
ABSTRACT
Due to the high expense of running Computational Fluid Dynamics (CFD) simu-
lation. CFD end users are constantly navigating a speed-vs-accuracy trade-off. The
answer to the question of where to land in this trade-off is fluid and it changes based
on the purpose of the simulation or the current position of the CFD end user in the
entire simulation workflow. The required simulation accuracy could change even in
successive iterations of the same simulation. The current approach of using liter-
ature studies and grid convergence studies to navigate the speed-vs-accuracy does
not allow for the needed flexibility of adjusting the ideal grid resolution to meet
constantly changing accuracy needs and results in simulations that are run using
using constant accuracy levels. Our overall goal is to support the ever changing end
user accuracy requirements of simulation applications by providing CFD end users
with an insight error variance feedback measure as well as an insight slider user
interface that allows simulation end users to change their speed-vs-accuracy trade-
off requirements on demand, while making informed decisions when selecting ideal
grid resolutions to speedup their simulations. This work contributes to this goal by
modelling the impact of varying grid resolution on insight error variance. This model
allows us to use insight error variance as feedback measure for CFD end users using
grid resolution to speed up their simulations. Using a crowd study, we successfully
model insight error in CFD applications are present the details of our model.
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1. Introduction

The human has been an afterthought in the collection and generation of big data.
After these massive amounts of data have been collected and generated, humans are
caught trying to figure out how to process them. There is a disconnect between human
cognitive abilities and the high powered algorithms and computers used to produce
and process this data. What is needed is a framework for data intensive computing
applications like those of Computational Fluid Dynamics (CFD) scientific simulation
and data mining, that puts the human front and center of all data related processes.

Given that it is the human who is the consumer of the data, human limitations
and strengths need to be taken into consideration when developing data intensive
computing applications. One approach that does just that is that of data visualization.
For that reason, it is used in many data intensive computing applications like those of
simulation, data intensive analytics, and data mining. However, data visualizations has
its limitations. Limitations that include slow responsiveness, high overplotting and the
inability to store and display entire big data sets highlight the inability of traditional
visualization techniques to scale to massive amounts of data (Wang et al. 2015).

The accuracy of the CFD scientific simulation depends on the amount of calculations
that are a function of the the grid resolution in addition to how well the selected
solution scheme and modelling parameters effectively represent the underlying physics
of the problem. The finer the grid resolution of the simulation, the longer the simulation
runs. Simulations can take hours, days, weeks, or months given the intensive algebra
and matrix operations required to solve the computational problem, in addition to
frequency of disk writes for purposes of time series analysis and checkpointing. These
long runtimes can be exacerbated by the iterative and exploratory nature of simulation
as well as long wait times as jobs wait in the high performance computing (HPC) queue
for resource allocation. Common work flows include executing simulation runs with
different physical parameters and grid resolutions in order to decide on an adequate
resolution, with these runs being interspaced with long queue wait times for resource
allocation. Additional runs would then be executed in an attempt to find the solution
to the simulation objective. A lot of these runs would then be discarded after looking
at the postprocessing visualization, when it is determined that the input parameters
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for the simulation need to be altered.
In scenarios where software licensing fees are paid for per processor or core and

the simulation is run on a high performance computer that uses large amounts of
power and cooling, any discarded or excessive simulation runs are not only a waste
of time, but they impact an organization’s bottom line. Given that the results of the
simulation are processed visually by humans to determine correctness, and in some
cases convergence, any level of accuracy that exceeds the capabilities of humans to
perceive in a visualization is not only a waste of time but a waste of money too.

Similar to our previous work, we define insight error (IE) as the difference between i)
a human estimate of a sample statistic made after observing a visualization of a sample
drawn from the population and ii) the ground truth, which is the actual population
parameter. We define perception error (PE) as the error in the human estimate of the
sample statistic made from viewing the visualization of the sample in comparison to the
ground truth of the sample. When one visualizes a sample drawn from a population,
the error between a sample statistic of that sample and the objective representation
of that sample statistic calculated from that visualization is our visualization error.
Sampling error (SE) is the error of the sample statistic of a sample drawn from a
population in comparison to the ground truth of the actual population parameter.

In this work, we apply our IE framework to the postprocessing results of a two
phase CFD simulation of interacting fluids in a tank as a step towards putting the
human front and center of the loop of the simulation process. Using the quantification
of insights gained from visualized results of CFD simulation, we model the relation-
ship between insight and grid resolution. Using a case study, participants are asked to
evaluate the results of the simulation. They are asked questions about the simulation
and asked to provide any additional insights they have about the simulation. Using a
ground truth calculated from the actual results of the simulation, error is calculated
between the participants’ responses and the ground truth. The variance of these er-
rors is used to investigate the relationship between the level of insight and the grid
resolution. This work makes the following contributions:

C 1. We conduct a crowd study that investigates the relationship between insight
variance levels and grid resolution in a scientific simulation.

C 2. We provide a model for the relationship between insight and its component
errors and the grid resolution in a scientific simulation.

C 3. We demonstrate the ability of our model to predict a grid resolution given an
arbitrary insight variance level.

2. Background and Related Work

CFD turns computers into safe and timely virtual laboratories (Wang and Yan 2008).
Due to the high expense associated with long CFD execution times, CFD end users use
refining and coarsening of the grid resolution as a method for changing the amount of
calculations that the simulation is doing and this causes a change in the amount of data
produced, which in turn alters the run time of the simulation executions. CFD end
users use the idea of reducing the number of elements used for simulation calculations
or grid resolution coarsening to speed up simulation executions and total simulation
workflows (Yahya et al. 2018). This can be thought of a form of spatial or systematic
sampling. The effect of grid resolution coarsening is similar to that of sampling in that
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it results in a change of accuracy (Tu et al. 2018). Similar to sampling the benefits
of refining the grid resolution diminish out after some threshold. The benefits of grid
resolution refinement are also impacted by the underlying physics of the fluids being
modelled (Ferziger et al. 2020).

