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Abstract

In the study of complex physical systems, scientists use simulations to study the effects of different models and parameters. As
they seek to understand the influence and relationships among multiple dimensions, they typically run many simulations and vary
the initial conditions in what are known as 'ensembles'. Ensembles are then a number of runs that are each multidimensional
and multivariate. In order to understand the connections between simulation parameters and patterns in the output data, we
have been developing an approach to the visual analysis of scientific data that merges human expertise and intuition with
machine learning and statistics. Our approach is manifested in a new visualization tool, GLEE (Graphically-Linked Ensemble
Explorer), that allows scientists to explore, search, filter, and make sense of their ensembles. Our tool uses visualization and
semantic interaction techniques to enable scientists to: find similarities and differences between runs, find correlation between
different parameters, and explore relations and correlations between different runs and parameters. Our approach supports
scientists in selecting interesting subsets of runs to investigate and summarizing factors and statistics to show variations and
consistencies across different runs. In this paper, we evaluate our tool with experts to understand its strengths and weaknesses
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for optimization and inverse problems.
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1. Introduction

Recent advances in computing power and the availability of high-
performance computing have led to the feasibility of running com-
plex real-world simulations in an acceptable amount of time. Sci-
entists usually need to run their simulations multiple times using
different input conditions, simulation parameters, and simulation
models. This supports the scientist in interpreting the variability
in the system and gaining insights by alternating between models.
Through these multiple runs, they can gain a more complete under-
standing of the simulated phenomenon and model, and refine their
hypothesis and method for actual physical experiments. A set of
simulation runs is known as an ensemble: it represents a param-
eter study or a set of studies using different computational mod-
els and paramters. Scientists from a variety of disciplines, such as
aerodynamics, weather forecast climate, and computational fluid
dynamics, use ensembles to simulate complex systems, explore
unknowns in initial conditions, evaluate extreme cases, compare
structural characteristics of their models, and investigate parameter
sensitivity to assess the confidence in their findings. In other words,
this guides the scientist in interpreting the distributions within the
data, investigating the sensitivity of outputs to certain input param-
eters and understanding the similarities and dissimilarities between
ensemble members.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

The analysis of ensemble data is a challenging task due to its
high multidimensionality, complexity, and size. Therefore, ensem-
ble visualization is a crucial and essential component in the analysis
process as it facilitates knowledge discoveries and helps the scien-
tist see the characteristic features of the data through graphical rep-
resentations. Such analysis of ensembles can help them find appro-
priate models and parameter ranges for hypothesized relationships
and outcomes. Moreover, ensemble visualization helps in measur-
ing the variability and sensitively of the model to its inputs and out-
puts and how output parameters react to input changes. Therefore,
the focus of this paper is the visual exploration and comparison of
the behaviors of simulations and their parameters.

Current research in the visual analysis of ensembles relies on
multiple techniques for showing the variability of the ensem-
ble members, major trends, and outliers. Some of these tech-
niques focus on studying the parameter space and measuring
the correlation between different parameters. Summary statis-
tics [PKRJ10, BPFG11, PWB*(09a, MWK 14, WMK13, SEG*15],
spaghetti plots [DNCP10, Det05], and probabilistic features such
as multivariate Gaussian distributions, histograms and kernel den-
sity estimates (KDE) are examples of these techniques [PPHI12,
PW12]. Additionally, conventional visualization solutions such as
glyphs [HLNW11,PKRJ10,PMW13,SZD™10] and visual variables
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[BWEO0S5, DKLPO02], are used to model uncertainty in parameter
space. However, some of these techniques have limited capabili-
ties to show the intrinsic structures in the ensemble, and some of
them are designed to work with 1D or 2D datasets.

Alternatively, other techniques study the shape and variability
of the ensembles themselves. These techniques are divided into
two broad groups, one that aggregates multiple ensembles creating
an overview about the variability between ensembles while omit-
ting potentially the details from the original ensembles [PWB*09b,
CB12]. The second group supports the comparison between the en-
semble members providing a better view but is limited to a certain
number of ensembles [HHH15, FML16]. Most of these ensemble
visualization techniques are tailored for time-varying ensembles for
specific application areas (i.e., specifically weather and climate).

Our initial motivation was to develop a visual analysis tool that
helps the scientists irrespective of their application discipline to
make sense of their ensemble of runs. However, we found out the
most of the techniques used focus on either parameter space or en-
semble exploration with little intervention from humans. Although
there is a disagreement about the optimal way to visually analyze
ensemble data, we argue that integrating statistical, parameter, and
ensemble displays in multiple coordinated views can help the sci-
entists in exploring relations between ensemble members and pa-
rameters more efficiently. Displaying summary statistics only may
suffer from misinterpretation due to size information. Alternatively,
using ensemble display only may help in overweighting individual
ensemble members leading to incorrect decisions. Therefore, inte-
grating multiple displays using brushing and linking techniques for
selecting or manipulating ensembles or regions of interest can help
scientists gain a better understanding of their data as each visual
display is designed to highlight certain aspects of the uncertainty
within the data. As a result, we targeted a multi-view tool that helps
scientists to make-sense of ensemble data during the interactive ex-
ploration process regarding both parameter space or ensemble runs
while keeping human in the loop.

This paper proposes an interactive visual approach for explor-
ing and analyzing the influence of parameters across the ensem-
ble of simulations; we demonstrate a novel method for the explo-
ration, comparison, and analysis of high-dimensional patterns and
outliers. In other words, our tool not only enables scientists to iden-
tify the similarities and dissimilarities between ensemble members
but also where and why these relationships exist. It also allows sci-
entists to study sub-regions of interest in the simulation domain,
helping them understand the correlations between parameters and
result variables. Additionally, the statistical view would enable sci-
entists to quantify and verify their hypotheses and validate their
findings by presenting various summaries and descriptives of sub-
sets. Our approach builds upon semantic interaction and statistical
techniques with brushing and linking technique to visually analyze
the high-dimensional parametric relationships within an ensemble.
This enables our tool to work with any type of data, thus covering a
broad range of application domains. In summary, the contributions
of this paper are as follows:

e A new visual analysis approach that helps scientists make-sense
of ensembles behaviors, patterns, and outliers for high dimen-
sional data using both inputs as well as output parameters.

e Coupling interactive visual analysis and statistical summaries
to detect and analyze characteristics of parameter spaces across
multi-dimensional ensembles. In other words, determine the in-
fluence and sensitivity of different parameters of simulation re-
sults.

