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Fig. 1. An overview of the example Andromeda algorithm in Jupyter Notebook with three main parts: 1) sliders to adjust attribute
weights, 2) dimension-reduction projection algorithm results, and 3) the resulting weights generated by the inverse projection algorithm.

Abstract—The way of using computational notebooks is quite different between data science and visual analytics. Data scientists focus
on data exploration with the code, while visual analytics users are interested in engaging with interactive visual interfaces to facilitate
analytical reasoning. Such a difference leads to design contradictions while merging visual analytics tools with data science tools in
computational notebooks. In this work, we investigated the problem using an example called “Andromeda,” which is an interactive
dimension reduction algorithm, and implemented it using three different notebook platforms: 1) Python code in a Jupyter Notebook, 2)
JavaScript code in an Observable Notebook, and 3) embedding both Python (data science use) and JavaScript (visual analytics use)
in a Jupyter Notebook. Advantages and disadvantages are concluded for each platform by making comparisons based on various
aspects, such as design logic, coding differences, performance, and usability. Laying the groundwork for data scientists, advice and
recommendations are made on architecting similar notebooks and which platform to choose in various situations.

Index Terms—Visual Analytics, Data Science, Computational Notebooks, Dimension Reduction

1 INTRODUCTION

Traditionally visual analytics tools are developed with standalone ap-
plications, such as web-hosted applications. However, adapting full-
stack systems can be potentially challenging for data scientists for four
reasons: 1) lack of background knowledge of web-application develop-
ment; 2) limited access to the code; 3) low reproducibility; and 4) low
code reusability.

As computational notebooks, such as Jupyter and Colab [3], become
more popular among data scientists, the issue of how to merge visual an-
alytics tools with data science tools in notebooks becomes increasingly
important. Schmidt and Ortner explored the differences between stan-
dalone tools and notebook-style workflows, and outlined the barriers
to merge visualization techniques in both workflows [14]. Researchers
have put effort into building visual analytics tools in notebooks to solve
problems in diverse scenarios. However, best practices for implement-
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ing visual analytics methods in notebooks are not currently sufficient to
benefit data scientists. We aim at exploring the challenges of building
such visual analytics notebooks merged with data science packages.
Challenges exist because the way of using notebooks is quite differ-
ent between data science and visual analytics. Data scientists want to
dig into code details to see and manipulate the process of how data
changes [18], while visual analytics designers emphasize higher-level
methods such as interacting with visual representation of the data [4].
While a variety of platforms are currently used, it is unclear what are
the tradeoffs in choosing between these platforms.

To investigate the problem, we conducted a case study with an exam-
ple called “Andromeda”, which is an interactive dimension reduction
algorithm, and implemented notebooks that merge data science with
visual analytics using three common platforms: 1) implemented with
only Python language in a Jupyter Notebook; 2) implemented with
only JavaScript language in an Observable Notebook; and 3) embedded
both Python (data science use) and JavaScript (visual analytics use) in
a Jupyter Notebook. Furthermore, the three resulting notebooks are
compared based on the design logic, coding differences, and usability.

2 BACKGROUND AND RELATED WORK

A variety of research is influencing visual analytics to shift from full-
stack to notebook implementations.



2.1 Visual Analytics in Full-Stack Applications
Full stack web development was common for implementing visual
analytics applications. Full-stack apps are composed of two major
parts: 1) front end user interface, and 2) back end data processing. Full-
stack development allows complex interactions by integrating different
programming languages and frameworks. However, significant disad-
vantages of full-stack development [16] cause people to shift to use
notebooks. First, the creator must be familiar with diverse languages
and framework components. Second, the applications lack experimen-
tation due to limited code access and modification. Third, complexity
of the implementations make it difficult to distribute for reproducability
and reuse. A method to adapt web-based VA systems for notebooks
called NOVA [19] converts web applications developed with diverse
languages and frameworks to notebooks for easier use.