Grid convergence study results allow CFD end users to understand the effects of grid
resolution coarsening in terms of simulation wall clock savings and simulation accuracy,
given an accurate numerical model of the physics being simulated (Krishnamurthy
2017). This work complements the approach of grid resolution coarsening to reduce
simulation wall clock time. It provides a feedback metric that gives CFD end users
additional insights on the effects of grid resolution coarsening on human cognitive
insights in order to enable them to make an informed decision when managing the
accuracy vs performance trade-off (Banks et al. 2018) that we refer to as the speed-
vs-accuracy trade-off.

The viability of simulation including CFD depends on user trust. For example peo-
ple would not use CFD even though it is shown to be faster and safer than an actual
experiment if it has not been shown to produce accurate results. User trust is gained
by showing that the simulation is either accurate or by accounting for any inaccuracy
and informing the end users of any error or uncertainty resulting from the inaccuracy.
Validation and verification are simulation steps concerned with gaining and maintain-
ing end user trust (Stamou et al. 2018). Validation is concerned with determining
the accuracy of a simulation in comparison to experimental results while verification
is determined by comparing simulation results to those of a computational model
(Oberkampf et al. 2004). A common approach to making the validation and verifica-
tion results actionable for end users is that of uncertainty quantification (Wu et al.
2018) .

Bao et al learn the relationship between simulation error and the simulation phys-
ical features that are derived from the mesh size, model information and simulation
parameters. They model this relationship and use the physical features to predict the
simulation error in order to suggest the optimal mesh size for simulation end users given
simulation physical features (Bao et al. 2019a). Bao et al also use historical simulation
data to train a deep forward neural network to predict the simulation error given a
grid resolution (Bao et al. 2019b). Similar to these works, we use machine learning to
learn the relationship between grid resolution and simulation result uncertainty, which
is calculated based on error.Wang, Wu and Kozlowski use simulation results as well
as bayesian inference to provide uncertainty distributions for given simulation input
parameters in order to show the necessity of quantifying uncertainty information in
simulation applications (Wang et al. 2019).

Similar to our work these works base their approach on various sources of error that
propagate through the simulation steps. However, our approaches differ in how we
calculate the error. These works calculate error based on variable values within grid
cells. Our approach calculates error based on measured human cognitive insight. We
choose this approach because we believe that a human centered approach will result
in more efficient simulations that do not produce or process data whose results exceed
human cognitive capabilities.

Oberkampf and Barone present a confidence interval metric that is based on the
mean response of the simulation system (Oberkampf and Barone 2006). Ferson,
Oberkampf and Ginzburg introduce a validation metric and in the process discuss
the need for validation metrics to consider entire uncertainty distributions as opposed
to just the means of errors (Ferson et al. 2008). We agree with this observation and
for that reason, we use the variance of errors to provide insight error feedback to
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simulation users on the impact of a selected grid resolution on the model accuracy.
Our approach for providing feedback has similarities with the approaches mentioned
above, but we have a major difference in the envisioned use of our feedback metric.
Even though we also aim to present a feedback metric for the purpose of allowing
CFD end users to find the ideal grid resolution to execute the simulation, we realize
that the ideal grid resolution selection criteria is a fluid one that changes based on
circumstances like the simulation budget and where in the total workflow simulation
end users are. For that reason our feedback metric is designed to be provided with a
slider that allows end users to change select varying insight error requirements based
on their cognitive insight requirements as needed.

3. Experiment Methodology

Our ultimate goal is speeding up scientific simulation, particularly CFD by incorpo-
rating human limitations into the simulation process in a way that will result in the
speedup of the simulation workflow. Our general research approach is based on visual-
ization being the interface between the simulation results and the human. Our general
research approach is also guided by the realization that CFD and other applications
that process and visualize large amounts of data present a speed-vs-accuracy trade-off
for and users of such applications. Sampling is a widely used method to allow for this
trade-off. In case of CFD simulation, coarsening the simulation grid resolution in or-
der to speedup the simulation is a form of spatial sampling. For that reason, the grid
resolution in CFD simulation is synonymous with the sample size in other sampling
applications. Coarser grid resolutions result in faster simulation, but they also result
in less accurate simulations. Since humans get desired insights from the simulation via
the visualization we model the insight extraction process in order to i) identify the
bounds of human insights and ii) understand the relationship between insight variance
levels and the amount of data sampling. This will allow us to use user provided insight
requirements as parameters for the stimulation, which would put the human front and
center of the simulation process and result in a simulation with little or no wasted
processes beyond those required by the human.

In order to meet the objectives above, we collect data from humans as they generate
insights from the visualized results of a CFD scientific simulation. We use a crowd study
to recruit humans for this task because of the participant diversity and the rest of the
reasons stated in our earlier work. We ask our participants to complete benchmark
tasks due to the ease of quantifying and comparing human insights associated with
such tasks (North 2006). However, due to the limitations of such tasks we also ask or
participants to complete an open ended task. We hypothesize the behavior of our errors
and proceed to quantify the insights provided by our crowd participants. We calculate
IE and its component errors. We then use our framework to model the behaviors of
our errors. Using our crowd responses and models from our framework, we test our
hypotheses and use our results to validate our framework for the speedup of CFD
applications.

4. Design of Experiment

We use a randomized between subjects experiment with blocking. Grid resolution is our
independent variable while insight error is our dependent variable. Our experiment has

5



1 treatment factor with 5 levels. In case varying timestamps has an effect on insight
variance levels, we block the responses by timestep. 150 Participants are randomly
assigned to one of 5 groups and also randomly assigned to one of 5 blocks within a
treatment Each treatment consists of an image of the visualization of the results from a
given grid resolution and timestep. Each participant sees one treatment. Participants
are asked to complete a benchmark and open ended task. Given that benchmark
tasks constrain the insights that our participants can provide, while open ended tasks
require more participant training and administrator expertise for coding and analyzing
the response (North 2006), we provide tasks that take advantage of the benefits of
both task types. Benchmark tasks allow us to guarantee that our participants provide
insights that align with our study design. Our choice of simulation, which is based on
an experiment that is easy for participants to understand, allows us to benefit from
the advantages of open ended tasks without having to provide extended training to
our participants. The open ended task also allows us to identify automated response
from bots We use responses from all 150 participants in our analysis.

