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ABSTRACT
We discuss visualization and interaction challenges that arise in human-in-the-loop visual analytics
systems, with focus on those with multiple computational models in the pipeline between data and
visualization. A fundamental challenge in such systems lies in disambiguating interactions, mapping
interactions to the appropriate model, and determining how systems learn this disambiguation from
user interactions. Similar challenges exist in determining the visual style of a system, determining the
tasks that the system supports, and in the algorithms selected for the visualization system.
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INTRODUCTION

Figure 1: Andromeda, an interactive vi-
sual analytics tool that enables the explo-
ration of high-dimensional quantitative
data projections.

In recent years, analysts haveworked to explore and draw conclusions from increasingly larger datasets,
growing both in cardinality and dimensionality. Visual metaphors for exploring high-dimensional
datasets come in a variety of forms, each with their own strengths and weaknesses in both visu-
alization and interaction [7, 11]. One frequently-used method of visual abstraction is to reduce a
high-dimensional dataset into a low-dimensional space while preserving properties of the high-
dimensional structure (e.g., clusters and outliers) [8]. Because many dimension reduction algorithms
rely on a “proximity ≈ similarity” metaphor, implicit clusters of similar items naturally begin to form
in the projection. This stands in contrast to explicit clusters as identified by clustering algorithms.
An example of these implicit clusters is shown in Figure 1, a visual analytics tool presented at the
previous CHI HCML workshop by Self et al [13]. This tool, Andromeda (Figure 1), provides analysts
with the ability to interactively explore projections of high-dimensional data by learning weights on
the dimensions of the dataset. Of particular interest to HCML researchers is the process of learning
weights in response to user interactions, termed observation-level interaction [5].

Using the pipeline representation from Dowling et al. [4], Andromeda can be represented as a
single Similarity Model that bridges the dataset and visualization (Figure 2). In this representation,
the Forward Computation of the Similarity Model handles the data projection, while the Inverse
Computation supports the weight learning stage. Despite its computational simplicity, a significant
number of visualization and interaction challenges exist in such a system, as further detailed by Self
et al [14]. One notable challenge is the disambiguation of the interaction, or in other words, when an
analyst repositions an observation in the projection, what are they moving it with respect to?

Figure 2: A pipeline representation of An-
dromeda, with a Similarity Model con-
necting the dataset and the visualization.

Say that we wish to update Andromeda to support explicit clustering in the projection, identifying
clusters and allowing analysts to interact with them. Naturally, a pipeline that incorporates multiple
models (or a multi-model pipeline) will result in a broader set of challenges, expanding the “with
respect to what” problem and introducing further issues. Indeed, the visualization and interaction
challenges involved in such a system expand greatly as models are added to the computational
pipeline. Such multi-model systems are becoming prevalent in visual analytics research, and include
but are not limited to other combinations such as relevance and similarity [2] and sampling and
projection [10]. In this work, we detail multi-model system challenges, specifically using a dimension
reduction and clustering pipeline (Figure 3) and system (Figure 4) as a representative example [15].

Figure 3: Amulti-model pipeline represen-
tation of a system that incorporates both
dimension reduction (similarity) and clus-
tering in a single system.

DIMENSION REDUCTION AND CLUSTERING AS A COMPLEX, MULTI-MODEL EXAMPLE
Though dimension reduction and clustering algorithms serve different cognitive purposes (spatializing
and grouping, respectively), we noted in the previous section that they can often take on similar
effects within a projection – groups of points that are similar as a result of the dimension reduction



Machine Learning from Interactions in Multi-Model Visual Analytics CHI’19, May 2019, Glasgow, UK

distance function will naturally begin to form clusters. However, clusters are inherently subjective
structures, making their identification by both humans and machines a challenging process. Previous
research has shown that humans use a variety of organizational principles to cluster information [3],
even when addressing the same task [1]. In order to computationally identify clusters, hundreds of
clustering algorithms have been implemented, each with strengths and weaknesses. Indeed, there is
no universally-optimal clustering algorithm. Instead, the best clustering algorithm to solve a problem
is often determined experimentally [6]. Therefore, introducing a clustering algorithm to explicitly
define these implicit clusters (Figure 4) in a dimension-reduced projection presents challenges for
visualization developers and designers.

Figure 4: A system incorporating dimen-
sion reduction and clustering in a single
system using convex hulls to represent
clusters [17].

Though the underlying cognitive actions of grouping and spatializing are different, the result of
the corresponding algorithms in a projection can be similar. As a result, the combination of dimen-
sion reduction and clustering algorithms into a single computational pipeline results in interaction
ambiguity that must be resolved.

INTERACTION CHALLENGES
Disambiguating Interactions on Observations
The introduction of a clustering algorithm and explicit clusters into an interactive dimensionally-
reduced projection further complicates the “With respect to what” problem identified by Self et al [13].
Instead of simply identifying a corresponding observation or set of observations to complete the
interpretation of the interaction, manipulation of cluster membership must be taken into account.
Our previous work [17] attempts to resolve this issue by only treating reclassification interactions as
meaningful to the computational backend, but the general challenge to disambiguate such interactions
is much broader [16]. We suggest the following dimensions to consider when interpreting the intent
of an interaction:

• Interaction Target: The interaction could be applied to the observations, the clusters, or both.
• Cardinality: The interaction could be applied to the nearest observation, the nearest n obser-
vations, a cluster, or all observations in the projection, among other possibilities.