2.2 Computational Notebooks
Researchers use computational notebooks to combine code, visualiza-
tions, and text in single documents in order to support collaborative data
analysis [12] [1] [2] [20]. Notebook platforms for data science use in-
clude Databricks, Azure, Colab and Jupyter [3]. Whereas, visualization
notebook platforms include Observable Notebook. In our analysis, we
used Jupyter and Observable as two main ingredients because they are
the most popular notebook platforms for implementing visual analytics
notebooks based on our experience and by sampling papers from visual
analytics conferences such as IEEE VIS.

2.2.1 Jupyter Notebook
Jupyter Notebook is a scientific interactive framework where data sci-
entists can embed code, text, mathematical equations, and interactive
graphs [17]. Jupyter cells are either code cells and markdown cells.
Code cells support independent implementation, running code and
providing feedback. Markdown cells contain documents and display
diverse contents, such as images, tables, and links. Two major advan-
tages are: 1) literate programming [6], the layout of the combination
with code, output, and textual description, which help users gain an
explicit overview and improve the readability of the logic process, and
2) easy to modify and debug, reducing the code implementation for
repeated experimentation by decomposing into cells [13].

2.2.2 Observable Notebook
Observable Notebook is an online platform for writing JavaScript code
mainly for visualization with packages like D3. While Jupyter Note-
book executes code by passing it to an external kernel, Observable
Notebook runs its code in the browser in a reactive manner [10]. Cells
re-execute automatically when their dependent variables change, which
saves users time and frustration since cells are run automatically with-
out user invocation and notebook state maintains consistency.

2.3 Visual Analytics in Notebooks
In the past few years, visual analytics researchers have increasingly
used computational notebooks to develop visual analytics methods for
data science. For example, Fujiwara and Wei implemented ULCA
(Unified Linear Comparison Analysis) on Jupyter Notebook to find
similarities and differences between datasets [5].

Also, new platforms have been built to better support visual analytics
notebooks. For example, a popular Python package named NotebookJS
[11] enables notebook creators to embed interactive visualizations
implemented with JavaScript into Python-based Jupyter Notebooks.
We include it in our cases study due to its popularity. Another library
called B2 [21] presents visualizations in an adjacent frame in a Jupyter
notebook. AntEater automatically tracks data in the cells and presents
visualizations of the data with minimal code.

2.4 Andromeda
We chose Andromeda [8, 15] as a reference example because it is a rep-
resentative method that involves both analytics (such as dimension re-
duction) and interactive visuals (such as sliders and plots). Andromeda
is an interactive visual analytics algorithm for the analysis of high-
dimensional data. It provides coordinated multiple views for users to

interact with: the “Attribute” view and the “Observation” view. Users
perform dimension reduction with a weighted multidimensional scaling
algorithm (WMDS) on the data by adjusting the weights via sliders in
the Attribute view, and see the projection of the reduction result on the
2D plane in the Observation view. Alternatively, users can drag the
points in the Observation view to perform inverse projection (Inverse
MDS) and see how the weights change in the Attribute view.

3 ANDROMEDA IMPLEMENTED IN 3 PLATFORMS

In this section, we describe the implementation and interactions of three
Andromeda notebooks developed using three platforms mentioned
in the Introduction. These 3 implementations form the basis of our
comparison of the platforms.

3.1 Jupyter Andromeda

The implementation of the Jupyter Andromeda (J-Andromeda) utilizes
various software packages to support the use of visual analytics and
data science. Packages such as Scikit-learn, Pandas, and Numpy were
used to perform data processing and WMDS. Moreover, we used Mat-
plotlib to build a draggable scatter plot to display 2D projections of
high-dimensional data. More importantly, button-controlled events
are supported by the Python package ipywidgets, which allows users
to interact with the notebook. In addition, users can perform interac-
tions, shown in Figure 1, such as dragging sliders, clicking buttons,
and dragging dots in the scatterplot. The following interactions can be
performed individually or as combinations: 1) Weighted Dimension Re-
duction: users can drag the sliders to change weights of data attributes,
and click the “Apply New Weights” button to render the 2D scatterplot.
2) Inverse Dimension Reduction: users can drag points on the scatter-
plot and click the “Inverse” button to execute the inverse-DR algorithm,
and show the resulting attribute weights in the bar chart. Then users can
click “Copy to Sliders” button to re-render the scatterplot by applying
the obtained weights. 3) Reset Plot: users can reset the weights and
scatterplot by clicking the “Reset Plot” button.