4.1. Research Questions

In this work we are interested in understanding how the choice of a grid resolution
impacts the IE, PE, VE and SE. Given a uniform mesh and a two phase fluid CFD
simulation, we answer the following research questions:

R 1. What is the relationship between grid resolution and the variance of IE?

R 2. What is the relationship between grid resolution and the variance of PE, VE
and SE?

R 3. Can one use SE, VE and PE to predict the variance of IE in a scientific simula-
tion?

R 4. Can one predict IE as a function of grid resolution?

4.2. Assumptions

In this work we assume the task of estimating the percentage volume is representative
of a typical analysis task conducted on the results of CFD postprocessing. We also
assume that the behaviour of the relationship between insight error and grid resolution
in this task generalizes to other CFD postprocessing analysis tasks. We make these
assumptions because CFD result analysis consists of reviewing animated results that
consist of frames of images similar to those used in our experiments. CFD simulation
end users generate insights from series of frames. Our insight framework and our
experiment tasks allow us to determine how well people understand each of these
frames.

4.3. Hypotheses

As done previously, in order to answer our research questions we create hypotheses
that are aligned to our questions. Using the results from our crowd study, we test our
hypotheses. The results of our hypothesis tests allow us to determine the answers to
our research questions. Our hypotheses that assume a uniform grid and a two phase
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fluid CFD simulation as a starting point before addressing non-uniform grids and other
multi-phase simulations are:

H 1. The variance of IE is high for coarse grid resolutions, reduces and finally grows
again for large resolutions for insights generated from viewing CFD postprocessing
visualizations.

H 2. The variances of the component errors of IE have an exponential decay, exponen-
tial decay and a U-shaped relationship with grid resolution for SE, VE and PE errors,
respectively for insights generated from viewing CFD postprocessing visualizations.

H 3. The component errors of IE, SE, VE and PE, can be used to predict the IE for
insights generated from viewing CFD postprocessing visualizations.

H 4. There is a non-linear relationship between grid resolution and the variance of
IE and as a result, grid resolution can be used to predict the variance of IE for in-
sights generated from viewing CFD postprocessing visualizations, using a higher order
polynomial.

Figure 1. Simulation wall times in seconds as a function of grid resolution for the simulations run for our
study. Simulations are run on a High Performance Computer using an Intel Xeon E5 2.1GHz processor with

16 cores and 32 threads and 128GB of memory.
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Figure 2. CFD simulation result images that our participants saw in the study. Visualization results are

visualized using a gray color map that humans perceive linearly. Rows are order by increasing grid resolution
refinement and columns are ordered by increasing timesteps.
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Figure 3. An image of our geometry showing the coarse grid cells and the water particles at the bottom of
the 2 dimensional fluid bed.

5. Simulation Data

Our two phase simulation of water particles mixing with air particles using the MFix
Two Fluid Model (MFix-TFM)1 simulates water turbulence in a container. People
care about this simulation because it allows observing otherwise harmful experiment
conditions such as boiling temperatures and high turbulence in a safe computing en-
vironment. The MFix-TFM represents air as a fluid phase and the water particles as
a solid pahse. Solid phases are represented using glass beads with physical properties
such as diameter and density. Solid particles with the same physical properties are
assumed to move collectively. Our geometry and initial conditions are based on those
found in the two dimensional TFM tutorial and our geometry consists of a two di-
mensional 10cm x 30cm rectangular fluid bed (Figure 3). Our fluid particles have a
diameter of 200 microns and a density of 2500kg/m2. The initial conditions include a
temperature and pressure of 298K and 101325Pa, respectively. The initial gas volume
is set to 100% and the galss beads volume is set to 40%. Our boundary conditions
include a mass inflow of 0.25m/s for our fluid velocity and an outlet region with a
pressure of 101325Pa. We run our simulations with grid resolutions of 10, 5, 2.5, 1.25
and 0.625mm (Figure 1).

Our finest grid resolution is 0.01mm smaller than the one used by Tricomi et al. in
their 2D model sensitivity study for a similar CFD based experiment (Tricomi et al.
2017). Using a scaling factor of 2, we coarsen our grid resolution. Similar to the tutorial,
our experiment simulates a 5 second process. We discretize our simulation runtime into
5 discrete timesteps that coincide with the 1s, 2s, 3s, 4s and 5s runtimes. We collect
the cell data for each grid resolution and discrete timestep and use that for our SE
analyses. We save screenshots of the postprocessing for each discrete timestep and use
the pixel values for our VE analyses. We also use the images from the postprocessing
for each timestep as the images that our crowd participants view to generate insights
for our study results (Figure 2). Our simulation results are visualized using a gray
color color scale that humans perceive linearly.

1https://mfix.netl.doe.gov/doc/mfix/19.1.4/about.html
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6. Experiment Procedure

The experiment treatments are administered to 150 participants via an anonymous
Qualtrics2 survey. The study begins by providing participants with a high level
overview of the study procedures, an explanation of the expectation of fair attempts
to answer the questions and the need to complete the study and receive a study com-
pletion code in order to receive compensation for completing the study. Participants
are paid $0.50 for about 5 minutes of work.

The initial overview is followed by a pre-study questionnaire with likert scale ques-
tions that ask about the participants experience with viewing and manipulating images
on electronic devices and their comfort level with information visualization and com-
puter graphics terminology used in the study like ‘color maps’, ‘light colored pixels’
and ‘dark colored pixels’. This information is helpful for explaining unexpected trends
or outlier responses. Participants are also asked about their sentiment of the study
going into it. Participants go on to encounter detailed instructions for the tasks in the
main questionnaire.

