the 3D cones to bring the desired child 
nodes to the front.  
 
The containment approach for tree layout is exemplified by Treemaps [Johnson & Shneiderman, 
1991] (Figure 6b).  Child nodes, represented as rectangles, are visually contained within their 
parent nodes as in Venn diagrams.  Treemaps are space-filling to maximize the use of every 
available pixel, and easily scale to 10,000 entities.  Data attributes are mapped to retinal 
properties of the node rectangles such as size and color.  Hence, Treemaps emphasize the 
visualization of non-textual attributes.  In dense Treemaps, there is not enough space left for 
textual node labels.  Nodes can be arranged within their parent node according to a variety of 



algorithms.  The original Treemap used a slice-and-dice algorithm.  It was simple, but tended to 
generate rectangles with many different aspect ratios, some square and some long narrow, that 
are difficult to visually compare.  Newer algorithms generate squarified treemaps [Bederson et 
al., 2002].  SunBurst [Stasko et al., 2000] offers a radial version of the containment approach 
based on the stacked pie chart.  In comparison to Treemaps, SunBurst can improve learnability 
for novices, but reduces scalability because the number of leaf nodes is limited by 1 dimensional 
circumferential space rather than the full 2 dimensional area available to Treemaps. 
 
<< Figure 6:  (a) and (b) here >> 
Figure 6 a & b: 

 



 
Figure 6:  (a) ConeTrees [Robertson et al., 1993] (© 1993 ACM, Inc. Included here by 
permission), and (b) SequoiaView [van Wijk et al., 1999] (Courtesy Jarke van Wijk) Treemap 
showing directory structures on a computer system.  ConeTrees emphasizes the tree structure and 
node labels, while Treemap emphasizes node attributes such as file size and type. 
 
 

3.3.2 Networks 
For visualizing networks, the node-link approach is dominant.  Many algorithms have been 
devised to spatially layout network diagrams [Herman et al., 2000], and are increasingly tuned to 
specific types of networks (Figure 7a).  Designs must consider network features such as number 
of nodes and links, directedness of links, node degree, any common patterns within the network 
structure, and attributes of nodes and links that should be visible.  Links can be drawn as straight 
lines, arcs, or orthogonal polylines.  Algorithms can apply aesthetic constraints such as 
minimizing link crossings, minimizing link lengths, maximizing symmetries, etc. [Ware et al., 
2002].  In general, the goal is to layout the network to reveal hidden network patterns, and avoid 
the ‘bowl of spaghetti’ phenomenon.  Some common layout algorithms include circular, 
layering, concentric layering, force directed, and clustering.  SeeNet [Becker et al., 1995] 
arranges communications nodes according to geographical position, and raises links off the 
surface as 3D arcs.  Arc properties such as color and line thickness are used to represent 
communications type and bandwidth. H3 [Munzner, 1998] arranges nodes inside a 3D sphere 
that can be rotated and navigated similar to Hyperbolic Trees. Navigation can be used to reduce 
network complexity by representing the network from the perspective of one node in focus 
[Andrews et al., 1995].   



 
A different approach is to visualize the network as an adjacency matrix [Hetzler et al., 1998] 
(Figure 7b).  An adjacency matrix emphasizes the connections instead of the nodes, mapping 
each potential connection to a cell in the matrix.  Finally, it is also possible to reduce networks to 
trees using minimum spanning trees or hierarchical aggregation [Feiner, 1988], thereby enabling 
the use of tree visualization methods. 
 
<<Figure 7:  (a) (b) here >> 
Figure 7 a,b: 

 



 
Figure 7:  (a) Map of the internet [Cheswick, 1998] color coded by major ISPs (Courtesy 
William Cheswick). 
(b) Connex [Hetzler et al., 1998] adjacency matrix representation of a relationship network 
(Courtesy Pacific Northwest National Laboratory). 
 