2. Related Work
2.1. Ensemble Visualization

Ensemble analysis and visualization belong to the area of uncer-
tainty visualization, which is used for assessing uncertainty and
variability of ensemble members. The common features of en-
semble data are large size, high complexity, multi-dimensional,
multivariate, and covers various scientific disciplines (i.e., such as
ocean simulations [HMZ* 14], weather and climate prediction and
analysis [SZD*10, NFB0O7, PWB*09a, BLLS17], and high-energy
physics [PPA*12] ) that usually have temporal and spatial informa-
tion, making its analysis and visualization a challenging task. This
has motivated many researchers to develop a wide variety of tech-
niques, approaches, and surveys [BHJ* 14, MRH*05,BOL12,0J14]
to help scientists in analyzing the relationships between and within
ensemble members.

Numerous approaches and tools have been devoted to fit exist-
ing visualization techniques to support the analysis of simulation
ensembles. Some of them focused on the statistical distribution
and properties of the ensemble members to provide quantitative in-
formation about the uncertainty in the data [HOGJ13, PWB*09b,
SZD*10], while others visually explore ensemble runs, their pa-
rameter space, and the relationships and correlations between them.
Summary based ensemble visualization techniques show the statis-
tical distribution of the ensemble members (i.e., at least the mean,
median, and some indication of the data spread) by offering dif-
ferent ways to visualize ensemble fields using color maps, con-
tours, animation, opacity, boxplots, or glyphs [HLNW11,PMW13,
ZWK10,CBDT11]. Box plots [MTL78] represents the distribution
of the data by encoding the maximum and minimum values, mean,
median, and other quartile information. Kao et al. [KLDP02] ex-
tended the traditional boxplot to support 2D ensemble data where
the statistics are visualized on a 2D plane using color mapping
and glyphs. They also used probability density function (PDF) as
voxel values to handle statistics for 3D volume [KDPO1]. Potter
et al. [PKRJ10] proposed another extension of box plots that in-
tegrated multiple descriptive statistics (i.e., such as mean, standard
deviation, kurtosis, skewness, and tailing information) into a a sum-
mary plot to convey additional information about the distribution of
the data. Alternatively, Sanyal et al. [SZD*10] enhanced spaghetti
plots by developing a tool, Noodles, that displays multiple isocon-
tours using glyphs and confidence ribbons to highlight the spread
of 2D contour ensembles.

Although these approaches showed different representations of
statistical distributions, they can not work well with dense 2D/3D
data and can not efficiently differentiate some distributions within
one or two values. To overcome these limitations, Bensema et al.
[BGOJ16] focus on the modality of data distributions of ensemble
members to define high-variance locations in the ensemble while
Chen et al. [CZC™*15] differentiate the distributions of the ensemble
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members having similar mean using uncertainty-aware projection
scheme. Moreover, Whitaker et al. [WMK13] proposed the idea of
contour boxplot, as an extension to traditional boxplot, to visual-
ize the spread, outliers, and variability in ensembles of spatial con-
tours. Inspired by contour box plots, curve box plot [MWK14] was
proposed to handle spatial curves in the ensemble focusing on re-
vealing the variability in ensemble pathlines. Both tools are based
on the concept of statistical data depth that helps in showing the
centrality of members of an ensemble and overcoming the visual
cluttering limitations of spaghetti plots.

Inspired by contour variability plots, Demir et al. [DJW16]
proposed a tool to analyze the central tendency of ensembles of
2D and 3D shapes using mixture models. Similarly, Ferstl et al.
[FBW16] proposed an approach to statistically model the distribu-
tion of streamlines through deriving clusters that show the signif-
icant trends in the ensemble. Although these tools offer different
visualization and visual analysis tools to understand the statistical
distributions of output data, they did not consider the exploration
methods for the input parameters, i.e., they do not allow the users
to use input parameters in the analysis process. Moreover, most of
these approaches only display statistical information about ensem-
ble members (i.e, usually users are not able to interact with the
statistical representations, they are just used for display) without
connecting it to ensemble members which hinder a comprehensive
analysis of the simulation features in the ensemble.

The visual analysis of ensemble parameter space to explore the
relationships between the simulation parameters is a very challeng-
ing problem that attracted significant attention in the recent years.
Bruckner et al. [BM10] proposed a density-based clustering of ani-
mation sequences to visually analyze parameter space to help visual
effect designers in finding the appropriate parameters for the de-
sired results. Similarly, Beham et al. [BHGK14] proposed the Cu-
pid system for geometry generators that combines abstract parame-
ter space of geometry generators with the output space of the result-
ing shapes to help users in identifying similar behavior in different
ensemble members. Although these approaches incorporated anal-
ysis of input and output parameters, they are not designed to work
with scientific data. Additionally, they are designed to analyze one
simulation run at a time. On the other hand, Alabi et al. [AWH*12]
compare ensemble members using a side-by-side comparison of
surfaces in 3D to illustrate ensemble geometries and show the dif-
ferences and similarities between surfaces. Phadke et al. [PPA*12]
presented another technique for ensemble exploration and compar-
ison using pairwise sequential animation and screen door tinting.
Pairwise sequential animations use shape, color, and size for com-
paring data between pairs of ensemble members while screen door
tinting shows the differences between ensemble members using
value changes to field points. Similarly, Piringer et al. [PPBT12]
compared 2D function ensembles on three levels of details ( i.e.,
surface plot, domain-oriented, and member-oriented) to enables
scientists to have domain overview as well as a detailed view of
ensemble members. Alternatively, Hao et al. [HHBY 16] presented
a static ensemble visualization system that helps scientists to find
interesting subsets of ensemble members using hierarchical clus-
tering. Moreover, Demir et al. [DKW16] compared and visual-
ized 3D scalar field ensembles using mean isosurface surrounded
by a spaghetti plot of silhouettes of individual ensemble members
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while Hazarika et al. [HDS16] visualized ensemble isosurfaces us-
ing color-mapping to represent the distance from the median sur-
face. Although these approaches offer different ways to visualize
and compare different data types(i.e., 2D and 3D), they are limited
in the number of ensemble members that they visualize.