3.2 Observable Andromeda

The Observable Andromeda (O-Andromeda) is implemented with
JavaScript code which support both data processing and visual an-
alytics use. Differences exist compared to J-Andromeda: 1) due to
limited analytics libraries, the dimension reduction method uses D3’s
force directed graph algorithm to simulate weighted MDS, 2) HTML
widgets are used to create sliders and buttons, and 3) plots were built
using the package d3.js. In addition, users can interact with sliders,
buttons and the scatterplot in a similar way as J-Andromeda, but slightly
different due to improved performance. For example, the “Apply New
Weights” button is no longer needed. When users drag the sliders, the
scatterplot is immediately re-rendered in real-time. In addition, the
“Inverse” button is no longer needed. Thus, when users select and drag
at least two points on the scatter plot, the inverse projection algorithm
automatically executes and updates the bar plot displaying new weights.

3.3 Jupyter with Embedded JavaScript Andromeda

The implementation of the Jupyter with Embedded JavaScript An-
dromeda (JEJ-Andromeda) involves a python package called “Note-
bookJS”, in which JavaScript code can be embedded into Jupyter Note-
book to achieve bidirectional communication between Python (data
science use) and JavaScript (visual analytics use). First, based on the
slider weights, the projection data is computed in the python kernel
using the sklearn library for dimension reduction. Then, the JavaScript
code retrieves the data and uses D3 to render the scatterplot within a cell
in the Jupyter notebook. Conversely, when users drag dots on the scat-
terplot, the coordinates of the dragged dots are recorded and delivered
from the JavaScript environment to the Python kernel for computation.
NotebookJS enables this cyclical communication for interactions. The
interactions of the JEJ-Andromeda is similar to J-Andromeda.



4 COMPARISON OF THE THREE ANDROMEDA NOTEBOOKS

During implementing and testing the three versions of Andromeda
notebooks, some major differences were found in various aspects, such
as design logic, coding difference, and usability.

4.1 Design Logic
The design logic refers to how to architect notebooks that merge data
science with visual analytics. It is mainly impacted by five deep-
level differences in Table 1: 1) Cell Execution, 2) Control Flow, 3)
Interactions with Widgets, 4) Bidirectional Communication, and 5)
Button Usage.

Jupyter Observable Jupyter+JS
Cell Execution
Manner manual reactive manual

Cell Execution
Order linear topological linear

Interaction
with Widgets ipywidgets html widgets ipywidgets

Bidirectional
Communica-
tion

python call-
backs

reactive value
updates

JavaScript-
triggered
python
callbacks

Button Usage give control stop cyclical
reference give control

Table 1. Design Logic Comparison

4.1.1 Cell Execution Manner
Neither the J-Andromeda nor the JEJ-Andromeda cells will be executed
unless users run them manually. A typical compilation procedure for
a cell consists of 1) selecting the cell and 2) clicking the Run button
in the top menu or pressing Shift-Return on the keyboard. Since users
are most likely unaware of which cells need to be compiled to perform
certain functions, visual analysis notebooks often require the creation
of additional buttons to invoke the desired functions. However, due to
the reactive nature of O-Andromeda’s cells, O-Andromeda’s cells are
executed automatically, which means that no action is required to run
the cell if there are any changes or modifications to the data.

4.1.2 Cell Execution Order
Since Jupyter cells execute linearly, the J-Andromeda runs codes from
top to bottom of the notebook. A significant consequence is that a cell
will not run successfully if its referenced variables are not declared in
the preceding cells. In the JEJ-Andromeda, the JavaScript code will
keep running to receive the processed data and render the plot since
the first run, though the Python cells run similarly to the J-Andromeda.
O-Andromeda uses a topological order to run cells, determined by unit
references, which means that no matter how the cells are arranged,
variables will be updated as soon as their references change.