 

3.4 Text and Document Collection Structure 
This structure consists of arbitrary collections of documents, often text.  Examples include digital 
libraries, news archives, digital image repositories, and software code.  Of the four types of 
information structure, this type is the least structured and, hence, can be the most difficult to 
design visualizations for.  Text is particularly challenging to map to visual form, because it is not 
obvious how text can be the input to a mapping function as described in section 2.  Mapping 
functions must take advantage of the minimal structure and other characteristics of text to 
generate useful data for computing visual representations.  External structures of text or 
document collections such as tables of contents (tree structure), meta-data (tabular structure), or 
citations (network structure) are categorized as other types of information structures and 
discussed in the previous sections.  The emphasis of the structure described in this section is on 
the full text or the documents themselves.  Solutions range from the macro scale (overview of 
large collections) to the micro scale (a single document fragment). 
 
A major class of text visualizations focuses on providing semantic maps of large document 
collections based on document topics.  Generally, the goal is to spatially cluster documents in the 
visualization such that similar documents (documents containing similar content) are near each 



other, while dissimilar documents are distant.  This creates a map of the document space based 
on the metaphor of a physical library in which books are carefully arranged by topic.  Similarity 
between documents can be measured in many ways, and is generally the domain of information 
retrieval [Baeza-Yates & Ribiero-Neto, 1999].  A common method is to compare the frequency 
of occurrence of dictionary words or phrases between the two documents.  Densities of 
document clusters can then be analyzed to extract topic keywords for labeling the map.  
Document Galaxies [Wise et al., 1995] and Kohonen self-organizing maps [Lin, 1992] map 
individual documents to tiny dots that are clustered by text content.  Selecting a dot from the map 
reveals a document summary or opens the full document.  ThemeView [Wise et al., 1995] 
(Figure 8a) emphasizes the documents’ topics, creating a 3D terrain landscape representing the 
themes in the collection.  Themes are mapped to terrain landscapes of mountains, with theme 
strength mapped to mountain height.  Mountains that are adjacent or joined indicate the presence 
of documents that span both themes.  
 
The keyword query approach provides a more focused map, based on keywords specified by the 
user.  VIBE [Korfhage, 1995] visualizes how documents relate to the keywords.  It spreads the 
user’s keywords around the periphery of the display.  Then, document dots are mapped into the 
space according to their strength of match to each keyword, using a spring-based attraction 
model.  TileBars [Hearst, 1995] inverts the map, showing how the keywords relate to each 
document.  Document hits are listed as in a normal textual search engine, but each document has 
a tilebar that shows the density of the keywords in each section of the document. 
 
Lastly, documents can be arranged by the users themselves or by some default order.  Miniature 
representations of the documents can be displayed to promote browsing by content.  Web Book 
and Forager [Card et al., 1996] collects favorite web pages in a virtual 3D book that users can 
quickly flip through and visually scan.  Books can be arranged on a virtual bookshelf.  With 
DataMountain [Robertson et al., 1998], users arrange images of favorite web pages or photos on 
an inclined plane (Figure 8b), taking advantage of spatial memory for recall.  At the lowest level 
of text visualization, SeeSoft [Eick et al., 1992] visualizes the text of software code using a 
miniaturized representation.  It displays each line of text as a tiny colored line segment (more on 
SeeSoft in Section 4.2). 
 
<<Figure 8: (a) (b) here >> 
Figure 8 a, b: 
 



 
 

 
Figure 8: (a) ThemeView [Wise et al., 1995] represents common themes in a large document 
collection as labeled mountains in a landscape.  Probing reveals specific documents.  (Courtesy 
Pacific Northwest National Laboratory) 
(b) DataMountain [Robertson et al., 1998] lets users visually organize web favorites, documents, 
or digital photos for later recall (© 1998 ACM, Inc. Included here by permission). 
 
 



3.5 Combining Multiple Structures 
Frequently in real-world applications, information involves complex combinations of multiple 
information structures.  Furthermore, information of one structure type could be computationally 
massaged into a different structure type to offer new ways to conceptualize the information. For 
example, a single e-commerce website may consist of a text document collection of product 
pages, which also contains a network structure of hyperlinks, is organized by a tree structured 
site map, and has tabular meta-data about product prices and page accesses.  A visualization 
designer should consider each of these separate structures as a potential visual index into the 
underlying product information.   
 