Other visualization techniques for ensemble and parameter space
representations embed brushing and linking technique into coor-
dinated multiple views to show the different facet of ensemble
members in different displays. MatkoviAG et al. [MGKHO09] pro-
posed multi-linked views to visualize ensemble data as families of
data surfaces with respect to pairs of independent data dimensions.
Later, they extended their work to model three different levels of
detail (using scatterplot, curve view, or a histogram) [MGJ*10]
and to support interactive interaction plots for better exploration
and analysis of high-dimensional parameters [SEG*15]. Similarly,
Demir et al. [DDW14] proposed multi-chart visualization with
brushing and linking to explore summaries of a 3D volumetric en-
semble in different regions. Alternatively, Liu et al. [LS16] used a
series of parallel coordinates plots (PCPs) in multiple coordinated
views to explore relationships between scalar values in a multivari-
ate context. Extending the idea of parallel coordinate plots to in-
vestigate parameter correlations, Wang et al. [WLSL17] proposed
a nested PCP that combines superimposition and parallel design to
explore intra-set and inter-set correlations between different param-
eters.

Similar to our proposed approach, Hollt et al. [HMZ"14,
HAMRHHI16], aboulhassan et al. [ASB*17], and Cibulski et al.
[CKS*17] proposed multi-linked views that integrate ensemble vi-
sualization with statistical plots to facilitate the understanding of
ensemble characteristics. However, all these techniques focus on a
specific application domain that works well with spatial data. They
also did not consider the effect of both inputs and outputs parame-
ters on the simulation ensemble. Some of them focus on either en-
semble members analysis or parameter space analysis. In contrast
to those works, we focus on the effect of both ensemble parameters
(i.e., inputs and outputs) and ensemble members during the simu-
lation ensemble analysis. We also incorporate human in the loop
through semantic interactions to power the visual analysis process.

2.2. Spatial Sensemaking and Semantic Interaction

Visual analytics tools help analysts to get insights about the data
through a sensemaking loop [PC05]. Spatial sensemaking envi-
ronment shows how users interact with a spatialization for ex-
ploratory data analysis. To gain better insights about the data,
spatial sensemaking is usually integrated with semantic interac-
tions. Semantic interaction merges the foraging abilities of statisti-
cal models with synthesizing process to keep the sensemaking loop
tight [HBM™ 13,EFN12a,EBN13]. This helps users to test hypothe-
ses without the need to understand the underlying models. Prior re-
search has shown some tools for spatializations which externalize
knowledge to steer the sensemaking process [AEN10].

However, this externalization requires the use of control pan-
els outside the spatial metaphor [TG07]. Additionally, these tools
do not scale well,so to resolve this problem, the user interaction
should be within the spatial metaphor. Dust & Magnet [SYMSJO05]
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uses parametric interaction to adjust the model’s parameters within
the same spatial metaphor. It uses dimension weights as parame-
ters for their model. These weights are represented with magnets
in the visualization layout. The user can interact with these weights
(parameters) to update their importance. Although this provides an
intuitive way to control parameter within the spatialization, these
magnets are attributes of the data, not data itself.

On the other hand, tools such as ForceSPIRE [EFNI2a,
EFN12b], Dis-function [BLBCI12], Andromeda [SH] and Star-
SPIRE [BNH14] allow the user to interact with data points and
translate this feedback through dimensionality reduction algorithm
to a new view that reflects user's interaction. This helps in pro-
viding an intuitive space for strengthening insight creation and
data understanding. High dimensional data, in particular, is hard
for users to understand because humans are limited in the num-
ber of dimensions that they can think of simultaneously. Therefore,
a number of dimension reduction techniques have been developed
and incorporated into interactive visual analytics to make the data
more manageable [SH]. The work done in this paper builds on An-
dromeda [SH]. Andromeda is a visual analytics interface for ex-
ploring high-dimensional data using observation-level interaction
(OLI)(i.e., type of semantic interaction), parametric interaction and
multi-dimensional scaling (MDS) (i.e., dimension reduction tech-
nique ) enabling users to gain more complex insights and accom-
plish new types of tasks.

3. Approach

The fundamental objective of any ensemble visualization is to an-
alyze and make sense of the relationships among the ensemble
members and their various parameters. In this paper, we demon-
strate a multi-view visualization tool that uses semantic interac-
tions, statistical visualizations, and linking and brushing technique
to help scientists visually explore and analyze simulation ensem-
bles. Our tool, GLEE (Graphically-Linked Ensemble Explorer),
demonstrates the power of our approach. The main advantage of
our approach is enabling scientists to understand and make sense
of both runs and parameters in the same visualization application.
Existing research seems to focus on supporting insight into one
or the other. Moreover, most of the prior research uses only link-
ing and brushing for human interaction with the visualization. Our
novel contribution is using Semantic Interaction so that the ensem-
ble view is not just a display view, users can directly manipulate
runs of an ensemble spatially, in order to make sense of their rela-
tionships and explore how various parameters are related.

3.1. Visualization Domains
3.1.1. Parameter Domain

A parameter setting is a combination of values used for different
parameters in one run of the simulation. Multiple runs of the sim-
ulation model use different parameter settings. A collection of all
parameter settings used in an ensemble is a parameter domain. Con-
sidering each parameter as a dimension, multiple parameters with
different settings form a high-dimensional space.

3.1.2. Ensemble Domain

The output from one execution of the simulation model constitutes
one ensemble member. Multiple simulation runs produce multiple
ensemble members. All members of one ensemble usually contain
the same number of parameters but with different values.

3.2. Task Analysis

Working closely with scientists from different domains, we
observed that most of them have mutual interests in analyzing
parameter and ensemble domains. They almost share the same
analysis procedure and have the same requirements. Based on
these observations, we define their requirements into three basic
tasks:

e Understanding the correlations between parameters in single
and multiple runs: what is the correlation between two or more
specific parameters? How does the correlation change over
the ensemble runs? Are there any global or local correlations
between parameters and ensemble runs? Answering these
questions will help scientists gain a better understanding of the
parameter space.

e Understanding and determining the sensitivity and influence
of parameters on different ensemble members. Does changing
the parameter values influence the ensemble members? Does
one or more parameter affects different ensemble members?
Answering these questions will help the scientist in predicting
how changes in one or more of the parameter values influence
the simulation output.

e Understanding the correlations between different ensemble
members: Finding the distribution and similarities between sim-
ilar ensemble members. Finding differences between dissimilar
ensemble members. Understanding these similarities and differ-
ences will help scientists have a better understanding of the en-
semble space.

