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Abstract— Learning from text data often involves a loop of 
tasks that iterate between foraging for information and 
synthesizing it in incremental hypotheses. Past research has 
shown the advantages of using spatial workspaces as a means for 
synthesizing information through externalizing hypotheses and 
creating spatial schemas. However, spatializing the entirety of 
datasets becomes prohibitive as the number of documents 
available to the analysts grows, particularly when only a small 
subset are relevant to the tasks at hand. To address this issue, we 
applied the multi-model semantic interaction (MSI) technique, 
which leverages user interactions to aid in the display layout (as 
was seen in previous semantic interaction work), forage for new, 
relevant documents as implied by the interactions, and place 
them in context of the user’s existing spatial layout. Thus, this 
approach cleanly embeds visual analytics of big text collections 
directly into the human sensemaking process. 
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I.  INTRODUCTION 
While professional analysts are undoubtedly inundated with 

“too much data,” it is crucial to remember that this problem 
plagues everyday users as well. In this paper, we consider the 
challenge of exploratory data analysis using large document 
collections such as scientific literature, news, or the world-wide 
web. Unfortunately, users are notoriously bad at formulating 
explicit queries in such tasks [31]. We applied multi-model 
semantic interaction [13] to this problem to allow the system to 
passively construct queries through interpreting user 
interactions, filter returned web results to those which are most 
relevant to the user’s interests, spatially arrange them according 
to similarity, and visually indicate document and text saliency. 
All of this is done in a single spatial workspace, thus placing 
foraged information in context of the existing spatial layout, 
allowing the user to continue synthesizing documents without 
the need to context switch. 

Take, for example, a researcher conducting a literature 
review on a new research topic. This researcher likely does not 
know the taxonomy of this topic, which could easily span 
multiple sub-fields, all of which may use slightly different 
language in describing similar topics. In such a case, it is 
difficult to easily gain a comprehensive understanding of the 
topic through explicit querying. How can the researcher be 
confident that she has not overlooked important papers that fall 
in the intersection between known components of the topic? 
We propose that multi-model semantic interaction takes steps 
to alleviate this concern. Instead of repeatedly typing queries, 
reading abstracts, and curating results for later synthesis, the 
researcher can conduct all foraging actions directly from her 

synthesis space. For example, if she finds two highly relevant 
papers that are from different aspects of her topic, she can 
overlap these two documents in order to retrieve any relevant 
papers that combine aspects of both papers. This can help to 
“fill in the gaps” in the researcher’s literature review and 
hopefully allow her to avoid missing crucial information. 

Another common exploratory data analysis task is 
investigating current events in the news. In order to gain a 
comprehensive understanding of a particular topic, users must 
frequently consider multiple sources for information, not only 
to fill in knowledge gaps, but also due to the differing opinions 
of individual journalists. For example, a user may be interested 
in tracking political candidates for an upcoming election. They 
may begin their analysis by searching for a specific candidate’s 
name. This query could return articles from major news 
networks, opinion pieces, local news outlets, personal blogs, or 
satirical news websites. The user is then tasked with injecting 
feedback to steer the underlying user interest model to create a 
subset of documents that cover various aspects of the 
candidate, their campaign, as well as comparisons to additional 
political candidates. While a literature review may be focused 
enough to pull from specific digital libraries with standardized 
formatting (e.g. IEEE, ACM), exploring a news topic requires 
pulling articles from a wider number of sources with varied 
formatting and advertisements.  This presents additional 
challenges in terms of article parsing. 

These scenarios demonstrate an opportunity for big data 
text analytics. Previous work has shown that users leverage 
implicit query formation to retrieve relevant information [13], 
but this technique has not been applied to such a large scale of 
data. Dealing with vastly different levels of data scale (e.g. a 
small curated working set of documents vs. the internet) 
presents a set of research challenges in terms of performance, 
model coordination, interaction design, and visual encodings. 
We discuss these challenges and present an extension to our 
existing visual analytics tool prototype, StarSPIRE [13], that 
enables these aforementioned scenarios to be performed 
through integration with external web search services such as 
Bing and IEEE Xplore. 