A frequent insight goal in these situations is to relate the different structures.  However, 
designing a visual representation that effectively combines multiple structures is difficult.  Since 
a structure typically consumes the primary spatial portion of the visual mapping, combining 
multiple structures in a single mapping can result in conflict.  A primary decision is whether to 
attempt to combine them, or to separate the structures into multiple views [Baldonado et al., 
2000].  Multiple views simplify the design, since each structure can independently use its most 
optimal mapping.  The structures can then be related by interactive linking between the views 
(see Section 6.2).  Linking is useful for querying one structure with respect to another.  However, 
because interactive linking only reveals a small number of associations at a time, users must 
mentally integrate the relationships between the structures over time, and can easily miss 
interesting associations.  On the other hand, integrating two structures into a single view 
typically requires that one structure be used as the spatial basis, while the other is dismantled and 
embedded within that space.  This enables a clear representation of how the second structure 
depends on the first, but clarity of the second structure can be lost.  Another potential solution is 
animating or morphing between the two structures [Robertson et al., 2002].  
 
An example is PathSim [Polys et al., 2004] (Figure 9), an information-rich virtual environment 
for biology simulation, which combines 3D spatial structure of human anatomy with tabular 
structure of collected data about levels of viral infection within anatomical components.  In this 
design, the tabular data is visually embedded directly within the 3D anatomy as small 
manipulable visualizations adjacent to their corresponding anatomical components.  The tabular 
structure is dismantled to visually associate portions of the dataset with components in the 3D 
scene.  While this supports the task of understanding the effects in each anatomical component, it 
does not enable a single overview of all tabular results.  To overcome this, a heads-up display is 
included according to the multiple views approach.  It shows aggregated tabular information as a 
summary of what is visible in the entire scene as users navigate in the 3D anatomy. 
 
<< Figure 9 here >>  
Figure 9:   
 



 
Figure 9:  PathSim [Polys et al., 2004] reveals simulated viral infection data within the human 
anatomy, combining tabular structure with 3D spatial structure.  Zooming in or out navigates to 
lower or higher levels of anatomical structure, and correspondingly shows lesser or higher levels 
of aggregation of tabular data.  Here, we see the effects of an Epstein-Barr virus infection of the 
tonsils. 
 
 

4 Overview Strategies 
Designing methods for the visual representation of very large quantities of information is one of 
the fundamental problems in visualization research.  As information quantity increases, it 
becomes more difficult to visually pack all the information on the available screen space.  There 
simply are not enough pixels.  Even if there were enough pixels, it might appear visually 
cluttered to include all the details in a single display.  In general, a naïve visualization design 
would be to consume the entire display with the full detail of only a few of the data entities, and 
thereby limit the display to a relatively small portion of the full dataset.  This is analogous to 
peering into a vast room through a tiny keyhole, and is called the keyhole problem.  For example, 
the spreadsheet in Figure 1 shows the detailed numerical data, but the scrolling window only 
reveals about 40 rows at a time. 
 



To support visualization of very large information spaces, Shneiderman suggests the design 
mantra “overview first, zoom and filter, then details on demand” [Shneiderman & Plaisant, 
2005].  The solution to the keyhole problem is to start users with a broad overview of the full 
information space, sacrificing information details.  Then, provide interaction mechanisms that 
enable users to zoom in on desired information and filter out anything not of interest.  Lastly, 
quickly retrieve and display detailed information about individual data entities when selected by 
the user.  There are several advantages to providing an initial visual overview of the information: 

• Supports formation of mental models of the information space. 
• Reveals what information is present or not present. 
• Reveals relationships between the parts of the information, providing broader insights. 
• Enables direct access and navigation to parts of the information, by simply selecting it 

from the overview. 
• Encourages exploration. 

