
ABSTRACT
Due to the high expense of running Computational Fluid Dynamics (CFD) simu-
lation. CFD end users are constantly navigating a speed-vs-accuracy trade-off. The
answer to the question of where to land in this trade-off is fluid and it changes based
on the purpose of the simulation or the current position of the CFD end user in the
entire simulation workflow. The required simulation accuracy could change even in
successive iterations of the same simulation. The current approach of using liter-
ature studies and grid convergence studies to navigate the speed-vs-accuracy does
not allow for the needed flexibility of adjusting the ideal grid resolution to meet
constantly changing accuracy needs and results in simulations that are run using
using constant accuracy levels. Our overall goal is to support the ever changing end
user accuracy requirements of simulation applications by providing CFD end users
with an insight error variance feedback measure as well as an insight slider user
interface that allows simulation end users to change their speed-vs-accuracy trade-
off requirements on demand, while making informed decisions when selecting ideal
grid resolutions to speedup their simulations. This work contributes to this goal by
modelling the impact of varying grid resolution on insight error variance. This model
allows us to use insight error variance as feedback measure for CFD end users using
grid resolution to speed up their simulations. Using a crowd study, we successfully
model insight error in CFD applications are present the details of our model.
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1. Introduction

The human has been an afterthought in the collection and generation of big data.
After these massive amounts of data have been collected and generated, humans are
caught trying to figure out how to process them. There is a disconnect between human
cognitive abilities and the high powered algorithms and computers used to produce
and process this data. What is needed is a framework for data intensive computing
applications like those of Computational Fluid Dynamics (CFD) scientific simulation
and data mining, that puts the human front and center of all data related processes.

Given that it is the human who is the consumer of the data, human limitations
and strengths need to be taken into consideration when developing data intensive
computing applications. One approach that does just that is that of data visualization.
For that reason, it is used in many data intensive computing applications like those of
simulation, data intensive analytics, and data mining. However, data visualizations has
its limitations. Limitations that include slow responsiveness, high overplotting and the
inability to store and display entire big data sets highlight the inability of traditional
visualization techniques to scale to massive amounts of data (Wang et al. 2015).

The accuracy of the CFD scientific simulation depends on the amount of calculations
that are a function of the the grid resolution in addition to how well the selected
solution scheme and modelling parameters effectively represent the underlying physics
of the problem. The finer the grid resolution of the simulation, the longer the simulation
runs. Simulations can take hours, days, weeks, or months given the intensive algebra
and matrix operations required to solve the computational problem, in addition to
frequency of disk writes for purposes of time series analysis and checkpointing. These
long runtimes can be exacerbated by the iterative and exploratory nature of simulation
as well as long wait times as jobs wait in the high performance computing (HPC) queue
for resource allocation. Common work flows include executing simulation runs with
different physical parameters and grid resolutions in order to decide on an adequate
resolution, with these runs being interspaced with long queue wait times for resource
allocation. Additional runs would then be executed in an attempt to find the solution
to the simulation objective. A lot of these runs would then be discarded after looking
at the postprocessing visualization, when it is determined that the input parameters
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for the simulation need to be altered.
In scenarios where software licensing fees are paid for per processor or core and

the simulation is run on a high performance computer that uses large amounts of
power and cooling, any discarded or excessive simulation runs are not only a waste
of time, but they impact an organization’s bottom line. Given that the results of the
simulation are processed visually by humans to determine correctness, and in some
cases convergence, any level of accuracy that exceeds the capabilities of humans to
perceive in a visualization is not only a waste of time but a waste of money too.

Similar to our previous work, we define insight error (IE) as the difference between i)
a human estimate of a sample statistic made after observing a visualization of a sample
drawn from the population and ii) the ground truth, which is the actual population
parameter. We define perception error (PE) as the error in the human estimate of the
sample statistic made from viewing the visualization of the sample in comparison to the
ground truth of the sample. When one visualizes a sample drawn from a population,
the error between a sample statistic of that sample and the objective representation
of that sample statistic calculated from that visualization is our visualization error.
Sampling error (SE) is the error of the sample statistic of a sample drawn from a
population in comparison to the ground truth of the actual population parameter.

In this work, we apply our IE framework to the postprocessing results of a two
phase CFD simulation of interacting fluids in a tank as a step towards putting the
human front and center of the loop of the simulation process. Using the quantification
of insights gained from visualized results of CFD simulation, we model the relation-
ship between insight and grid resolution. Using a case study, participants are asked to
evaluate the results of the simulation. They are asked questions about the simulation
and asked to provide any additional insights they have about the simulation. Using a
ground truth calculated from the actual results of the simulation, error is calculated
between the participants’ responses and the ground truth. The variance of these er-
rors is used to investigate the relationship between the level of insight and the grid
resolution. This work makes the following contributions:

C 1. We conduct a crowd study that investigates the relationship between insight
variance levels and grid resolution in a scientific simulation.