The main questionnaire consists of a simulation postprocessing image showing the
interaction of turbulent water and air particles in rectangular container followed by
the following two tasks: 1) ‘Estimate the percentage of the image that is occupied by
water particles’. 2) ‘Describe in a sentence or two the behavior of the water and air
pockets shown in the image’.

Participants are then presented with a post-study questionnaire before receiving
a unique survey completion code that is used to differentiate the anonymous survey
responses. The post survey questionnaire consists of questions related to the partici-
pants experience during the study like those asking if they were uncomfortable, if the
instructions were clear, if they were out of their depth and resorted to guessing the
responses, and if they would recommend the survey to a friend. This last question
allows us to gauge their sentiment leaving the study and compare it to their sentiment
going into it. The delta in sentiments gives more information if needed to understand
any unexpected trends or outlier responses.

7. Results

In this section, we review the results of our main study as well as those of our pre-
and post-study questionnaires. We also use our results to test our hypotheses in order
to answer our research questions.

2https://www.qualtrics.com/
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Figure 4. The distribution of raw estimates observed in our study.

7.1. Calculating IE, PE VE and SE in CFD

Using the estimates provided by our participants (Figure 4), we calculate our IE, PE
VE and SE.
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Figure 5. IE calculated from the ground truth and the human estimates observed in our study.

7.1.1. IE in CFD Calculation Sampling

For each human estimate of the volume of water in the simulation, we calculate the
error of the estimate in comparison to the ground truth, which is the volume of water
in the simulation using the finest mesh. We calculate the ground truth and the IE
using the following equations:

popgt =

∑N
i=0 wvi =

{
1 , if cvi <= 0.7

0 , else

N
(1)

The population ground truth (popgt) is calculated as the fraction of all particles (N)
that are water particles (wvi) in the simulation. Water particles are defined as the grid
cells that have a value (cvi) that is less than or equal to 0.7. 0.7 is our threshold that
we use to determine if a grid cell value is categorized as water or air. We obtain this
threshold value by clustering our grid cell values into 2 clusters and selecting the mid
point between cluster centroids as our threshold.

IE = |popgt − hmest| (2)

IE is the absolute difference between the human estimate of the percentage of water
in the simulation (hmest) and the popgt (Figure 5).
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Figure 6. PE calculated from the visualization means and the human estimates observed in our study.

7.1.2. PE in CFD Calculation Sampling

vizgt =

∑n
i=0 wpi =

{
1 , if pvi = 0

0 , else

n
(3)

The visualization ground truth (vizgt) is calculated by counting the fraction of water
pixels (wpi) out of the total pixels (n) in the visualized results of the simulation that
our study participants see. The wpi is calculated by counting the pixel values (pvi)
that are equal to zero in a black and white visualization where the 0.7 threshold is
used to determine whether result visualization image pixels are black or white. We use
the inverse thresholding feature of Python’s OpenCV image processing library after
mapping our 0.7 threshold to the 0-255 pixel value range to generate our black and
white images of the simulation results.

PE = |vizgt − hmest| (4)

PE is the absolute difference between the human estimate of the percentage of water
in the simulation (hmest) and the samplegt (Figure 6).

13



7.1.3. VE in CFD Calculation Sampling

samplegt =

∑n
i=0 wvi =

{
1 , if cvi <= 0.7

0 , else

n
(5)

The sample ground truth (samplegt) is calculated as the fraction of all grid cell
particles (n) that are water particles (wvi) in the simulation. Water particles are
defined as the grid cells that have a value (cvi) that is less than or equal to 0.7.

V E = |samplegt − vizgt| (6)

VE is calculated as the difference between the samplegt and vizgt.

7.1.4. SE in CFD Calculation Sampling

SE = |popgt − samplegt| (7)

SE is calculated as the absolute difference between the popgt and the samplegt.

7.2. Models and Evaluation

The models delivered in this work fall into the descriptive and inferential categories.
Our descriptive models are concerned with describing what we have seen in our crowd
study for the purpose of knowledge transfer and also for use justifying or making
design decisions for future visualizations of similar CFD scientific simulation results.
Our prediction model is concerned with making decisions for grid resolution vs insight
variance level for grid resolutions that have not been studied. The idea is to produce
models that generalize to unseen data so users of CFD simulations can make informed
decisions on which grid resolutions to select in order speed up their simulations with a
clear understanding of how their choice will impact their insight variance level. We test
our descriptive models visually by determining how well the data fits a hypothesized
curve, while we test our predictive models by determining how well the model performs
when tested using data that the model has not seen in training. We use the R2 value
to test the performance of our predictive models.
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Figure 7. The avg IE and PE plotted along with the accompanying grid resolutions.

7.2.1. Insight Convergence in CFD

Currently, simulation end users navigate the speed-vs-accuracy trade-off using the
results of mesh convergence studies or domain experience. Our approach provides an
additional benefit to those of mesh convergence studies. Similar to mesh convergence
studies were the accuracy of the results stops increasing with added grid resolution
refinement after a certain grid resolution(Patil and Jeyakarthikeyan 2018), our results
show that after a given grid resolution human insights stop improving. We see this
by looking at the relationship between average insight error and the grid resolution.
A visual inspection of the average insight levels provided by our participants shows
that insight levels provided by our participants insight levels stop improving at the
2.5mm grid resolution (Figure 7). Tricomi et al’s convergence study shows that the
accuracy of the simulations stops improving at the 1.905mm grid resolution. This
result is encouraging because it aligns with our intuition that human insight levels will
stop improving before actual simulation convergence. If this is so, convergence studies
based on human insight levels will lead to substantial time savings in the simulation
workflow. Our approach shows similar benefits as a mesh convergence study but it
provides those at a coarser grid resolution and this means faster simulation workflows.

15



Figure 8. IE as a function of grid resolution observed from the benchmark tasks of our crowd study.