 
Empirical evidence confirms that the use of visual overviews results in improved user 
performance in various information seeking tasks (some studies are listed in [North, 2001; 
Hornbæk et al., 2002]).  In general, visualization designers should seek to densely pack as much 
information into the overview as cleanly possible.  A major design decision is choosing which 
information to percolate up to the overview and which information to bury in the lower detail 
levels reached only through user interaction.  This is somewhat analogous to choosing which 
products to show in the store window.  Ideally, an overview should provide some ‘scent’ of all 
the detailed information hiding beneath it [Pirolli & Card, 1999]. 
 
To create overviews that attempt to pack a large dataset onto a relatively small screen, there are 
two possible approaches in the visual mapping process:  (1) reducing the quantity of data in the 
dataset before the mapping is applied, or (2) reducing the physical size of the visual glyphs 
created in the mapping. 
 

4.1 Reducing Data Quantity 
One method for reducing the data quantity, while maintaining reasonable representation of the 
original data, is aggregation.  Aggregation groups entities within the data set, creating a new 
dataset with fewer total entities.  Each aggregate becomes an entity itself, temporarily replacing 
the need for all entities within the aggregate.  For example, a histogram applies aggregation to 
represent data distribution on one attribute [Spence, 2001]. 
 
When using aggregation, the first design decision is choosing which entities should be grouped 
together.  Entities can be grouped by common attribute values [Stolte et al., 2002], or by more 
advanced methods such as clustering algorithms [Yang et al., 2003] or nearest neighbors.  The 
next decision is determining the new attribute values of the aggregates.  Ideally aggregates’ 
values should be representative of the contained member entities.  Statistical summaries such as 
mean, minimum, maximum, and count are commonly used. Aggregation can be iteratively 
applied to generate tree structures of groups and subgroups [Conklin et al., 2002]. The final 
decision is the visual representation of the aggregates that, ideally, reveals some hint of their 
contents. Aggregate Towers [Rayson, 1999] (Figure 10a) spatially groups entities if they overlap 
on a map.  The aggregates are shown as towers whose height represents the number of entities in 



the aggregate.  Zooming out of the map causes further aggregation as needed, and zooming in on 
the map segregates towers until no towers are needed.  XmdvTool [Yang et al., 2003] (Figure 
10b) clusters tabular data in a parallel coordinates plot.  The extent of the contents of each 
aggregate is revealed by a glowing shadow that emanates from the aggregate’s polyline.   
 
Aggregation can also be applied to data attributes.  Dimensionality reduction methods reduce the 
number of data attributes in large multi-dimensional tabular datasets so that they can be more 
easily visualized [Rencher, 2002].  The reduced set of attributes should approximately capture 
the main trends found in the full set of attributes.  For example, Principal Components Analysis 
projects the data entities onto a subspace of the original data space that best preserves the 
variance in the data.  Multi-Dimensional Scaling uses measures of similarity between entities, 
based on their many attribute values, to compute a one-, two-, or three-dimensional mapping that 
spatially groups similar entities. 
 
Techniques for reducing data quantity based on filtering include:  VIDA [Woodruff, 1998] 
selects a representative subset of data entities, based on data density and entity importance.  
Spotfire [Ahlberg & Wistrand, 1995] relegates less important data attributes to interactive 
methods such as dynamic queries, eliminating them from the input to the visual mapping 
function. Tree structured information is easily reduced by simply filtering deeper levels of the 
tree to visualize the upper levels as an overview. 
 
<< Figure 10: (a) (b) here >> 
Figure 10 (a) & (b): 
 

 
 



 
Figure 10: (a) Aggregate Towers [Rayson, 1999] stacks military units that spatially overlap on a 
map.  The black footprints show the spatial coverage of each tower.  Zooming in separates the 
units. (© 1999 IEEE) 
(b) XmdvTool’s Parallel Coordinates clusters the data from Figure 4(b) into six entities to reduce 
clutter [Yang et al., 2003].  Colored shadows reveal the approximate spread of each cluster. 
(Courtesy Matthew Ward) 
 
 

4.2 Miniaturizing Visual Glyphs 
Alternatively, emphasis can be placed on miniaturization of the visual glyphs generated by the 
visual mapping process.  Tufte argues for increased data density in visual displays, by 
maximizing the data per unit area of screen space, and maximizing the data:ink ratio [Tufte, 
2001].  Higher data:ink ratio is accomplished by minimizing the quantity of “ink” required for 
each visual glyph, and eliminating chart junk that wastes ink on unimportant non-data elements.  
 