C 2. We provide a model for the relationship between insight and its component
errors and the grid resolution in a scientific simulation.

C 3. We demonstrate the ability of our model to predict a grid resolution given an
arbitrary insight variance level.

2. Background and Related Work

CFD turns computers into safe and timely virtual laboratories (Wang and Yan 2008).
Due to the high expense associated with long CFD execution times, CFD end users use
refining and coarsening of the grid resolution as a method for changing the amount of
calculations that the simulation is doing and this causes a change in the amount of data
produced, which in turn alters the run time of the simulation executions. CFD end
users use the idea of reducing the number of elements used for simulation calculations
or grid resolution coarsening to speed up simulation executions and total simulation
workflows (Yahya et al. 2018). This can be thought of a form of spatial or systematic
sampling. The effect of grid resolution coarsening is similar to that of sampling in that
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it results in a change of accuracy (Tu et al. 2018). Similar to sampling the benefits
of refining the grid resolution diminish out after some threshold. The benefits of grid
resolution refinement are also impacted by the underlying physics of the fluids being
modelled (Ferziger et al. 2020).

Grid convergence study results allow CFD end users to understand the effects of grid
resolution coarsening in terms of simulation wall clock savings and simulation accuracy,
given an accurate numerical model of the physics being simulated (Krishnamurthy
2017). This work complements the approach of grid resolution coarsening to reduce
simulation wall clock time. It provides a feedback metric that gives CFD end users
additional insights on the effects of grid resolution coarsening on human cognitive
insights in order to enable them to make an informed decision when managing the
accuracy vs performance trade-off (Banks et al. 2018) that we refer to as the speed-
vs-accuracy trade-off.

The viability of simulation including CFD depends on user trust. For example peo-
ple would not use CFD even though it is shown to be faster and safer than an actual
experiment if it has not been shown to produce accurate results. User trust is gained
by showing that the simulation is either accurate or by accounting for any inaccuracy
and informing the end users of any error or uncertainty resulting from the inaccuracy.
Validation and verification are simulation steps concerned with gaining and maintain-
ing end user trust (Stamou et al. 2018). Validation is concerned with determining
the accuracy of a simulation in comparison to experimental results while verification
is determined by comparing simulation results to those of a computational model
(Oberkampf et al. 2004). A common approach to making the validation and verifica-
tion results actionable for end users is that of uncertainty quantification (Wu et al.
2018) .

Bao et al learn the relationship between simulation error and the simulation phys-
ical features that are derived from the mesh size, model information and simulation
parameters. They model this relationship and use the physical features to predict the
simulation error in order to suggest the optimal mesh size for simulation end users given
simulation physical features (Bao et al. 2019a). Bao et al also use historical simulation
data to train a deep forward neural network to predict the simulation error given a
grid resolution (Bao et al. 2019b). Similar to these works, we use machine learning to
learn the relationship between grid resolution and simulation result uncertainty, which
is calculated based on error.Wang, Wu and Kozlowski use simulation results as well
as bayesian inference to provide uncertainty distributions for given simulation input
parameters in order to show the necessity of quantifying uncertainty information in
simulation applications (Wang et al. 2019).

Similar to our work these works base their approach on various sources of error that
propagate through the simulation steps. However, our approaches differ in how we
calculate the error. These works calculate error based on variable values within grid
cells. Our approach calculates error based on measured human cognitive insight. We
choose this approach because we believe that a human centered approach will result
in more efficient simulations that do not produce or process data whose results exceed
human cognitive capabilities.

Oberkampf and Barone present a confidence interval metric that is based on the
mean response of the simulation system (Oberkampf and Barone 2006). Ferson,
Oberkampf and Ginzburg introduce a validation metric and in the process discuss
the need for validation metrics to consider entire uncertainty distributions as opposed
to just the means of errors (Ferson et al. 2008). We agree with this observation and
for that reason, we use the variance of errors to provide insight error feedback to
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simulation users on the impact of a selected grid resolution on the model accuracy.
Our approach for providing feedback has similarities with the approaches mentioned
above, but we have a major difference in the envisioned use of our feedback metric.
Even though we also aim to present a feedback metric for the purpose of allowing
CFD end users to find the ideal grid resolution to execute the simulation, we realize
that the ideal grid resolution selection criteria is a fluid one that changes based on
circumstances like the simulation budget and where in the total workflow simulation
end users are. For that reason our feedback metric is designed to be provided with a
slider that allows end users to change select varying insight error requirements based
on their cognitive insight requirements as needed.