3.3. Design

The final design of this tool went through several stages. Initially,
we started to observe and examine the steps used by scientists to
understand and explore relations in their ensemble. Involving scien-
tists from a diverse group (i.e., Physics and Geoscience) in the de-
sign process and gathering their feedback helps in preventing from
building ad-hoc tailored solutions that work with specific applica-
tion domains. We noticed that most of them usually apply a manual
analysis process that relies heavily on trial and error, which con-
sumes a lot of time and can easily lead to mistakes. So, we began
a preliminary visual design for the system that used only Seman-
tic Interaction to help scientists analyze and understand the hidden
patterns and relationships between ensemble members.

However, during our meetings, semi-formal interviews, focus
groups and discussions with scientists, we find that semantic in-
teractions alone will not be sufficient. We find that scientists are
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interested not only in viewing the similarities and differences be-
tween the ensemble members but were also interested in consider-
ing the statistics underlying these ensemble members. Therefore,
we decided to alter our design to have both the ensemble members
and statistical measures in the same visualization to decrease the
cognitive load taken by scientists in using different tools to analyze
their data.

Additionally, we observed that most of the ensemble outputs are
2D/3D objects, so instead of displaying the ensemble members as
points in the spatial space, we decided to use the output image
of the simulation run to represent the ensemble members in en-
semble view. These images would help the scientists to interpret
the relationships between ensemble members visually and this may
lead to a better analysis of the data in terms of time and efficiency.
Moreover, we added a camera slider to allow users to view 3D ob-
jects from different camera perspective for a better understanding
of their data. In order to make our tool applicable to a wide range of
scientific disciplines, we included a variety of statistical measures.
We found that a combination of boxplots, scatterplots, and parallel
coordinates provided sufficient statistical measures to cover differ-
ent levels of detail that aided the scientists in understanding the
patterns and outliers within their datasets.

3.4. Method Overview

Our method starts with an ensemble (sy, ..., sy) of N 2D images, vi-
sualized outputs from each run. Initially, we spatialize the ensemble
using its input and output parameters, where each parameter repre-
sents a dimension forming high dimensional data, in two dimen-
sional space using weighted multidimensional scaling (WMDS).
In the spatialization, distance reflects relative similarity; e.g., two
ensemble members (i.e., runs) close to each other in the spatial-
ization have more similar parameters than ensemble members far
away from each other. To set the spatial coordinates of the runs,
WMDS relies on the ensemble parameters. We refer to the parame-
ters as variable weights because parameters with large weights are
considered more heavily in the spatialization than those with low
weights.

Thus, one can deepen their interpretation of a visualization tool
by considering both the distance and the weights. For example, two
ensemble members sitting near each other in a spatialization are
more similar to each other in terms of parameters values and their
corresponding weights than two points far away from each other.
In other words, ensemble runs closely positioned in the low dimen-
sional layout (i.e., 2D) indicate similar parameters between these
ensemble runs in the high dimensional space.

Our tool also uses several statistical visualization tool such as
boxplot, scatter plot, and parallel coordinates to understand the cor-
relation between different parameters. Users can use these statisti-
cal measures to identify areas of interest, ask quantitative questions
about the ensemble behavior, and explore the distribution associ-
ated with the data between the different linked views.
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Figure 1: Pipeline of our comparative visualization

4. System
4.1. Ensemble simulation parameters

Scientific data in most emendable simulations is considered, to a
certain degree, as a table with rows and columns. Each row rep-
resents a simulation run, and the columns represent the simulation
parameter. In our model, we are using both inputs and output pa-
rameters as an access point for providing data to our visualization
tool. We argue that considering both inputs and outputs for repre-
senting the ensemble visualization will give more accurate results
in analyzing the relationships between the different ensembles and
their parameters. Initially, users uploads all their data, which repre-
sents the input and output of all simulation runs, that is passed to
the pipeline. During the pipeline initialization, a weight vector cor-
responding to all parameters from the ensemble is created. Each pa-
rameter inside the weight vector is assigned an initial default value
of 1/k, where k is the number of parameters. All the weights in-
side the weight vector sum to one. The weight vector is then passed
down the pipeline to the similarity model for processing.

4.2. Similarity Model

The Similarity model has a forward and inverse (i.e., backward) im-
plementation. The forward algorithm defines how data is processed
for projection in the visualization layout. Therefore, it relies on the
ensemble parameters and their weights. In contrast, the inverse al-
gorithm responds to user interactions by updating the ensemble pa-
rameters or manipulating the ensembles spatially. This implies that
that inverse algorithms receive parameter changes from the visu-
alization layout. In this case, an iteration in the pipeline typically
begins by running the inverse algorithms from the inverse similarity
model through to the ensemble data. After that, the forward model
is executed and the results are projected on the visualization layout.

4.2.1. Forward Similarity Model

The forward similarity model is concerned with creating a 2D pro-
jection of the runs for visualization. The 2D dimensional projec-
tion is created using Weighted Multidimensional Scaling (WMDS),
which aims to preserve pairwise dissimilarities among ensemble
members. For instance, if two ensembles are far apart in the high
dimensional space, then they should be far apart in the low dimen-
sional projection. Using the normalized values for ensemble input
and output parameters, it begins by calculating the pairwise similar-
ities between all pairs of ensembles using Euclidean distance. The
Euclidean distance between ensemble members u# and v, incorpo-
rating attribute weights w, where the weights from the visualization
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Figure 2: The main interface of our visual exploration tool for ensemble simulation analysis (a) Ensemble view: each image represents an
ensemble member laid out spatially using WMDS (b) Parameter view: shows weight slider for ensemble inputs and outputs (c) Statistical
view: displays statistical properties and distributions of ensemble using different graphs.