We present a method to integrate information retrieval with 
information synthesis by presenting foraged results from 
external search services in context of the user’s current 
analytical state via a spatial “near = similar” metaphor. Other 
systems tend to treat information retrieval as a separate task, 
but we intend to remove the intermediary steps to create a 
cohesive and integrated sensemaking environment that does 
not force users out of their “cognitive zone” [29] of 



information synthesis. Instead of exiting their synthesis space 
to execute a query from external data sources, judge results, 
and import them to a workspace, these actions can be done 
directly and automatically from the spatial workspace with 
results being placed within the existing schema [Figure 1].  

 

Figure 1. StarSPIRE: analyst's workspace during a literature 
review task. 

Furthermore, working within a spatial metaphor allows 
users to directly manipulate data at vastly different levels of 
scale [21]. The user is able to focus on a small working set of 
documents while having the entirety of large external sources 
at their fingertips. We present a means to steer the underlying 
models at these varying levels of scale while addressing the 
challenges associated with this undertaking. 

Finally, we present an updated visualization pipeline and 
the associated implementation of StarSPIRE that addresses the 
multi-scale nature of these exploratory data analysis tasks. We 
discuss the system architecture, model coordination, interaction 
mapping, and visual encodings. A critical component of this 
work is the connection to existing external search services, 
enabling visual analytics methods such as semantic interaction 
to exploit the benefits of successful information retrieval 
systems. Through this work, we have achieved near-real-time 
big data analytics for text-based sensemaking in exploratory 
data analysis tasks. 

II. RELATED WORK 

A. Spatializations for Sensemaking 
Prior research has highlighted the utility of spatializations 

for text analysis [3, 5, 12, 23, 26, 35, 42, 49, 54, 55]. Large 
spatial workspaces have been found beneficial in affording a 
flexible workspace that allows users to externalize knowledge 
and create semantic schemas [4]. However, this knowledge 
externalization is typically achieved through parametric 
interactions (e.g. [36]), many of which require users to go 
outside the spatial metaphor by manipulating control panels 
[21]. Furthermore, parametric interaction does not easily scale 
to big data problems. In unstructured text data, dimensions map 
to the terms or entities contained in the documents. Thus, the 
dimensionality of the data grows extremely large as the number 
of documents increases. Aside from navigating through the 
flood of dimensions, altering multiple models becomes 
extremely tedious. If multiple models are used for layout 
and/or retrieval, the user must update the dimensional weights 
or parameters for each model and potentially at multiple levels 

of scale. To remove this redundancy, we contain the interaction 
within the spatial metaphor and translate interactions into 
parametric feedback. 

For tools that allow users to stay within the spatial 
metaphor, parametric interaction is still common. For example, 
Dust & Magnet allows users to manipulate spatial landmarks to 
adjust the spatialization of multi-variate data. However, these 
landmarks are attributes of the data, not points themselves. The 
users only have control over the parameters in the space. 
Similarly, VIBE allows users to designate keywords as spatial 
landmarks [42]. In MSSI, users can designate specific data 
points as spatial landmarks. These landmarks attract other data 
points (e.g. documents) based on the high-dimensional data 
instead of a single attribute or dimension. For text data, this 
enables users to focus more on the high-level semantics of the 
document contents rather than merely on specific individual 
keywords. 

Systems exist which allow users to directly manipulate data 
points and interpret this feedback via a dimensionality 
reduction algorithm to generate a new view that better reflects 
the user’s understanding of the data [15, 24, 34]. These 
methods inherently suffer from scalability issues. Users expect 
a quick interaction-feedback loop in order to remain in their 
“cognitive zone” [29], but calculations on thousands, let alone 
millions, of data points take from minutes to hours to complete. 
It is more practical to break the problem into multiple levels of 
scale and perform dimensionality reduction on a subset of a 
much larger data set, using information retrieval techniques to 
add additional information to the workspace. 

B. Semantic Interaction 
Semantic interaction serves as means for analysts to work 

with data within a spatialization instead of altering algorithms 
or the raw data [20, 21].  The concept of direct manipulation 
for visual analytics is an evolution of direct manipulation for 
information visualization [46]. This is particularly important 
when the analyst is a non-expert in the layout algorithm(s). 

Semantic interaction can be viewed as a form of visual-to-
parametric interaction (V2PI) [34]. This type of interaction 
involves mapping user interactions to algorithmic parameters. 
For example, in [34], users are presented with a MDS layout 
and are able to impart feedback on the layout (through 
highlighting or moving data points), which then iterates to 
generate a new spatialization that better matches the user’s 
understanding of the relationships within the data. Similarly, 
DisFunction [15] converts user interaction on a two-
dimensional spatialization into feedback on the high-
dimensional data, generating a spatialization that better 
matches the meaning imparted by the user. 