7.2.2. IE as a Function of Grid Resolution - Benchmark Task

As hypothesized (H1), the variance of IE is U-shaped as a function of grid resolution
(Figure 8). IE variance is large for coarse grid resolutions and it drops with an increase
in grid resolution refinement before increasing for the finest grid resolutions. This
means that even though refining the grid resolution of a CFD simulation produces a
more accurate result, this increase in accuracy not only comes at the expense of longer
runtimes but it also negatively impacts insight. The lowest IE variance is observed
from the results of the 5mm grid resolution, while the lowest IE is observed at 2.5mm.
This means that human insight variance levels are minimized by running a simulation
that takes between 98 and and 826 seconds.

From our study, we see that the most accurate insights are observed at the 2.5mm
grid resolutions and the lowest IE variance is observed at the 5mm grid resolution. If
one wants to run the simulation for highest accuracy without the results of our study
or other previous knowledge like having run similar studies before, they could run
the simulation at a grid resolution of 0.625mm. Our study shows that even though
0.625mm is the finest resolution, it does not provide the lowest IE (not IE variance).
The lowest IE is seen at 2.5mm. However at the 2.5mm grid resolution, the IE variance
is higher than it is at the 5mm grid resolution. A person using our study results to
run this simulation could take both of these pieces of information into consideration
when deciding on the best grid resolution for the most accurate simulation result. If
they choose the 2.5mm grid resolution, they would get the result that provides the
maximum insight level or lowest IE (not lowest IE variance) in 826 seconds. If they use
a coarser grid resolution that does not exceed 5mm (because of the lowest IE variance
at this resolution) they would bet a result in 98 seconds.
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Figure 9. PE as a function of grid resolution observed from the benchmark tasks of our crowd study.

7.2.3. PE as a Function of Grid Resolution - Benchmark Task

Similar to what we saw in our previous work involving the measuring the relationship
between insight level and sample size in spatial scatter plots using a fixed grid, PE
behaves almost identical to IE in CFD simulation. This behavior that aligns with our
hypothesized behavior (H2) is due to the relatively small VE in our simulation results.
The VE is almost zero for the coarsest grid resolutions and for those resolutions PE
is equal to IE. For the finer grid resolutions, VE grows and there is an apparent
difference between IE and PE. However these differences are so small that they are
almost negligible and this makes the IE and PE variance seem almost identical (Figure
7).

Figure 10. Average IE as a function of grid resolution as observed from the open ended tasks of our crowd
study showing the same behavior as that seen in our water volume estimation task.
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Figure 11. IE as a function of grid resolution as observed from the open ended tasks of our crowd study.

7.2.4. IE as a Function of Grid Resolution - Open Ended Task

In our open ended task we see the U-shaped behavior that we hypothesized seeing
in the relationship between insight levels and grid size. Even though the average IE
(Figure 10) behaves similar to that of our quantification task, we see an initial low
variance (Figure 11). This is as a result of the skewed distribution of our participant
responses. Small sample sizes result in insights that have low variance. We conclude
this based an an analysis similar to our previous work by modelling our open ended
insights as a random variable. As a result of not having a ground truth for our open
ended tasks, we create one for the purpose of understanding this initial low IE that
accompanies low sample sizes by scoring the participant insights using a rubric and
assigning error to the insights..

Score Criteria
0 Irrelevant or inapplicable insight(s)
1 Accurate simple description of the visualization
2 Multiple simple insights
3 More in depth insight(s) about the visualization
4 In depth insight(s) that includes domain knowledge

not displayed in the visualization
Table 1. Open ended insight scoring rubric for insights received for our open ended task.
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Figure 12. Probability Distribution Function for the IE errors seen in the open ended tasks of our crowd
study.

When coding the insights submitted in our open ended task we assign them values
ranging from 0 to 4, where 4 is the highest level of insight (Table 1). We assume that
4 is the ground truth and calculate the IE as the delta between a given insight and the
ground truth. We then model our insight errors as a random variable and generate the
probability distribution function of that variable to determine its distribution (Figure
12). Selecting a very small random sample is most likely to produce errors that have a
small variance. Increasing the sample size would then increase range of the data and
provide the variances of errors that we hypothesized to see. Removing the smallest
sample sizes from the affected errors leaves us with a behavior of errors very similar
to our hypothesized behavior. We expect the skewness of the underlying distribution
combined with the characteristics of the task being performed to influence the sample
size threshold needed to overcome this initial high accuracy that accompanies small
sample sizes.
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Figure 13. SE as a function of grid resolution for the data used in our study.

7.2.5. SE as a Function of Grid Resolution

Using the actual data from the simulation, we calculate the percent volume of the
particles that represent the liquid in our simulation. We use the the average volume
from 5 timesteps of the 0.625mm simulation as the ground truth and we calculate the
SE as the delta between the percent volume of the liquid in the various timesteps and
the ground truth (Equation 7). The volume of the continuous areas water particles is
a continuous variable ranging from a low density of 0 to the highest density of 10.

The question that needed to be answered in order to determine the water volume
ground truth was what of identifying the particle density threshold that determined
the difference between the liquid and gas states in our 2 phase simulation. Using a
histogram, we cluster our data into two clusters or bins and use the halfway point
between our clusters as our threshold. Using that threshold we classify our particles
into one of two states and calculate the water percent volume as the ratio of liquid
particles to the total number of particles. We the plot the variance of our SE as a
function of grid resolution. Excluding the negligible SE value for the coarsest grid
resolution that occurs for same reasons listed in subsection above, SE behaves as
hypothesized (H2).
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Figure 14. VE as a function of grid resolution for the data used in our crowd study.

7.2.6. VE as a Function of Grid Resolution

As stated earlier, we take snapshots of our CFD postprocessing visualization at discrete
timesteps and use them as treatments in our crowd study. Using the same approach
to determine the classification of a data point as either a liquid or gas particle, we
classify the pixels in our images similarly. Using python’s OpenCV library3, we read
the pixels in our images. The images used in our study are rendered using a gray scale
color scheme that has a color map that humans perceive linearly. We map the range
our pixel values to the 0 through 10 range and use our 0.7 threshold to differentiate
the liquid particles from gas ones. The rationale for this approach is described above
in the description of SE calculations. We proceed to convert our images to binary
ones. We then count liquid particles and calculate the percent volume in our images.
We proceed to calculate the VE as the delta between the percent volume calculated
from the CFD simulation result data and that calculated from the corresponding
postprocessing visualizations (Equation 6). The variance of VE is plotted as a function
of grid resolution and it behaves as hypothesized (H2).