SeeSoft [Eick et al., 1992] (Figure 11a) provides an overview of textual software code using 
miniaturization.  Similar to TableLens (Figure 4a), each line of code is reduced to a single line 
segment of colored pixels whose length is proportional the number of characters in the line of 
code.  In this way, large software projects of up to 50,000 lines of code can be viewed in a single 
screen.  Color coding can be used to reveal other attributes of the lines of code, such as which 
programmer wrote it, whether it has been tested, or the amount of CPU time required to execute 
the line (code profiling).  Pixel Bar Charts [Keim et al., 2002] reduces the size of visual glyphs 
for tabular data to a single pixel, colored by one attribute and ordered on the display by another 
attribute.  The Information Mural [Jerding & Stasko, 1998] (Figure 11b) takes miniaturization to 
the sub-pixel level.  When many glyphs overlap and occlude each other, Mural visualizes the 
density of the glyphs like an x-ray image.  
 
<< Figure 11 (a) (b) here >> 
Figure 11 (a)(b): 



 

 
 

 
Figure 11:  (a) SeeSoft [Eick et al., 1992] provides a miniaturized visual overview of software 
code, coloring each line of code by an attribute such as date authored (Courtesy Stephen Eick).   
(b) Information Mural [Jerding & Stasko, 1998] shows the density of a parallel coordinates plot, 
enabling users to see hidden patterns within dense clutter that would otherwise be occluded as in 
Figure 4b (Courtesy John Stasko). 
 
 

5 Navigation Strategies 
After employing an overview strategy to provide a broad view of a large information space, the 
next design concern is that of navigation.  Interactive methods are needed to support the 
navigation between broad overview and the details of the entire information.  To support this 
need, three primary navigation design strategies have evolved:  Zoom+Pan, Overview+Detail, 
and Focus+Context.  These strategies reside at the third stage of the visualization pipeline, view 
transformation (see Figure 2). 
 
These navigation strategies should be contrasted with the naïve strategy called Detail-Only. 
Detail-only is the baseline strategy that does not employ an overview.  It provides only the 



detail-level view of a portion of the information space (like the spreadsheet in Figure 1a).  Users 
can navigate by scrolling or panning to access the rest of the information space.  In general, the 
detail-only strategy should be avoided.  The principle disadvantage is disorientation due to lack 
of overview, leaving the user lost in the information space and wondering:  Where am I?  Where 
do I want to go?  How do I get there? 
 

5.1 Zoom+Pan 
Zoomable visualizations begin with the overview, and then enable users to dynamically zoom 
into the information space to reach details of interest.  Users can zoom back out to return to the 
overview, and again zoom in to another portion of detail.  Users can also pan across the space 
without zooming out.  Zooming can be a smooth continuous navigation through the space as in 
Pad++ [Bederson et al., 1996] (Figure 12), or can be used to drill down through discrete levels of 
scale as in Treemaps [Johnson & Shneiderman, 1991].  While the zooming strategy provides for 
an overview, the primary problem that remains is disorientation when zooming in.  It is easy for 
users to become lost in the space when zooming in and panning, since the overview is no longer 
present. 
 
<< Figure 12 here >>   
Figure 12:   
 

 



Figure 12:  A zooming sequence in Pad++ [Bederson et al., 1996], from a web page to an 
embedded folder to an embedded text file (Courtesy Ben Bederson). 
 