3. Experiment Methodology

Our ultimate goal is speeding up scientific simulation, particularly CFD by incorpo-
rating human limitations into the simulation process in a way that will result in the
speedup of the simulation workflow. Our general research approach is based on visual-
ization being the interface between the simulation results and the human. Our general
research approach is also guided by the realization that CFD and other applications
that process and visualize large amounts of data present a speed-vs-accuracy trade-off
for and users of such applications. Sampling is a widely used method to allow for this
trade-off. In case of CFD simulation, coarsening the simulation grid resolution in or-
der to speedup the simulation is a form of spatial sampling. For that reason, the grid
resolution in CFD simulation is synonymous with the sample size in other sampling
applications. Coarser grid resolutions result in faster simulation, but they also result
in less accurate simulations. Since humans get desired insights from the simulation via
the visualization we model the insight extraction process in order to i) identify the
bounds of human insights and ii) understand the relationship between insight variance
levels and the amount of data sampling. This will allow us to use user provided insight
requirements as parameters for the stimulation, which would put the human front and
center of the simulation process and result in a simulation with little or no wasted
processes beyond those required by the human.

In order to meet the objectives above, we collect data from humans as they generate
insights from the visualized results of a CFD scientific simulation. We use a crowd study
to recruit humans for this task because of the participant diversity and the rest of the
reasons stated in our earlier work. We ask our participants to complete benchmark
tasks due to the ease of quantifying and comparing human insights associated with
such tasks (North 2006). However, due to the limitations of such tasks we also ask or
participants to complete an open ended task. We hypothesize the behavior of our errors
and proceed to quantify the insights provided by our crowd participants. We calculate
IE and its component errors. We then use our framework to model the behaviors of
our errors. Using our crowd responses and models from our framework, we test our
hypotheses and use our results to validate our framework for the speedup of CFD
applications.

4. Design of Experiment

We use a randomized between subjects experiment with blocking. Grid resolution is our
independent variable while insight error is our dependent variable. Our experiment has
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1 treatment factor with 5 levels. In case varying timestamps has an effect on insight
variance levels, we block the responses by timestep. 150 Participants are randomly
assigned to one of 5 groups and also randomly assigned to one of 5 blocks within a
treatment Each treatment consists of an image of the visualization of the results from a
given grid resolution and timestep. Each participant sees one treatment. Participants
are asked to complete a benchmark and open ended task. Given that benchmark
tasks constrain the insights that our participants can provide, while open ended tasks
require more participant training and administrator expertise for coding and analyzing
the response (North 2006), we provide tasks that take advantage of the benefits of
both task types. Benchmark tasks allow us to guarantee that our participants provide
insights that align with our study design. Our choice of simulation, which is based on
an experiment that is easy for participants to understand, allows us to benefit from
the advantages of open ended tasks without having to provide extended training to
our participants. The open ended task also allows us to identify automated response
from bots We use responses from all 150 participants in our analysis.

4.1. Research Questions

In this work we are interested in understanding how the choice of a grid resolution
impacts the IE, PE, VE and SE. Given a uniform mesh and a two phase fluid CFD
simulation, we answer the following research questions:

R 1. What is the relationship between grid resolution and the variance of IE?

R 2. What is the relationship between grid resolution and the variance of PE, VE
and SE?

R 3. Can one use SE, VE and PE to predict the variance of IE in a scientific simula-
tion?

R 4. Can one predict IE as a function of grid resolution?

4.2. Assumptions

In this work we assume the task of estimating the percentage volume is representative
of a typical analysis task conducted on the results of CFD postprocessing. We also
assume that the behaviour of the relationship between insight error and grid resolution
in this task generalizes to other CFD postprocessing analysis tasks. We make these
assumptions because CFD result analysis consists of reviewing animated results that
consist of frames of images similar to those used in our experiments. CFD simulation
end users generate insights from series of frames. Our insight framework and our
experiment tasks allow us to determine how well people understand each of these
frames.

4.3. Hypotheses

As done previously, in order to answer our research questions we create hypotheses
that are aligned to our questions. Using the results from our crowd study, we test our
hypotheses. The results of our hypothesis tests allow us to determine the answers to
our research questions. Our hypotheses that assume a uniform grid and a two phase
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fluid CFD simulation as a starting point before addressing non-uniform grids and other
multi-phase simulations are:

H 1. The variance of IE is high for coarse grid resolutions, reduces and finally grows
again for large resolutions for insights generated from viewing CFD postprocessing
visualizations.

H 2. The variances of the component errors of IE have an exponential decay, exponen-
tial decay and a U-shaped relationship with grid resolution for SE, VE and PE errors,
respectively for insights generated from viewing CFD postprocessing visualizations.

H 3. The component errors of IE, SE, VE and PE, can be used to predict the IE for
insights generated from viewing CFD postprocessing visualizations.

H 4. There is a non-linear relationship between grid resolution and the variance of
IE and as a result, grid resolution can be used to predict the variance of IE for in-
sights generated from viewing CFD postprocessing visualizations, using a higher order
polynomial.

Figure 1. Simulation wall times in seconds as a function of grid resolution for the simulations run for our
study. Simulations are run on a High Performance Computer using an Intel Xeon E5 2.1GHz processor with

16 cores and 32 threads and 128GB of memory.
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