Typograph [22] uses varying levels of data abstraction to 
visualize large text corpora. Users can drill down to see the 
details of documents at different levels of detail. The MSI 
technique implemented in StarSPIRE, in comparison, addresses 
the scalability challenge by constantly updating a small 
working set of documents. Documents in StarSPIRE are either 
open or closed, whereas Typograph extracts topics, keywords, 
and document snippets. 



While current forms of semantic interactions have shown to 
be successful, they are limited in the number of data items they 
can handle simultaneously (typically less than 1000). Thus, 
semantic interaction alone is not adequate for tackling the 
challenge of big data.   

It is not practical to display thousands or millions of 
documents using any of the above models. In addition to a poor 
interaction-feedback loop time, the user would not be able to 
distinguish the points. Instead, many researchers have turned to 
topic modeling to give the user an overview of the topics and 
their distribution in the dataset. This can be a good method for 
establishing a starting point for analysis in addition to gaining 
an overview of the data. However, through an informal 
requirements analysis done with intelligence analysts, we 
found that they frequently have a specific topic to research or 
even a handful of “starting point” documents. 

Therefore, we found it to be more practical to store the 
initial data in a database and use information retrieval 
algorithms to fetch additional documents for the user. Similarly 
to how semantic interaction helps to steer the layout model, it 
can be used to steer information retrieval models by changing 
either the model itself, input parameters, or both. A multitude 
of information retrieval algorithms and models exist that could 
be used in a semantic interaction context. Latent Dirichlet 
Allocation (LDA) uses probabilistic topic modeling to group 
similar documents [11]. Latent Semantic Indexing (LSI) uses a 
method similar to principle component analysis to reduce the 
high dimensional data (in this case, the term-document matrix), 
and then constructs a query into the lower-dimensional space 
using a set of terms [33]. Additional potential models include 
probabilistic relevance model, Bayesian logistic regression, 
boolean models, and vector space models [25]. 

C. Information Retrieval 
The information retrieval aspect of this work is closely 

related to content-based recommendation systems [6, 43]. 
These systems track user interests to build a profile of a user 
and their interests in order to query for additional relevant 
items. The data involved is often high-dimensional, typically 
from facets of an item or associated metadata (e.g. item type, 
category, production information, genre). However, these 
systems typically rely on pre-defined characteristics, whereas 
we are operating on unstructured text data models that are 
capable of having entities added or removed dynamically. 

Additionally, this work is closely related to query-by-
example systems, which differ from context-based 
recommendation systems (e.g. [47, 48]) in that query-by-
example systems use a set of user-defined query objects 
whereas recommendation systems aggregate recommendations 
over all (or a recent selection of) user selections. Query by 
example systems have enjoyed a wide implementation across 
data types [38], from unstructured text documents [8], to 
multimedia [16, 30], to musical selections [28]. 

Systems such as Adaptive Information Retrieval [10] use 
relevance feedback to augment future retrieval requests to 
return results that are better tuned to the user(s). Other systems 
use visualizations to construct queries (e.g. geographical and 
temporal bounding [2], expressive constructors [19, 37], 

dynamic control panels [50], dynamic query interfaces [1, 27, 
47]). However, these mechanisms still often fail to place results 
in context of existing retrieved results, which is important for 
maintaining situational awareness [7, 52]. 

Attempts have been made to visualize information retrieval 
results (e.g. term distribution charts [32], self-organizing 
semantic maps [39], hierarchies [17], collages [18], word trees 
[53]), but these techniques have not been widely adopted. 
Information retrieval results are typically visualized as a ranked 
list of results [40, 41]. Presenting results in this format is 
suitable for targeted queries where the user may view a handful 
of results at most (e.g. a web search for a specific culinary 
recipe). However, when the user is presented with hundreds of 
viable documents worth reading (e.g. an intelligence analysis 
task) that relate in complicated, intricate, and fuzzy ways, a 
linear list becomes less than ideal [14]. 

Work by Ruotsalo et al. has demonstrated the use of direct 
manipulation to influence information retrieval algorithms 
[44]. User interactions within a radial topic spatializations were 
used to infer possible user intent to tune search results, working 
on the principle that searches evolve incrementally [51], 
similarly to the incremental formalism seen in sensemaking 
and spatial organization [45]. They found that these 
interactions did not replace the need for conducting explicit 
searches, but that the users in the condition that allowed for the 
use of the spatial interface performed better than those who did 
not have this technique available. 