 

5.2 Overview+Detail 
This strategy uses multiple views to simultaneously display an overview and a detail view.  A 
field-of-view indicator in the overview indicates the location of the detail view within the 
information space.  The views are linked such that manipulating the field-of-view in the 
overview causes the detail view to navigate accordingly.  Likewise, when users navigate directly 
in the detail view, the field-of-view updates to provide location feedback.  This strategy is 
commonly found in various map and image browsing software [Plaisant et al., 1995].  In SeeSoft 
[Eick et al., 1992], the miniaturized overview of text operates as a scrollbar for the detail view of 
the actual text (Figure 11a, center).  A zoom factor of 30:1 between overview and detail view is 
the usability limit for navigating 2D images, but intermediate views can be chained to reach 
higher total zoom factors [Plaisant et al., 1995].  In navigating 3D worlds, Worlds in Miniature 
[Stoakley et al., 1995] provides a small 3D overview map attached to a virtual glove (Figure 13, 
bottom center) to help orient users within the world.  Overview+detail preserves overview to 
avoid disorientation in the detail view, but suffers from a visual discontinuity between the 
overview and detail view.   
 
<< Figure 13 here >> 
Figure 13:   
 

 



Figure 13:  Worlds in Miniature [Stoakley et al., 1995] uses overview+detail for navigating 3D 
virtual environments (© 1995 ACM, Inc. Included here by permission). 
 
 
 

5.3 Focus+Context 
This strategy expands a focus region directly within the overview context.  The focus is enlarged 
and magnified to provide detailed information for that portion of the information space.  Users 
can navigate by simply sliding the focus across the overview to reveal details for other portions 
of the space.  To make room for the expanded focus region, the surrounding overview must be 
partially pushed back by distorting or warping the overview.  For this reason, this strategy is also 
referred to as fisheye [Furnas, 1986] or distortion-oriented [Leung & Apperley, 1994] displays.  
Without distortion, the magnified region would occlude the adjacent context like a magnifying 
glass.  Since the near context is the most important part of the context, the magnifying glass 
effect is undesirable, and distortion is required to preserve the overview.   In general, the focal 
point is magnified the most, and the degree of magnification decreases with distance from the 
focal point.  Careful design based on a variety of metaphors can help to minimize the negative 
effects of the distortion.   
 
Several variants of the focus+context strategy have been developed for navigating 1D and 2D 
spaces, including:  Bifocal [Spence, 2001] uses two distinct levels of magnification, like 
TableLens [Rao & Card, 1994] (Figure 4a).  Perspective wraps information on 3D angled 
surfaces, like the Perspective Wall [Robertson et al., 1993] (Figure 14a).  Wide-angle lens creates 
a classic visual fisheye effect, like Hyperbolic Trees [Lamping et al., 1995].  Non-linear uses 
more complex magnification functions to create a magnified bubble effect [Keahey & Robertson, 
1996] (Figure 14b).  As an alternative to spatial distortion, “focus+context screens” [Baudisch et 
al., 2002] offer resolution distortion which may provide a better match to the human visual 
system.  Fisheyes for navigating 3D spaces have also been developed [Carpendale et al., 1997].  
The focus+context strategy offers continuity of detail within overview context, but suffers from 
disorientation caused by distortion. 
 
<< Figure 14:  (a) (b)  here >> 
Figure 14 (a)(b): 
 



 

 
Figure 14:  (a) Perspective Wall [Robertson et al., 1993] wraps a 1D timeline around a bent wall.  
The front portion provides detailed information, and perspective side walls provide overview 
context.  (Courtesy PARC) 



(b) Non-linear magnification [Keahey & Robertson, 1996] can create this bubble effect which 
magnifies the focus region, squeezes the near context, and maintains an otherwise stable far 
context (© 1996 IEEE). 
 
 
While studies have repeatedly shown advantages of these three strategies over the detail-only 
strategy, comparisons between the three are inconclusive and highly dependent on the specifics 
of the individual designs, data domains, and user tasks (e.g. [Hornbæk et al., 2002]).  An analytic 
summary follows: 
Zoom+Pan: 

+ Screen space efficient 
+ Infinite scalability 
-  Lose overview when zoom in 
-  Slower navigation 

Overview+Detail: 
+ Stable overview  
+ Scalable; chained views; multiple overviews or foci 
-  Visual disconnect between views; back-and-forth 
-  Views compete for screen space; smaller overview 

Focus+Context: 
+ Detail visually connected to surrounding context 
-  Limited scalability; typically under 10:1 zoom factor 
-  Distortion; unstable overview 

 
 

6 Interaction Strategies 
Interaction strategies support further scalability and complexity of visualized information.  While 
it is preferable to visually map all data onto the display in a form that effectively reveals all 
desired insights without interaction, this is generally impossible for data of even modest 
complexity.  Interaction strategies overcome this limitation by enabling users to interactively 
explore additional mappings and insights over time.  Many interactive techniques exist.  A few 
major categories of interaction strategies should be considered in every visualization design. 
 