weight vector are used to mark the importance of the parameters to
the current projection. These pairwise similarities are then fed into
WMDS which determines the location of each ensemble in the low
dimensional (i.e., 2D) space by optimizing the following equation:

n n
¥ = min ZZ(‘diszL(rhrj)_diSIH(Wudi’dea) (1)
Flyeoshn i=1 j>i
where | - | indicates the absolute value, dist;, is the Euclidean dis-
tance between low dimensional points, and disty is given by Equa-
tion

4.2.2. Backward Similarity Model

The backward similarity is triggered when the scientist either
moves an ensemble member within the visualization layout to as-
sert some knowledge the scientist has about the similarity or dis-
similarity between ensembles using Observation-Level Interaction
(OLI) [EHM*11] or when he increases/decreases the weight of a
certain parameter using parameter sliders. When using OLI, the
new low dimension positions of the moved ensemble are fed into
an optimization algorithm that looks for the corresponding set of
weights for the parameters that best match the new positions of the
moved ensemble. The optimization algorithm is represented by the
following equation:

n n
w= Wlmka Z Z (|distr (ri*,r;") — distg (w,d;,d;)])  (2)
i=1j>i

Alternatively, when the the weight of a certain parameter is changed
(i.e., the scientist moves the slider to increase or decrease the im-
portance of a certain parameter using parametric interaction(PI)),
other weights are updated so that they sum to one. The updated
weight vector is then fed to the forward similarity model for pro-
jecting the ensemble members based on the new weights.

4.3. Visual Encoding Method

In the previous sections, the main components of the pipeline are
described, but there is still a need to show the communication be-

tween the coordinated multiple views. The system consists of sev-
eral linked views. In the following we detail the three main data
views and present interaction and linking capabilities.

4.3.1. Ensemble View

The ensemble view displays the low-dimensional (2D) projection
of the runs where each ensemble member is its own 2D graph. Each
image represents the final output of the simulation run which could
be an output of a static dataset or a final step in a times series.
Depending on the type of data, the image can be 2D or 3D (i.e.,
figure 3). The image could be directly produced from the simula-
tion run (figure 3a) or processed using visualization tool (i.e., Par-
aview [Ayal5]) or libraries (i.e., Matplotlib or R graphics packages)
as in (figure 3b and 3c). Additionally our tool has a Cinema slider
that shows images (i.e., 3D) in the ensemble view, based on sev-
eral camera positions, allowing scientists to interactively navigate,
analyze, and make sense of ensemble runs (figure 4).

The projected distances among ensemble members encode the
similarities of the runs in high-dimensional space including input
and output parameters; thus, similar runs are placed near each other
and dissimilar ones are set farther apart. The scientists can then in-
teract with the runs to gain a better understanding of hidden pat-
terns and outliers. These interactions include moving an ensemble
member spatially within the visualization, zooming, lasso selec-
tion, multi-selection, and changing camera position to view the en-
semble from different camera angles.

Moving ensemble members: scientists can move ensemble mem-
bers within the spatialization layout (i.e., perform an Observation-
Level Interaction, or OLI) to express knowledge or test hypothe-
ses using the AAIJUpdate LayoutdAl button. OLI is an automated
procedure that transforms user interactions with data visualizations
(visual feedback) to the parametric feedback that in turn adjusts an
entire visual space. After moving the points to their desired loca-
tions, an update message is sent down the pipeline with the coordi-
nates of the moved ensemble members. This information is used by
the backward similarity model to calculate the new set of weights
that closely reflect the relative pairwise distances between the trans-
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Figure 3: Examples of simulation output images displayed in en-
semble view a) shows the population of prey and predator at the
final time step using Lotka Volterra model on 2D lattice b) shows
mortality rates of different populations c) shows isosurface of sat-
urated aqueous fluid colored by temperature for the final time step
of a simulation injecting CO, in a rock

ferred members. The updated weights along the with the ensembles
parameters are fed to the forward similarity model for projection.

Selection: Scientists usually observe regions of interesting pat-
terns and want to explore them more. Our tool offers different selec-
tion mechanisms such as lasso and multiple selections to give them
the freedom to select these sub-regions. The advantage of having a
selection mechanism is not only to further inspection and analysis
for regions of interests, but also in determining local or global un-
certainties in the data that helps in eliminating misinterpretations
and false assumptions about the ensembles correlations and rela-
tionships to parameters.

4.3.2. Parameter View

Exploring parameters' influences on the simulation ensemble has
equal importance to the visual comparison and analysis of the en-
semble members to identify their features and behavior patterns.
So, we added a parameter view. Our parameter view displays all
the ensemble parameters using sliders. Each slider represents the
weight of this parameter. This weight represents importance of this
parameter. Scientists use parametric interaction to allow the scien-
tists to move the slider so that they can increase or decrease the im-
portance of specific parameters. The parameter view is linked with
ensemble view, so when the user moves the slider (either increasing
or decreasing), an update message with the new weight is sent to the
backward similarity model. The weight vector is updated by assign-
ing the new weight to the designated parameter, and the weights of
other parameters are updated so they sum to one. These weights
along with parameters are fed into forward similarity model for
projection on the ensemble view. By moving the slider, the ensem-
bles in the ensemble view are affected, and their spatial position is
changed based on the 2D projection of the updated weights. In this
case, scientists can use parametric interactions to see what is the
most influential parameters and how these parameters are affecting
the ensemble groups in the ensemble view. Similarly, when scien-
tists do an OLI operation by spatially moving ensemble members
to find the hidden relations between ensembles, using the link with
parameter view, the weights on sliders are changed and this helps
in identifying the most common and most influential parameters
between different clusters of ensembles.
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Figure 4: Different camera positions for an ensemble member
driven with a from Cinema viewpoint slider a) Phi= 0 and Theta=
1 b) Phi= 1 and Theta= 0 c¢) Phi= 1 and Theta= 2 d) Phi= 5 and
Theta= 5

4.3.3. Statistical View

One of the most challenging tasks when analyzing and making
sense of high-dimensional data is identifying the regions of vari-
ability in the domain across all ensemble members, in addition
to, determining the associations between interrelated variables. Al-
though parameter and ensemble views enable the scientists to find
the most influencing parameters and associations between param-
eters and ensemble members, a statistical view is still needed as it
allows the scientists to determine the regions of variability in their
data. Scientists usually have some understanding of the relation-
ships between parameters, but unexpected discoveries are hard to
find using parameter and ensemble views only.