3https://pypi.org/project/opencv-python/
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Figure 15. The results of our pre-study showing the percentage of participants that respond with a score of

Strongly Agree, Somewhat Agree or Neutral to the questions asked.

Figure 16. The results of our post-study showing the percentage of participants that respond with a score
of Strongly Agree, Somewhat Agree or Neutral to the questions asked.

7.3. Pre- and Post-study Result Analysis

Major concerns going into the study were whether the tasks would be too difficult for
participants and if they would understand the tasks they were being asked to complete.
To address the first concern, we made an effort to design tasks that were both simple
and allowed us to gain usable insights on the relationship between insight level and grid
resolution in the context of CFD. To evaluate how well we accomplished this objective
we measured the sentiment of the participants before and after the task and their
confidence in their responses. The rationale being, if participants got overwhelmed by
the tasks they would get frustrated and think poorly about the study. They would
also answer the question asking if they had guessed the majority of the answers, with
‘Agree’ and ‘Strongly Agree’ responses. We see that the sentiment of our participants
increased after taking the study from 88− 97% (Figures 15 and 16). We also see that
74% of our participants were confident about their responses, given that at least 25% of
them saw images from very coarse grid resolution simulations. To evaluate our ability
to mitigate our second major concern by providing clear easy to follow instructions,
we ask the participants questions about the clarity of the instructions and ease of the
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study. With respect to whether the instructions were clear, if the study was easy, and
if the participants were comfortable during the study, 98%, 88%, 93% of participants
provided a ‘Strongly Agree’, ‘Agree’ or ‘Neutral’ response, respectively.

8. Discussion

Even though we successfully model the relationship between grid resolution and IE
and its component errors in simulation, we realize that more such models are needed
for the various different types of simulations. We envision these models being created
by various CFD users who would proceed to share these models with other members
of the community of CFD users. In order to do that, we discuss some of the lessons
learned from our study in the form of guidelines that anyone else can use to run similar
studies using our IE framework.

8.1. Beyond Grid Resolution

Our study focuses on the relationship between grid resolution and the level of insights
generated from looking at CFD postprocessing visualization results. To do so, we
hypothesize a linear relationship between the obtained variance of insights for a given
grid resolution and the grid resolution. The insight variance is our dependent variable
and the grid resolution is the independent variable. The same approach is applicable
to cases where one has a different input variable. In that case, one would run a similar
study using CFD postprocessing visualizations generated using different levels of the
input variable and measure the insight levels from each input level. The insight levels
obtained can then be modelled as a function of the input parameter.

Even though we are mainly focused on the relationship between grid resolution and
insight level because of the well understood time savings that can be obtained by vary-
ing the grid resolution. One might be interested in leveraging a similar relationship
that is a function of more than one input variable. This work can also be extended
to cases where the simulation has more than one input variable that determines sim-
ulation accuracy. For guidance, one could use the simple case in our previous work
where we studied the relationship between the variance of insight as the dependent
variable with sample size and marker filling status as the two independent variables
in scatter chart visualizations. This would be similar to a turbulent flow CFD based
experiment where insight variance is the dependent variable and grid resolution and
the model type, e.g. Reynolds-averaged Navier-Stokes equations (RANS) or large eddy
simulation equations (LES), are the independent variables.

If one has a small number of independent variables e.g. 2, and one of the predictors
has a small number of categorical levels e.g. 2 or 3, one could build separate models
for each of the independent variable’s categorical levels. For example one could create
a model for the relationship between insight level and grid resolution for the RANS
turbulent flow case and a model for the LES turbulent flow case. End users needing
to predict the insight level for a given grid resolution would then need to specify
whether they are using RANS or LES modelling before making a prediction. In the
case where one has a large number of independent variables or both variables are
continuous or if they have a large number of levels then one could hypothesize a linear
relationship between the dependent variable and the independent variables. One would
then proceed to use multiple linear regression (MLR) to model this relationship based
on the results of a user study where people are providing insights based on simulations
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run on different combinations of the various independent variable levels.
For cases where the relationship between the independent variable and a dependent

variable is non linear, adding a non linear term to the MLR or a transformation to
the independent variable should allow one to model this relationship. After modelling
the relationship between the dependent variable and the independent variables, one
would need to present it in an application with a slider that allows end users to view
and use this relationship in their CFD simulations. In our work, we present our model
in the form of a slider and a line chart. We have one dependent and one independent
variable and this allows us to have one line chart. For the case where one has one
dependent variable and multiple independent variables, they could show a single line
chart for each independent variable with a slider for each variable. Moving each slider
would show how each independent variable impacts the dependent variable.

8.2. IE Framework Implementation Guidelines

The goal of implementing the IE framework is to provide IE variance feedback for
CFD end users trying to select the ideal grid resolution for their simulation. In order
to achieve this goal, IE variance models need to be be grouped for similar simulation
cases and stored in a database for access by any CFD end users (Figure ??). To
promote easy access and retrieval of IE variance models, they should be grouped by
the simulation type e.g. single phase laminar flow, two phase turbulent flow, etc. IE
variance models are also dependent on the type of visualizations that the CFD end
users use to analyze the simulation results, e.g. heat map, line graph, etc. Different
visualization type handle increases in data differently. Some aggregate data and result
in lower IE with the addition of more data, while other suffer from overplotting and
result in poor IE after a threshold of data volume has been exceeded.