Other systems provide mechanisms for visualizing search 
results beyond the typical ranked list (e.g. term distribution 
charts [32], self-organizing semantic maps [39]), but these 
methods do not provide the nuanced spatial interactions that 
the Ruotsalo system does. While ranked lists are well-suited to 
narrow and specific searches, they may not be as well suited 
for exploratory data analysis. For example, conducting a 
literature review requires exploring multiple facets of a topic. 
A simple ranked list of results does not yield insight into 
documents that are mixtures of different topics. 

III. RESEARCH CHALLENGES 
Creating an analytical tool that facilitates exploratory data 

analysis across multiple models operating at vastly different 
scales of data comes with a substantial set of research 
challenges. These include system architecture considerations, 
interaction and visualization design, and data scale concerns. 

A. Performance 
Dealing with information retrieval requests on big data 

inevitably requires researchers to address performance issues, 
particularly in terms of performance and result accuracy. 

1) Speed 
A quick interaction-feedback loop is critical for keeping 

users engaged in their analysis. As such, the coordinated 
models (information retrieval, document relevance, and 
visualization) ought to be optimized to maintain real-time 
interaction. Several avenues could be chosen and/or combined 
to facilitate this. As this research is concerned primarily with 
interaction and visualization design, multiple external existing 



retrieval APIs were leveraged in this extension to StarSPIRE. 
Additionally, web scraping and entity extraction can be done 
progressively to give the user an approximate set of document 
results while processing the remainder in the background. 

2) Accuracy 
Precision and recall are important aspects of any 

information retrieval task. The quality of retrieved documents 
can be evaluated objectively as well as subjectively. The 
information retrieval model is primarily responsible for the 
objective quality of retrieved results. However, these results 
can be tuned to the user’s interests to provide subjectively 
better results. Using the user’s interest model, the retrieval and 
data relevance models can be adjusted to execute nuanced 
queries and filter in documents that the user is more likely to 
find pertinent to their analysis. It is important to consider how 
these two notions of data relevance (user’s opinion and web 
search opinion) compliment or contrast each other. Systems 
can gain insight into the user’s perception of the quality of 
results through relevance feedback. The downside of exploiting 
existing external retrieval engines is the limited API for 
specification of user interest. Thus, we use a multi-level 
approach that follows the retrieval with a more detailed 
relevance analysis based on the user model. 

B. Data Storage 
When dealing with data on a very large scale, it is 

important to consider how the data and retrieved results should 
be stored. Possible storage options include web hosting, cloud 
architectures, databases, or local memory. These obviously 
have varying limitations in terms of the amount of data that can 
be stored and associated retrieval speeds. For this extension to 
StarSPIRE, the source dataset is left on the web (existing 
websites able to be accessed by a search engine) while a small 
working set of documents is stored in local memory. This 
enables us to exploit the cached storage methods used by major 
search engines. Previous iterations of StarSPIRE have 
connected to existing databases containing tens of thousands of 
documents while also maintaining a working subset in 
memory. Ultimately, the design decision for data storage 
should appropriately match the intended dataset in order to 
ensure optimal retrieval speeds. 

C. Interactions 
Interactions must be carefully designed to best match the 

user’s current analytical reasoning process. This task grows 
complicated when interpreting interactions across multiple 
models. For example, how can the system differentiate between 

searching on the existing set of documents displayed in the 
workspace and searching over the entire external dataset? How 
would such an intention be detected? This is a difficult 
question to answer, particularly because there are individual 
differences between users and what strategies they employ in a 
spatial document analysis tool. We chose to search all data 
repositories simultaneously unless explicitly specified by the 
user. The user is given the option to toggle external databases 
on and off if they wish to restrict their interactions to what is 
currently on the display. 

Previous work with StarSPIRE has tested when to launch 
information retrieval requests. We first required users to 
explicitly request additional information via a query button, 
then altered the interface to execute such requests after every 
interaction. Continually interpreting and acting on interactions 
removes the need for users to step out of their synthesis process 
to explicitly forage for information. 