Moreover, scientists can use the statistical view to have an initial
idea about the distributions of the data as well as the correlation be-
tween parameters before manipulating the parameter and ensemble
views. In other words, the statistical view can be used to improve
the accuracy and understanding of findings discovered by parame-
ter and ensemble views and can detect hidden relations not recog-
nized by other views which translate into better understanding of
the whole simulation model. Based on our observations of the anal-
ysis process taken by scientists, our statistical view is composed of
three main graphs: box plot, scatter plot, and parallel coordinates.

e Box plot: is used to display the main features of ensemble at-
tributes such as median, quartiles, and outliers which helps in
showing the distribution range in data. Although box plot can
suffer from visual clutter in case of large datasets, we believe
this is not the case with our tool as our tool is designed to work
with hundreds of ensemble runs.

e ScatterPlot: is used to explore the correlations and trends be-
tween different parameters. The scatter plot can help in giving
more information about the relationship between attribute and
eliminate any bias produced by summary displays [CH17].

e Parallel Coordinates: represents all parameters (i.e., inputs and
outputs) in a single display as polylines on the parallel axes. This
helps in displaying an overview of the whole data, exploring
high dimension data and showing relations between multiple
parameters at the same time.

All our statistical displays support interactive brushing of the data
points to select regions exhibiting specific statistical properties (i.e.,
interesting patterns) and this provides immediate visual feedback to
other views and statistical displays.
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Figure 5: Example 1: population levels in an agent-based simula-
tion ensemble

5. Implementation and Use Cases

The tool is implemented as a Web application that can be used re-
motely (client-server mode) or locally. The user interface is im-
plemented by using DataDriven Documents (D3) [BOH11] while
the backend algorithm (i.e., pipeline) is implemented using python.
Visualization preparation and Cinema image database generation
[OAJ*16] is done using Paraview [AGL*05].

To demonstrate the importance and usefulness of our tool to ana-
lyze and make sense of scientific data, independently of the under-
lying field of science, we will demonstrate three applications: geo-
science, population health, and ecology. In addition, we evaluated
our tool in detail with domain experts in geoscience simulation of
fluid transport through porous media. These examples and the eval-
uation results illustrate how scientists can use our tool to interpret
and analyze their data. The results emphasize the effectiveness of
our tool in showing trends in the data and helping scientists to find
correlations between parameters and ensembles irrespective of the
field.

The first demonstration application is an agent-based simulation
used to evaluate allocation of resources in emergency situations.
The agents are the demographically-generated citizens of a real
city, who spend their days pursuing activities on a transportation
grid of nodes and edges. In this case, the independent variables be-
ing explored in the ensemble can quickly multiply into the dozens.
As the simulation is stochastic, ensembles are used to bound the
uncertainly of results; sometimes numbering into 10,000s of runs.
In our initial example (Figure 3), the variables of interest are about
an influenza immunization scenario and are things like: the agent
compliance to public safety notices, thresholds of triggering risk,
and the duration of the intervention. Dependent variables are sim-
ulation results like infection rates, mortalilty, and productivity loss
for example [VLC* 18], [CKL*14], [VCG*17].

The second application was a Monte Carlo simulation that exam-
ines non-equilibrium relaxation features in a stochastic LotkadAS-
Volterra predator-prey model based on a two-dimensional lattice.
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+ predator_death_rate
wadil + reproduction_rate
iz + state

Cirmma_ fiacier

P atet Coumetrates Boasiet Amtiute

Figure 6: Example 2: Prey and predator population in Monte Carlo
simulation ensemble

Physicists/Researchers were studying the biodiversity in ecology
and population dynamics through pattern formation and phase tran-
sitions and how can this protect the endangered species in threat-
ened ecosystems. Depending on different simulation parameters
(number of preys, number of predators, predation rate, etc.), they
used our tool to analyze and make sense of their data. Using the
different multi-linked views and interactions, our tool helped them
to find the reason for the systemaAZs relaxation. Additionally, they
were able to observe that there was a critical slowing-down in
predator density at the extinction critical point in the case of non-
equilibrium relaxation of the predator density in the neighborhood
of the critical predation rate. Our tool also helped them to have a
better understand the relationship between the inputs and outputs
in the ensemble and to affirm their physical properties. Addition-
ally, it helped them to find correlations between ensemble runs and
parameters [CT16, Vol26, Lot20].

6. Evaluation

To verify the effectiveness and usefulness of our visualization tool
for providing scientists with multiple ways to interact and make
sense of their data, we performed a structured user study to assess
the benefits and the drawbacks of our multi-linked visual analysis
tool. We believe that tools with a multiplicity of views and inter-
actions might allow for more complete analyses, therefore, in our
study, we are mainly focusing on performance and usability of our
tool. In other words, we need to determine how the different linked
views can help the scientists in analyzing their high dimensional
data.

In this study, we collaborated with experts in the geoscience field
to evaluate our tool. One of them is the scientist who provided the
ensemble data used in the study and was deeply involved in the
design of the tool. To familiarize them with the tool, they were
given a training session using a different dataset where we explain
the purpose of each view and how to interact with each view and
how the multiple views are linked. After that, they were asked to
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Figure 7: (a) Most dominant attributes (b) Runs grouped by levels of CO2

complete a set of tasks that asked them to analyze the data and
answer specific questions.

The geoscience dataset consists of an ensemble of results from
50 constant pressure CO2 injections, which simulate a commercial-
scale CO2 injection into the Columbia River Basalt Group located
in Richland, WA, USA. Due to the large scale of these reservoir
simulations, there is large uncertainties related to how rock proper-
ties vary in space. Specifically, permeability distributions are stud-
ied within these simulations as permeability has a first-order control
on fluid flow. In order to account for a wide range of permeabili-
ties, sequential indicator simulation (sisim) is employed to create
equally-probable, stochastically generated permeability distribu-
tions. In this approached the sisim creates a permeability value for
each grid cell within the injection zone by utilizing (1) the cumu-
lative distribution function of regional hydrologic data, (2) known
data points within the borehole, (3) previously simulated grid cells,
and (4) a chosen spatial correlation model, which for this study is
an anisotropic semivariogram. The injection zone is composed of
40,000 grid cells with the dimensions 50m x 50m x 25m. The re-
sults from these simulations are utilized to understand how the per-
meability distribution affects the variability of total CO2 injected,
pressure, temperature, CO2 saturation, density of CO2, and density
of the aqueous species within each the synthetic reservoirs [JJP16].