General IE framework implementation steps consists of identifying the types of
simulation and visualization to be analyzed as well as the people one intends to use in
the IE study, designing and running the IE study and measuring and modelling IE and
its component errors. We used complex benchmark tasks in our study that require that
participants have a good overview of the simulation results. Participants in our study
were asked to view static postprocessing visualizations and gain insights from those.
Our benchmark tasks measure how well people understand the individual frames that
make up the animated results of CFD simulation and for that reason we expect our
results to be generalizable to other complex benchmark insight tasks because they
too are based on how well people understand the overview of the simulation result.
However, using simpler benchmark tasks could provide different results.

Our benchmark tasks rely on people viewing visualizations that have enough infor-
mation to introduce uncertainty into the process of gaining cognitive insights from the
results as a result of human cognitive differences that become apparent as people esti-
mate the overview of such visualizations. These uncertainty levels are also influenced
by the amount of computational sampling that is applied to the simulation process.
These uncertainties lead to variation in human cognitive insight that forms the basis
of our IE variance measure. Benchmark tasks that are simple and involve small ranges
of possible responses like those searching for an individual object, tasks with boolean
responses or those involving small quantities of data that allow people to gain insights
as a result of counting small finite quantities will result in little or no variance. For
example asking people to determine if there are any water particles present in a visual-
ization of CFD simulation results will result in low variance results even for inaccurate
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simulations because of the low uncertainty associated with such a task. The following
steps provide guidance for anyone implementing an IE study to measure IE variance
using our IE framework.

8.2.1. 1. Identify the Simulation and Visualization Type

In order to promote knowledge sharing and avoid replication of effort one should
identify the of simulation type as well as the visualization type that one is going to
study. This information will be used to index the results of the study in a database
for future retrieval by anyone studying the same problem. One approach of identifying
the simulation and visualization type is by posing the study objective in the form of a
question. For example asking ”How does changing grid resolution impact IE variance
from studying heat map visualizations of the multi phase turbulent flow of water and
oil mixing in a container?” highlights a multi phase turbulent flow simulation type
and a heat map visualization type. Anyone else in the future who needs to answer a
similar question can use that simulation and visualization type to retrieve the results
of the study.

Proceed to hypothesize the behavior of insight levels for the simulation and visu-
alization types being analyzed. This will allow one to gain some intuition that will
expose unexpected study results or highlight any problems with the study. Answering
and analyzing the responses o the following questions will provide some guidance for
hypothesizing this behavior: How accurate will the simulation be? How much detail
will there be in the results of the simulation? How much visual clutter will the simu-
lation produce? For grid resolution results with low accuracy and not a lot of visual
detail, the variance of IE and PE are likely to be high. However, grid resolutions results
with high visual detail are also likely to have high IE and PE, but these levels of IE
and PE can be moderated by high simulation accuracy and lower amounts of visual
detail. On the other hand, grid resolution results with high accuracy, high visual detail
and low to moderate visual clutter are likely to have low IE and PE.

8.2.2. 2. Identify the IE Study Participants

Generate a list of types of insights that CFD end users should be able to draw from the
simulation and visualizations type being studied. Identify participants for the study
that have the capability to draw such insights. For example crowd workers, college
students or domain expert participants. One should avoid using people familiar with
the study design in order to avoid demand characteristics (McCambridge et al. 2012).
One should also attempt to get participants that are similar to the typical users of the
simulation type being studied.

8.2.3. 3. Design the Study

The IE framework study should involve two types of tasks: i) benchmark and ii) open
ended. Benchmark tasks are those that ask precise questions or tasks with an objective
ground truth e.g. ‘How many blobs can you identify in the image?’ or ‘Estimate the
volume percent of water in the image’.If participants are experts, ask them for insights
that are typical of those often sought from the data. However, if they are crowd workers,
simplify the task while still asking for insights that are pertinent for current simulation
end users. For example decompose tasks into smaller tasks or simplify the terminology
such that the common person can understand the task. Open ended tasks are those
without predefined steps known to lead to a solution (Terry and Mynatt 2002). Figure

25



17 shows a sample question that we used in our study.

Figure 17. Sample question questions from our crowd study showing an image that participants saw in
addition to the questions they were asked about the image.

8.2.4. 4. Run the Study in a Plausible Environment

When running an IE study with domain expert participants, conduct the study in their
normal work environment. This is because increasing the participants’ comfort level
can reduce anxiety and stress that can impact insight and perception capability (Rosen
et al. 2014). We also know that participants being tested can alter their behavior
(Thomas 2019). For that reason too, we recommend conducting the test in as normal
an environment as possible.

8.2.5. 5. Avoid Crowd Study Pitfalls

Crowd studies should have clear instructions for the expected level of work quality
required for payment. Crowd studies provide a large diverse pool of participants but
the pay for work environment attracts bad players that will provide poor quality work
or no work in exchange for payment. One approach is through the use of automated
scripting algorithms that pose as humans also known as Bots. Bot responses can
contaminate the results of the study. An open ended free text question to identify
and filter out such responses. Bot responses can be identified by being low quality or
containing information irrelevant to the asked question.
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8.2.6. 6. Measure participant sentiment before and after the study

Provide objectively measurable questions like likert scale questions asking for how
comfortable or confident participants feel about taking the study before taking the
study and how confident they feel about their responses or how comfortable they were
in the study, after the study. This allows you to determine how engaged the participants
were during the study. Significant level drop-offs could signal a participant who stopped
trying or signal problems with the study design or a participant who was out of their
depth. Figures 18 and 19 showing sample pre and post study questionnaires showing
likert and open ended questions used in our study.

Figure 18. Sample pre-study questionnaire questions from our crowd study showing likert scale questions

8.2.7. 7. Follow Study Content Best Practises

• Provide simple but adequate training. Untrained IE study participants could pro-
vide unusable data as a result of not understanding the IE study tasks. Training
can mitigate this risk, but too much training can be overwhelming and this could
impact the quality of participant responses. Provide training if needed and either
have a subgroup of potential participants review and provide feedback on the
training or provide questions at the end of the training that test the effectiveness
of the training. Our study tasks were designed to be intuitive, so training was
not needed. Figure 20 and 21 shows sample instructions used in our study.
• Have simple clear instructions about what participants are referring to e.g. if the

simulation results are in video format discretize them into well labelled image
snapshots and use such images in the study in lieu of the the video results
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Figure 19. Sample post-study questionnaire questions from our crowd study showing likert scale questions.