D. Visual Encodings 
Extensive work has been done to tune the visual encodings 

in StarSPIRE, but adding large-scale information retrieval 
introduces new aspects of feedback that may be of interest to 
the user. Such facets include, but are not limited to, the novelty, 
recentness, and relevance of the retrieved results. Currently, all 
previously mentioned encodings are carried over into this 
iteration of StarSPIRE. It is important to consider how this 
visual feedback can be integrated with existing visual 
encodings in a manner that clearly conveys system feedback to 
users in an easy to interpret manner. 

E. Foraging and Synthesis Integration 
In order to keep users focused on their sensemaking task 

and avoid context switching, it is important to enable foraging 
and synthesis actions in the same workspace. If this is 
successfully accomplished, synthesis actions (e.g. highlighting) 
can drive information foraging and foraging actions can drive 
information synthesis (e.g. clustering documents). We have 
chosen a spatial layout where document proximity indicates 
similarity and documents are visually encoded to indicate data 
relevance. As new documents are added to the workspace, they 
are mapped to the current visual encodings and arranged 
according to their similarity to existing documents in the 
workspace. Thus, new documents are placed in context of the 
documents already in the workspace. 

Thought must be given to how new documents are 
presented to the user, particularly to how users are alerted to 

 

 

 

 

 

 

 

Figure 2. Visualization pipeline indicating web integration for big data analytics, controlled through a single spatialization. 

 



their presence. StarSPIRE picks random initial positions for 
documents, which then move according to the weighted force-
directed layout to a stable state. We have found that this strikes 
a balance between blatantly interrupting the user and slipping 
in unseen. Other mechanisms for keeping foraging and 
synthesis in context of one another should be investigated. 

Additionally, foraging actions (e.g. information retrieval, 
entity extraction, relevancy evaluation) should not interfere 
with the user conducting synthesis actions. Ideally, foraging 
actions should be done in the background without the user 
having to wait for the system to process query requests.  

IV. SYSTEM DESCRIPTION 
StarSPIRE [13] is a visual analytics tool prototype that  

provides users with a spatial workspace to view and arrange 
documents, facilitated by a modified force-directed layout. All 
interactions are interpreted and processed sequentially through 
a series of models: layout, document relevancy, and 
information retrieval [Figure 2]. Within documents, extracted 
terms are underlined and highlighted according to the feedback 
users have given the system through natural actions such as 
highlighting text, writing notes, or moving documents [Figure 
3]. The layout algorithm places similar documents closer to 
each other and emphasizes terms with large weights and 
entities that co-occur between documents [Figure 4]. 
Documents are arranged using a node-link diagram and 
documents can be shown as closed nodes or as open text 
windows. To avoid a cluttered workspace, edges linking 
documents (based on entity co-occurrence) are only shown 
radiating from the currently selected node or document. We 
constructed the set of interactions available through working 
with and observing real-world analysts who offered usability 
feedback in informal and formal test settings. 

StarSPIRE implements the Bing Search API and the IEEE 
Xplore digital library in order to expand its corpus to include 
innumerably many documents from the internet. The Bing API 
allows the client to send a query, and receive either JSON or 
XML representation of the Search Engine Results Page 
(SERP). IEEE Xplore is programmatically accessed, and its 
HTML parsed in accordance with its terms of use. The goal of 
access to these sources is to gather relevant text from web 
pages rich with images, colors and video. Future work includes 
the integration of multimedia content, but this work is limited 
to the text content of each page. 

Queries slated for execution by the StarSPIRE 
Webscraping Module (WM) can be created as a result of either 
implicit or explicit interactions by the user. Explicit interaction 
can include use of the search feature to type a query, for 
example “Computer Science”. Alternatively, a query can result 
from implicit action, such as a user “combining” two 
documents by dragging them together. For example, if two 
documents on the subject of the murder of Nemtsov, a Russian 
political leader, were combined, the query sent to the WM 
might look like “Russia Putin Nemtsov Murder Opposition”. 
These two kinds of interaction are treated the same by the WM. 
In the case of Bing, part of the query indicates which source 
type should be searched for (i.e. full web, news, shopping).  

If Bing results are requested by the user, the WM will then 
send the query to Bing servers and receive the SERP JSON. 
Currently, the WM performance with News sources 
considerably outperforms the full web. Next, the SERP JSON 
is parsed to store information about each news article, 
including its title and URL. The HTML is extracted from the 
URL and parsed for content. If the URL returned from Bing 
leads to anything other than a standard web page (i.e. PDF, 
PowerPoint), it is ignored. Parsing of such documents remains 
as future work. The process of parsing the HTML into plain 
text is considerably more reliable for News articles, as they 
tend to be more similarly and simply structured. 