The study included questions that are directly related to our mea-
sures (i.e., performance and usability of our tool). We divided the
questions into categories to serve as benchmark tasks for each mea-
sure. Regarding the performance, we were focusing on tool's per-
formance in terms of time (i.e., the time taken by the tool to react
to user’s interaction, the time taken for synchronizing the different
views after each interaction, and time taken for projecting the data).
We also consider users’ performance in terms of accuracy in their
answers (i.e., does their answers make sense scientifically? Were
they able to analyze their data correctly and derive meaningful rela-
tions and conclusions?). On the other hand, to measure the usability
and understandability of our tool, three to four low-level questions
about each view was given to the scientists, and we expected the
scientists would use these views to answer the question without
asking them which view to use. For example, questions targeting
parameter view asked if a particular parameter (i.e., temperature)
has any influence on the ensemble runs, if there is any correction
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between any two or more parameters, and what attributes have the
least and the most effect on ensemble runs.

Questions for users in the ensemble view were focused on find-
ing and comparing characteristics between different clusters of runs
(e.g., users were asked to find common attributes between clusters,
form clusters of runs that they believe could be similar and find
commonalities between them, and characterize and compare dif-
ferences between similar and dissimilar groups of runs). Statistical
view questions were focusing on finding the best parameter space
for significant attributes, using distributions of data to investigate
interesting patterns and subsets, and confirming conclusions de-
rived from both parameter and ensemble views. Additionally, users
were given some general questions about the usability and useful-
ness of the tool to their analysis process like if the tool fits into
their research work and how would it help them to improve their
research, what they like and disliked in the tool, and what features
that liked or wished to have in each view.

In summary, the study questions were focused on detecting the
simulation features, identifying behavioral patterns, comparing a
number of simulation runs to draw conclusions about initial pa-
rameter influence and estimating corresponding dependencies, and
searching for possible outliers. For example, they were asked to
find the most dominant attributes between ensembles (Figure 7 a),
to find runs that have the highest levels of CO, saturation (Fig-
ure 7 b), to characterize and compare correlation patterns between
runs(Figure 8 a), and to find the distribution and properties of their
attributes (Figure 8 b)

6.1. Discoveries and Results

Our tool helped the domain experts in making several specific dis-
coveries. Initially, the scientist uploads a file containing the input
and output parameters for each run and gets initial projection. Each
image in this projection shows an isosurface of saturated aqueous
fluid colored by temperature. Users can easily change the colored
contour to reflect other output parameters (Figure 9a). Grouping
high temperature runs together and low temperature runs together
(i.e., an OLI interaction) in the ensemble (Figure 9b) view revealed
that larger CO, plumes seem to exhibit more variability (Figure
9c) in temperature as this has to do with permeability affecting
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Figure 8: (a) Finding correlations between similar runs using OLI through ensemble view (b) Finding distributions and trends in data using

statistical view

fluid pressure, which in turn affects the ability of CO; to expand
because CO, cools as it expands. The connection between the en-
semble view and parameter view revealed that grouping of high
and low-temperature runs leads to increasing the importance (i.e.,
weight) of CO; saturation.

This further led the scientists to explore the effect of CO, satu-
ration on the whole ensemble by examining the distribution of the
CO2 using the box plot, checking the correlation CO; with other
parameters, giving more weight to CO2 saturation on the attribute
slider (PI interaction) (Figure 9d). They noticed that smaller CO,
plumes appeared to be more circular than the more oblique large
plumes. This suggests that the anisotropic permeability correlation
structure of this geologic formation exerts more control on plume
geometry when the CO, reaches longer radial distances from the
injections well.

Users grouped smaller CO, plumes together and larger ones to-
gether (OLI) (Figure 9e) leading them to find out that the density of
aqueous fluid increases linearly with the pressure and the slopes at
different concentrations are almost the same at a certain tempera-
ture (Figure 9f). This is an interesting discovery for them that would
require more analysis. Additionally, they were interested in finding
any relationship between temperature and CO», so they reset the
pipeline and clustered different runs by temperature, CO, plume
size, and CO, plume shape (Figure 10a). They noticed that there is
a dominant relationship of permeability (Figure 10b), which was a
discovery that they did not expect.

To further investigate it, they used the Cinema slider to see their
runs from different views (Figure 10c and d). They then decided to
check if there is any correlation between permeability and CO, sat-
uration or not using PI interaction on parameter view (FigurelOe).
As expected they found that lower permeability leads to lower CO»
where lower CO; runs were grouped together and high CO, runs
were grouped together. To check if this correlation holds globally
and locally between the parameters and the runs, they selected in-
teresting patterns in the parallel coordinates, which leads to an it-
eration in the pipeline returning the runs corresponding to selected
areas (Figure 10f). From this new projection, they found out that
this correlation holds locally and globally.

From our observations and records, we have noticed that the per-
formance of our tool is reasonable. It takes an average of 2 to 3
seconds for projecting the data in the ensemble view, less than a
second for synchronizing between views and 1 to 3 seconds to react
to user interactions ( i.e., 1 second or less for slider interactions in
parameter view or manipulating the graphs in statistical view and
2 to 3 seconds for updating the view in ensemble view after OLI
operation). Additionally, users takes from 1 to 5 minutes to answer
the questions and these times take into consideration only the time
spent interacting with our tool and do not consider the time that
users spent reading the questions and writing responses.

Regarding the accuracy of userss answers, some answers were
more complete than others; however, this did not have a significant
affect on the analysis process and users were still able to explore
the data and gain multiple insights. In most of the questions, they
were able to answer all low-level questions using the appropriate
view correctly. However, sometimes when we expect them to use
ensemble view directly, they preferred using statistical view first to
have an overview of the distributions and the patterns in the data.