• Overlay a grid or provide a well understood naming convention for areas in the
image. Using images with an overlaid labeled grid instead of videos helps make
sure that the identification of areas within the result under review image is easy
to identify and understand.
• Provide response validation using the IE study interface if possible. For example

use the study software controls to make sure that only numeric responses are
provided in fields requiring numerical responses. This helps prevent data entry
mistakes that can contaminate otherwise good results.
• Provide at least one open ended question either in the study, pre-study or post-

study. This will allow the study to capture more complicated insights and help
filter automated bot responses.
• Providing an extremely easy question can also help with data quality by high-

lighting participants that are not applying themselves. For example, a question
could be added asking participants to count an easy to identify number of items
in the simulation results. Anyone providing an incorrect number can be assumed
to be paying very little attention to the task or instructions and their results
need to be excluded from the analysis.
• Provide a free text question to collect participant feedback.
• Run a pilot study if possible, using similar but not identical questions to those

used in the actual study. Looking at the pilot study results can help show if par-
ticipants are having any issues with any part of the study. Prevent pilot study
participants from participating in the actual study if possible or allow all par-
ticipants to participate in the pilot study in order to prevent some participants
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Figure 20. Sample instructions from our crowd study showing simple succinct instructions

having an advantage from having conducted the tasks before.
• Consider and measure all possible sources of variation in participant responses.

For example in our study we considered individual result timesteps to be possible
sources of variation. We did not find a difference in the insight levels provided
by participants viewing results for different timesteps within the same grid res-
olution. However if this could be a source of variation in your particular study,
you can factor this into your analysis and either study all relevant timesteps or
limit your study to the most salient timestep.

8.2.8. 8. Measure IE and IE Component Errors

• Measuring IE. Our insight and perception metrics are error variance. For that
reason, one needs to know the ground truth in order to implement our framework.
This ground truth can either be calculated objectively from the data of the
simulation that is run using the finest grid resolution or provided by domain
experts who have analyzed responses to a given insight question question in the
context of the simulation being studied. For example, in the case of a benchmark
task like ‘Estimate the volume percent of water in the container’ one could run
the simulation at the finest grid resolution, export the result data for the value of
the fluid state of each particle and calculate the percentage of water particles and
use this value as the ground truth. The difference between each response and the
ground truth would be the IE. In the case of open ended tasks, domain experts
can code each response and assign an IE value to each provided response. The
relationship between each grid resolution used in the study and the corresponding
variance of IE could then be modeled by fitting a curve to that data. From our
study, we concluded that IE and PE were the same. For that reason anyone
implementing our framework only needs to study the IE.
• Measuring PE. In order to measure PE, one needs to calculate an objective

value being portrayed by the visualization. For example where a visualization is
portraying a liquid and gas in a container and one is simulating the interaction
of these two fluids, and the user task is estimating the volume of the liquid, one
could binarize the result image being used in the study and use the pixel values
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Figure 21. Sample instructions from our crowd study showing showing simple test questions to reinforce

instruction materials.

to determine the volume of the liquid pixels. One could then use the difference
between human provided estimates and the percentage calculated from the image
as the measure of the PE. The relationship between each grid resolution used
in the study and the corresponding variance of PE could then be modeled by
fitting a curve to that data.
• Measuring VE. In order to measure the VE, one needs to calculate the measure

being investigated for each sample. For example in the case where participants
are being asked to estimate the volume percent of liquid in a container, the
volume of the liquid in each sample needs to be calculated. In our guidelines
for measuring IE we provide guidance on doing this. The difference between the
value for the measure being investigated calculated from the sample and that
calculated from the corresponding visualization is the VE. Guidance for calcu-
lating the measure being investigated portrayed in a visualization is provided in
our guidance for measuring PE subsection above. The relationship between each
grid resolution used in the study and the corresponding variance of VE could
then be modeled by fitting a curve to that data.
• Measuring SE. SE is measured as the difference between the measure being

investigated calculated from each sample and the measure being investigated
calculated from the largest sample for the simulation running at the finest grid
resolution is the SE. The relationship between each grid resolution used in the
study and the corresponding variance of SE could then be modeled by fitting a
curve to that data.
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8.2.9. 9. Make Data Based Decision

Plotting the variance of IE on the y-axis against the grid resolution on the x-axis makes
it possible to understand the impact of changing the grid resolution on IE variance.
An additional plot of average IE on the y-axis against grid resolution on the x-axis
gives further insight on the impact of changing grid resolution on IE. The former that
is based on grid variance is more generalizable to similar simulation and visualization
types due to it being variance based, while the latter may not be as generalizable due
to it being based on absolute quantities. For example if one is comparing IE from
two CFD simulations where the insight being measured or quantity of interest is the
height of a fluid in a container at a given time during the simulation. The latter plot
for two containers that have differing average IE will have differing y-values, while the
former plot will show similar IE variance. The latter plot however can be used similar
to the results of grid converge studies and both plots can be used in addition to other
simulation literature data to help CFD end users make an informed decision on the
ideal grid resolution for their simulation.

9. Conclusion

In this chapter, we use a crowd study based experiment to investigate the relationship
between grid resolution and IE and PE error in CFD. Using CFD simulation postpro-
cessing results, we measure the accuracy of insights that our participants generate for
the results. We also measure the insight levels that participants provide based on an
open ended task. We evaluate these insights in terms of the error between provided
insights and an ideal ground truth of insights that we define as being of the highest
level. We find that the variances of IE and PE have a U-shaped relationship with
grid resolution, that similar to our previously studied visualization applications, our
IE framework is valid for insights generated from CFD results and grid resolution can
be used to predict the variance of IE resulting from observing CFD postprocessing
results.
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