If IEEE Xplore results are requested by the user, the WM 
will subsequently navigate to the results page of the relevant 
query on Xplore. This approach was taken as a proof of 
concept for connecting to specific digital library search 
services through its generic search UI. It will extract and parse 
HTML from the URLs of each of the links on the results page. 
As with Bing, weights on tokens are not implemented for this 
source. Next, relevant information is extracted from the 
HTML. This process is more accurate with the IEEE source 
than with the Bing source, as each page on Xplore has the same 
HTML architecture, while Bing has the potential to return 
documents from vastly different web sites with each query. As 
such, a tailor-made parsing system is used for Xplore HTML.  

When the text is successfully extracted from the HTML, the 
text is then parsed for entities. New entities are attached to the 
document in which they were found, and then the rest of 
known documents are searched for the new entities in order to 
relate them to one another. Whether the user requested Bing or 
IEEE, the information stored about the online documents is 
transferred into the main data structure for StarSPIRE, which 
the system subsequently processes before it is displayed to the 
user. These documents are analyzed for relevance to the user 
by StarSPIRE’s relevancy model to create the working set of 
documents shown in the spatial workspace. This means that the 
documents are first gathered using Microsoft’s/IEEE’s 
relevancy scheme, and then filtered to a subset according to 
what StarSPIRE believes the user is interested in through the 
relevancy model.  Finally, documents are positioned on the 
screen where they fit in with the existing spatial layout model, 
placing the search results in context. The document nodes take 
on visual encodings based on the current user interest model. 

The retrieval model differs considerably from the relevancy 
model. The information retrieval model is implemented by the 
external search service (such as Bing or IEEE Xplore) and 
operates as a black box, using a set of unknown heuristics to 
rank the retrieved results. Conversely, the relevancy model is 
directly controlled by StarSPIRE and is constantly tuned to the 
user’s current interests. By sorting the results retrieved from 
the black box by StarSPIRE’s internal relevancy model, we can 
attempt to balance what the external system deems to be 
relevant and what the user is interested in. It is likely that these 
two models will have different rankings of the top relevant 
results. This combination of models may also serve to relieve 
the cognitive tunneling issue previously observed with 
StarSPIRE by retrieving results that an outside source (e.g. 
web-based search engine) believes to be relevant instead of 
only honing in on the user’s narrow focus. In practice, we have 



observed that the relevancy model naturally limits the number 
of documents displayed to a few hundred by pruning off 
documents that fall below the current relevance threshold. 

V. USE CASES 
Using StarSPIRE, we successfully completed the two 

scenarios mentioned in the introduction: literature review and 
investigative journalism. 

A. Literature Review 
Given that this paper is situated at the intersection of visual 

analytics, information visualization, and information retrieval, 
we used StarSPIRE to find additional related work regarding 
information retrieval from the information visualization and 
visual analytics communities. This is quite a broad task, 
making it a good example of exploratory data analysis. In order 
to ensure that the analysis would not be biased by recently 
published papers at conferences the analyst had attended, we 
restricted the dataset to paper abstracts from 1995 to 2009 from 
the IEEE Information Visualization (InfoVis) and Visual 
Analytics Science and Technology (VAST) conferences. This 
resulted in 454 unique paper abstracts, which were processed 
with LingPipe [9] to extract entities. 

 

Figure 3. Zoomed in document from the literature review 
scenario. 

The analysis began with a simple query for “retrieval.” This 
search resulted in finding multiple relevant paper abstracts that 
served as starting points for further investigation. As the 
spatialization evolved, notes were added to documents to make 
connections based on common themes. This helped to link 
paper abstracts that used slightly different terminology to 
describe similar concepts, such as “iterative query refinement” 
and “visual query language” [Figure 3]. After 75 minutes of 
analysis, a final set of thirteen previously unidentified 

documents were selected as being highly relevant and worth 
citing in this paper. These documents were then rearranged by 
overarching topic to make re-finding by topic easier [Figure 4]. 

 
Figure 4. Final spatial layout with labeled clusters 

B. Investigative Journalism 
The investigative reporting scenario linked StarSPIRE to 

the Bing web search engine. While StarSPIRE is capable of 
searching the entire web for potential documents with Bing, the 
scope of this task was limited to news articles. The web 
documents are labeled with the webpage title. As such, it is 
typically possible to eliminate clearly irrelevant documents. 