• With Respect to What: Is the important relationship relative to other observations in the
projection at the source of the interaction, the destination of the interaction, or both?

• Level of Thinking: When performing the interaction, is the analyst thinking high- or low-
dimensionally? In other words, is the analyst merely altering the projection, or are they consid-
ering all properties of a group of observations?

• Visual Design: Is the intent of the interaction influenced by the way that observations and
clusters are encoded in the visualization?

With these dimensions in mind, a designer can better strive to better map interactions to intent.
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Disambiguating Cluster-Specific Interactions
The previous research challenge is focused on interactions with observations and the responses that
address those interactions, but the introduction of explicit clustering further leads to a set of cluster-
specific interactions that should be supported. Some of these are listed in Table 1. Disambiguating
the intent of such interactions is a related but separate challenge, especially in hierarchical clustering
systems. For example, if an analyst drags one cluster into another, is their intention to join the clusters
into a single structure or is it to make one cluster a child of the other?

Table 1: A set of cluster-specific in-
teractions that include some inherent
ambiguity.

Interaction

Cluster Change in Membership
Move cluster into cluster
Move cluster out of cluster
Move cluster between clusters
Move cluster external to clusters
Move cluster within a cluster

Join/Split Clusters
Join Clusters
Split Clusters

Create/Remove Clusters
Create Cluster
Remove Cluster

VISUALIZATION CHALLENGES
The Effect of Clustering Representation
Some previous work has addressed options for encoding cluster membership. Saket et al. [12] evaluate
three options for encoding cluster membership (node, node-link, and node-link-group), relating each
to the effectiveness of performing node- and group-based tasks (Figure 5). Similarly, Jianu et al. [9]
evaluate the Linesets, GMap, and BubbleSets encoding techniques, along with a more traditional
node-link diagram. However, these studies resulted in some conflicting findings. In particular, Saket
found that the addition of group encodings does not negatively impact time and accuracy on node-
based tasks, but Jianu saw a 25% time penalty on such tasks. The fact that such conflicting results
appear in a single-model clustering system will lead to larger complications in a multi-model system.

Figure 5: Three options for encoding clus-
ter membership, as studied by Saket et
al [12].

Ordering the Computational Models
The order in which models appear in the computational pipeline can also have effects on both the
visualization and the supported interactions, even if the same visual interface can support multiple
backend pipelines. Figure 6 shows six possibilities for ordering just these two models in a computa-
tional pipeline. For example, the Independent Algorithms pipeline computes both the position in the
projection and the cluster membership of each observation using only the high-dimensional data. The
Dimension Reduction Preprocessing for Clustering pipeline, in contrast, projects the high-dimensional
data into its low-dimensional form, and then clusters the data based on the reduced-dimensionality
representation. This can enable the clustering algorithm to run more quickly and may produce more
compact clusters visually, though this comes with a slight loss in clustering accuracy. As a third option,
the clustering algorithm can run on the high-dimensional data and assign each observation to a
cluster, with the cluster centroids then being the primary layout mechanism in the low-dimensional
projection. This can enable more rapid projections while providing accurate cluster membership
assignments, though with possible inaccuracies in precise observation positions in the projection.

The variety of computational pipelines further leads to difficulties in inferring the intent of an analyst
interaction. For example, repositioning an observation from one cluster to another in a Dimension
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Reduction Preprocessing for Clustering system may imply an inaccuracy in the low-dimensional
assignment, a result of the clustering computation running on the low-dimensional data. The result
of such an interaction may be an update to the projection weights to correct for this misclassification.
However, the same reclassification interaction in a Clustering Preprocessing for Dimension Reduction
system would imply an actual misclassification of that observation in the high-dimensional space,
leading to the need to reweight the dimensions applied at the clustering stage to make this correction.

Figure 6: Six methods for ordering dimen-
sion reduction and clustering algorithms
in a computational pipeline for visual an-
alytics [15].

RESEARCH AGENDA
Beyond the challenges articulated above, much more research is needed in the area of human-
in-the-loop visual analytics, regardless of whether the systems are single- or multi-model. Indeed,
space limitations here prevented the discussion of challenges that exist in which algorithms are
selected, which tasks are supported, and how to best evaluate such systems. At a high level, the
overarching research question is focused on capturing the cognitive intent of an analyst’s interactions
and responding appropriately. In particular, we note some open research questions here:

• What kinds of interactions can best provide feedback to machine learning algorithms?
• What can machine learning algorithms learn from interactions?
• How can machine learning algorithms be best designed to enable user interaction and feedback?
• How can visualizations and interactions be designed to best exploit machine learning algorithms?
• How can visualization system architectures be best designed to support machine learning?
• How should a designer manage conflicts between the analyst’s intent and the data or machine
learning algorithm capabilities?

• How can we evaluate systems that incorporate both machine learning algorithms and user
interaction training together?

• How can machine learning and user interaction together make both computation and user
cognition more efficient?

• How can a designer best support the sensemaking process by learning from user interaction?
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