6.2. Discussion

During our study, we examined how the three linked views helped
the scientists in analyzing their high dimension ensembles. The
qualitative analysis of the study results showed that the scientists
were able to explore and make sense of the ensemble using our
tool. Although the interactions supported by our tool were new to
the scientists and they did not have a complete understanding of the
underlying algorithm, this did not affect their exploratory analyses.
Our study proves that our multi-linked views and interactions (i.e.,
OLI, PI, and brushing and linking) provide enough context to the
scientists to understand the relations and correlations between the
ensemble and its parameters.

OLI gives scientists the ability to pose what-if questions to test
hypotheses about relation and correlation between and within en-
semble runs. From their background and existing knowledge about
the nature of the simulation, they know and understand preexist-
ing relationships between runs and parameters. OLI can help in
refining the claims that support this understanding, in addition to
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Figure 9: shows the results of analyzing the geoscience dataset us-
ing our tool. a) initially WMDS projection of the dataset inputs and
outputs, b,c,e,f) scientists uses OLI interaction in ensemble view
by dragging similar runs (i.e., highlighted) to understand effect of
temperature and CO, respectively on the ensemble ;d) scientists
uses uses Pl interaction in parameter view to check the influence of
CO; on the whole ensemble

finding discoveries that are hard to find by manual analysis meth-
ods or would require many trial-and-error iterations using para-
metric interaction, especially with high dimensional data. OLI also
gives users the opportunity to manipulate the data on the object
level, providing a bridge between user intention and the underly-
ing mathematical models. Although OLI interaction offers a mean-
ingful space for interaction, depending solely on OLI for analyz-
ing simulation ensemble will limit a comprehensive analysis of the
simulation features in the ensemble. Each of the three linked views
conveys different information about the ensemble will helps scien-
tists to have a broad understanding of their ensemble.

The feedback we received from domain experts was satisfying.
They confirmed that our multi-linked views visualization tool en-
abled them to explore the uncertainty in the ensemble and helped
them to build connections and correlations between parameter set-
tings and ensemble members. They also mentioned that using se-
mantic interaction by spatially clustering interesting groups (i.e.,
OLI) and using attribute slider (PI) gives them a different prescrip-
tive for analyzing their ensemble. Additionally, they confirmed that
statistical view was beneficial in showing the distributions of the at-
tributes, relationships between multiple attributes, trends, and out-
liers. Our tool provided them the methodology to compare all the
different attributes, runs, and their statistical properties all at the
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Figure 10: shows further analysis of the dataset using Cinema
slider and brushing and linking after finding new discoveries
a,b)cluster runs by temperature, CO, plume size, and CO, plume
shape and use OLI interaction c,d) take advantages of the Cinema
slider to interpret the results of projection and view data from dif-
ferent angles e,f) make use of the brushing and linking to select
interesting patterns in the parallel coordinates

same time without changing screens, programs, or changing scripts
to visualize the data. They also did not have any existing visual-
ization tool that allows them to explore the uncertainty of the input
and output parameters at the same time.

Moreover, they confirmed that each of the three linked views
conveys information about the ensemble helping them to have a
complete picture about the ensembles for a better analysis process.
The Cinema slider provides a means to view different angles of the
data set. It helped them to view their data from different perspec-
tives that open other angles for exploring parameter settings and
ensemble members. They also mentioned that the performance of
tool with respect to time was reasonable and confirmed the ease of
use of the tool and its applicability to different datasets. In sum-
mary, they affirmed that our tool met their goals for analyzing and
making sense of their data and all the views used in the tool were
needed during their analysis process.

7. Limitations and Future work

There are several limitations in the current design of our tool. First,
our weighting scheme and inverse model currently only works with
final outcomes (the last timestep), thus the Sematic Interaction is
working on a static snapshot of the system. While our current tool
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implementation shows promise to help scientists to gain insights
about the correlations between parameters and ensemble members,
scientists also need to work and analyze across temporal features
in their ensembles. We consider these important extensions as fu-
ture work. Second, our tool does not scale well up to thousands
of ensemble members as it could result in visual clutter; large dis-
plays can increase this number, and currently we work well with
hundreds of ensemble members (simulation runs). Given that the
size of most of the scientific data we were dealing with during the
design of our tool was not extremely large, we put less emphasis
on the scalability issue in the current work. Future work should in-
clude research into scalability concerns including data and display
sizes.

Additionally, the domain experts provided us with valuable sug-
gestions for improving our tool. They suggested modifying the cur-
rent statistical view to incorporate a wider variety of charts (i.e.,
histogram, bar charts, and line charts) and give the scientists more
control over them by selecting specific runs and parameters. This
allows them to see the statistics from an individual or multiple se-
lected runs without having to subset these runs. They also sug-
gested filtering/subsetting the space by raw data values and gives
them the chance to save this raw data. Moreover, they wanted us to
extend our tool to incorporate the in situ workflow. Finally, we plan
to take these suggestions and limitations as our future work.

8. Conclusion

In this paper, we have demonstrated multi-linked visualization ap-
proach that merges human expertise and intuition with machine
learning and statistics for sense-making, analyzing, and exploring
any multi-dimensional scientific ensembles irrespective of the ap-
plication domain. At the core of our visual analysis tool (GLEE:
Graphically-Linked Ensemble Explorer) is a novel way to represent
simulation ensembles by integrating ensemble runs, their input and
output parameters, and statistical characteristics into one screen,
where each view/display represents meaningful interpretation for
certain aspect of the ensemble. We believe that these three linked
views fill the gap between the different analysis techniques used by
domain scientists and the approaches available from visualization
research.

Our approach gives scientists the chance to explore interesting
patterns to confirm their conclusions about both local and global
uncertainties in the ensemble. The machine learns from these se-
mantic interactions, converging on a shared model. Moreover, the
images of ensemble members displayed in ensemble view and the
Cinema slider give scientists a new way of visually analyzing their
data by having the ability to view ensemble members from a dif-
ferent perspective. Additionally, we demonstrated the effectiveness
of our tool through a user study with domain experts and showed
the potential of our design with two different use cases. Our future
steps include: modifying the current statistical view to incorporate
a wider variety of charts, extending our tool to incorporate in-situ
workflows, supporting time-series ensembles, scaling to support
larger ensembles( i.e, although our tool is tailored to work with
hundreds of members), and integrating machine learning to learn
from user interactions and suggest new interactions that may help
scientists in their analytic process.
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