For this task, we chose to select a current and controversial 
topic: police brutality and the ensuing protests. This topic was 
chosen because it has passionate and opinionated reporters on 
both sides and has received an overwhelming amount of 
national coverage. This analysis began with a search for 
“police brutality,” which returned articles that appear to be 
about recent incidents in the United States. The most relevant 
article is opened automatically by the system. 

 

Figure 5. Retrieval results from overlapping two documents. 

The protests in Baltimore seem interesting, particularly 
because they are the most recent focus in the news. A second 
document with a seemingly relevant title is opened, which 
results in other documents changing in size to reflect the 
changes in document relevance. These documents are then 
overlapped to search for information that matches the terms 
that co-occur between the documents. The result is a number of 
documents about Baltimore protests, many of which contain 
the name Freddie Gray. We highlight the name in order to 



indicate our interest to the system, which retrieves additional 
documents. This results in many highly relevant documents to 
analyze which were previously unknown [Figure 5]. 

VI. DISCUSSION 
The use cases presented here demonstrate how a semantic 

interaction tool can be used to complete real-world tasks in 
real-time, allowing the user and computer to jointly curate, 
arrange, and analyze large document collections while 
preserving the context of previously completed actions. 

A. Use Case Performance 
Approximately half of the relevant documents retrieved 

from both use cases came from implicitly constructed queries. 
The remaining half came from explicit searching or query by 
example. In both use case scenarios, interesting documents 
were obtained that did not match any of the initial search terms, 
showing that users are able to explore previously unknown 
regions of the information space. These results show extensive 
promise for applying semantic interaction to exploratory data 
analysis tasks. However, more extensive studies are needed to 
quantitatively and qualitatively evaluate the design decisions 
made in the development of this extension. 

B. Limitations 
There are several limitations to this system that should be 

noted. Currently, all documents are parsed for entities at once, 
which can delay the time needed to import documents. The 
retrieval, relevancy ranking, and parsing process should be 
improved to stream in results or prioritize the very top retrieved 
documents. Additionally, using outside algorithms for 
information retrieval limits the amount of model steering that 
can be done at the information retrieval level. Furthermore, 
web-based information retrieval does not directly translate to 
protected databases containing millions of documents. 
Additional algorithms will be needed to access such datasets. 

C. Applications 
In this instance, we exploited the search engines for Bing 

and IEEE Digital Library. A previous version of StarSPIRE 
connected with an existing document modeling and matching 
system connected to a large database of approximately 13,000 
documents. In all of these instances, StarSPIRE must be 
adapted to work with the existing APIs. For example, the 
database search could place emphasis on different search terms 
by repeating the terms in the search query. StarSPIRE 
converted the existing entity weighting scheme to this format 
by linearly increasing query term frequency as the term weight 
increased quadratically. With Bing and IEEE, StarSPIRE 
creates a query string by ordering the search terms by their 
associated weight. These modifications demonstrate how we 
can take advantage of existing recommendation systems while 
still using the user’s interest model as input for these systems. 
By using such existing tools, we are able to leverage their 
strengths, such as filtering out duplicate articles so that the user 
can focus on broader aspects of the topic of interest. However, 
it may be advisable to cast an even wider net for potential 
results when using external services, since the retrieval 

algorithms themselves are unknown. By collecting a larger 
sample of potentially relevant results, we can lower the risk of 
missing important documents. This work could be extended to 
cache the additional potential results in StarSPIRE’s local 
database. They could then be added to the workspace if 
deemed relevant during future interactions without requiring 
additional external queries. 

Future work could explore leveraging additional 
recommender systems, both on the small and large scale. For 
example, a team of analysts could be linked such that they co-
create a model of their interests in the data. 

VII. CONCLUSION 
The endeavor to create a system in which foraged results 

are placed in context of an information synthesis space has 
raised many research challenges. We have addressed several of 
them in terms of design decisions explored and made, although 
many remain as open research questions. Through this work, 
we have enabled users to perform common exploratory data 
analysis tasks while having access to a nearly unlimited 
amount of data, while keeping interactions and feedback in 
context of the user’s current analytical state. We have been able 
to successfully complete these tasks, allowing StarSPIRE to be 
used in real-world applications while maintaining a quick 
interaction-feedback loop. 
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