6.1 Selecting 
The most fundamental need in visualization is interactive selection of individual data entities or 
subsets of data entities. Users select entities to identify data that is of interest to them. This is 
useful for many reasons, including:  viewing detailed information about the entities (details on 
demand), highlighting entities that are obscured or occluded in a crowded display, grouping a set 
of related entities, or extracting entities for future use.   
 
In general, there are two possible criteria by which users can specify selections.  First, users can 
select data entities directly.  Direct manipulation visualizations enable users to directly select 
entities in a visualization using a variety of techniques [Wills, 1996], such as pointing at 
individual entities’ glyphs (as in Figure 4a), lassoing a group of glyphs, etc.  Second, users can 



indirectly select data entities through selection criteria on information structures (Section 3).  For 
example, XmdvTool [Ward, 1994] enables users to make selections in tabular data in parallel 
coordinates by specifying range criteria on data attributes.  In Figure 4b, all American-made cars 
are highlighted by selecting the ‘USA’ range on the ‘Origin’ axis.  Other structure-based 
selection techniques include selecting an entire branch in a tree structure, selecting a path in a 
network structure, or selecting a ThemeView mountain [Wise et al., 1995] in a collection 
structure.  Selection techniques should be designed to enable users to easily select entities, select 
additional entities into the current selection, remove entities from the current selection, and clear 
the selection.  Selecting is sometimes called brushing, because it is like painting glyphs with a 
special type of paint brush that behaves according to the selection technique. 
 

6.2 Linking 
Linking is useful to interactively relate information between multiple views [Baldonado et al., 
2000; North, 2001].  Information can be mapped differently into separate views to reveal 
different perspectives or different portions of the information.  The most common form of 
linking is called brushing and linking [Becker & Cleveland, 1987].  Interactive selections of 
entities in one view are propagated to other views to automatically highlight corresponding 
entities, enabling users to recognize relationships. This strategy enables users to simultaneously 
take advantage of the different strengths of different visual representations.  This is particularly 
useful for relating between different information structures (Figure 15), essentially using one 
structure to query another.  Users can select entities according to criteria in one structure, which 
then shows the distribution of those entities within the other structure. While linking is 
commonly used to relate two views of the same dataset in a one-to-one fashion, it can also be 
used to relate entities across many-to-many database relationships for more complex scenarios.  
Linking can also be combined with navigation strategies to enable other useful techniques such 
as synchronized scrolling, or specialized overview+detail combinations for drilling down 
through hierarchical data [North et al., 2002]. 
 
<<Figure 15 here >> 
Figure 15:  <<(top) and (bottom) parts should be placed together>> 
 
 
 
 
 
 



 

 
Figure 15:  Interactive brushing and linking between histogram plots (top) and geographic map 
(bottom) of a census counties dataset.  Histograms (tabular information structure) show data 
distributions for four county attributes, ‘percent population black’, ‘percent population with 
college degree’, ‘income per capita’, and ‘median rent’.  The map (2D spatial information 
structure) is colored by ‘percent farmland’.  Selecting the counties that are more than 25% 
African American in the first histogram also highlights those counties in the other views.  The 
highlighting in the map reveals that those counties are clustered in the south and south-east 
regions.  Selecting counties in the map would similarly highlight them in the histograms.  The 
histograms are generated by JMP [SAS, 2004], and map by ArcView [ESRI, 2004].  They are 
linked by Snap-Together Visualization [North et al., 2002]. 
 
 

6.3 Filtering 
Interactive filtering enables users to dynamically reduce information quantity in the display, and 
focus in on information of interest.  Dynamic queries [Ahlberg & Wistrand, 1995] apply direct 
manipulation principles to querying attribute values.  Visual widgets, such as the range slider 
(Figure 1b, right), enable users to rapidly adjust query parameters and immediately view filtered 
results in the visualization in real time.  The widgets also provide a visual representation of the 
current query parameters.  Because of the rapid feedback, dynamic query filters can be used not 
just for reducing information quantity but also for exploring relationships between mapped 



attributes and query attributes.  For example, in Figure 1, filtering with the query slider for 
“unemployment” to eliminate the low unemployment counties from the display reveals that 
counties with high unemployment are all in the low income and low education area of the plot.  
The rapid query feedback also eliminates the difficulty of zero-hit or mega-hit query results, 
because users can quickly adjust the query parameters to until a desirable number of hits is 
acquired.  For example, by further filtering on “unemployment” in Figure 1, users find that there 
are 11 counties with unemployment rate over 20%, mostly located near the border with Mexico.  
Dynamic queries are the inverse of brushing;  brushing highlights selected data, while dynamic 
queries elide non-selected (filtered) data.  Magic Lenses [Fishkin & Stone, 1995] offer a spatially 
localized form of filter.  For more advanced queries involving complex combinations of boolean 
operations, metaphors such as Filter Flow [Young & Shneiderman, 1993] enable users to 
construct virtual pipelines of filters. 
 

6.4 Rearranging and Remapping  
Since a single mapping of information to visual form may not be adequate, it is straightforward 
to enable users to customize the mapping or choose among several mappings.  Since the spatial 
layout is the most salient visual mapping, rearranging the spatial layout of the information is the 
most potent for generating different insights.  For example, TableLens [Rao & Card, 1994] 
(Figure 4a) can spatially rearrange its view by choosing a different attribute to sort by, and 
Parallel Coordinates [Inselberg, 1997] (Figure 4b) can rearrange the left-to-right order of its 
axes.  This enables users to explore relationships between different attributes.   
 
In general, any part of the mapping process throughout the visualization pipeline can be under 
user control.  For example, Spotfire [Ahlberg & Wistrand, 1995] users can customize the 
scatterplot view (Figure 1b) by choosing data attributes to map to various visual properties such 
as x, y, color, and size.  It also provides a variety of different visual representations to choose 
from, including heat maps (colored spreadsheets), parallel coordinates, histograms, and pie and 
bar charts.  Visage [Roth et al., 1996] emphasizes a technique called ‘data-centric’ interaction, in 
which users can directly select data entities and drag them to different views to display them in 
new ways.  At the extreme are systems such as Sage and SageBrush [Roth et al., 1994] that let 
users design new visual mappings for a dataset, using a set of basic primitives as described in 
Section 2.  Sage can also automatically generate certain visual mappings for a given dataset and 
task, using a rule-based expert system. 
 

7 The Future  
Information visualization is a relatively young field (e.g. the IEEE Symposium on Information 
Visualization started in 1995).  Significant further research is needed on new visual mappings, 
overview strategies, interaction and navigation strategies, evaluation methods, and guidelines.  A 
few critical areas of need that should be explored in the foreseeable future include: 

• Visualization of massive data:  Recent developments in intelligence analysis and 
homeland security require new abilities to analyze terabytes of textual, voice, and video 
data in unstructured collections.  Bioinformatics is driving the need for new methods to 
visualize mega-dimensional tabular datasets, containing 1000s or 1,000,000s of data 
attributes, and huge networks. 



• Integrating visualization with the analysis context:  Visualization is not an independent 
task, but must be integrated with data management, information retrieval, statistical 
analysis, data mining [Shneiderman, 2002], decision support, task management, and 
content authoring and publishing. 

• High-resolution visualization:  New high-resolution display technologies are becoming 
more common [Funkhouser & Li, 2000].  New visualization strategies must be devised to 
effectively take advantage of significantly increasing quantity of pixels and large physical 
screen sizes, and to explore the limits of visualization. 
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