4.1.3 Interaction with Widgets
Integrating cells into methods triggered by widgets like buttons is
necessary for users to interact with notebooks. Software packages are
available for creating widgets, such as ipywidgets for J-Andromeda
and JEJ-Andromeda, and HTML widgets for O-Andromeda. The
ipywidgets package provides Jupyter widgets in the Ipython kernel to
register callback functions. The HTML widgets are familiar to people
who know basic web development concepts, such as HTML, DOM
(Document Object Model), and CSS. After the declaration of the HTML
widget variables, the variable names will be referenced in cells which
need to run whenever updated. Thus, the reactive capability runs the
dependent cells whenever users interact with the widgets.

4.1.4 Bidirectional Communication
Bidirectional communication between data and visualizations in our
notebooks means both data and visualization depend on each other and

form a cycle. The J-Andromeda notebook achieves the communica-
tion by executing callback functions observed by widgets along with
updating the global variable “weights”. Once the slider widgets are
dragged, new “weights” will be applied to the original data by clicking
the “Apply Weights” button and new scatter plot will be generated.
Inversely, after the layout of the scatter plot changes by dragging points
on it, clicking on the button widget to execute the inverse DR algorithm
leads to the update of the “weights” variable. It can be used to trigger a
new cycle by clicking the “Apply Weights” button. Communications
in O-Andromeda automatically happen between the data and visual-
ization, because of the reactive manner of observable notebook. The
JEJ-Andromeda notebook works like a combination of both platforms
mentioned above. The python widgets are interacted by users to change
weights of attributes and process data with callback functions, while the
JavaScript code serves to obtain the processed data to render plots and
send the plot data back to python code automatically and continuously.

4.1.5 Button Usage
Buttons in all three notebook platforms are used to execute corre-
sponding functions or cells. Due to the low-speed performance of
graph rendering speed and the inverse MDS algorithm, the buttons in
J-Andromeda and JEJ-Andromeda are used to divide the whole process
into small chunks, which helps users to avoid taking too much time to
wait for the process to be completed. Additionally. users can gain con-
trol over the execution of small steps of the running algorithm without
having to run all the relevant cells manually. In Observable, buttons are
not needed for solving the performance issues like in Jupyter. This is
because Observable executes the interactive functions so quickly that
the results can be displayed in real time as the user interacts. However,
button widgets in O-Andromeda are used to avoid the cyclical reference
error, which will be discussed in section 5.2.2.

4.2 Coding Difference
4.2.1 Background Knowledge
To implement J-Andromeda, data scientists must be familiar with 1)
Python syntax; 2) common Python packages such as Pandas, NumPy,
Scikit-learn, and Matplotlib; 3) Jupyter notebook cells; and 4) creat-
ing interactions in Jupyter. O-Andromeda requires them to know 1)
JavaScript syntax; 2) packages for data processing and visualization
such as D3; 3) HTML, CSS, and DOM; and 4) Observable reactive
features. However, for JEJ-Andromeda, they should be familiar with
both Python and JavaScript syntax and packages.

4.2.2 Debug: print vs console.log
Debugging contributes to successful exploratory operation of the note-
book. Data scientists often need to check the values of various vari-
ables for debugging or understanding the processing details. Simply
typing “print(variable name)” in J-Andromeda can check the data val-
ues within a cell or function and “console.log(variable name)” in O-
Andromeda to view the values by opening the browser console. In
addition, the JEJ-Andromeda utilizes both “Print” and “Console.log”
methods for debugging. The “Print” method requires only one step
to see the result, which is to run the line of code. The “Console.log”
method, on the other hand, requires more steps: 1) run the code, 2)
inspect the web page, and 3) open the console to see the result.

4.2.3 NCSL
NCSL, a measurement to the difficulty of programming by counting the
the number of non-comment, non-blank lines of code [9], can be bene-
ficial when the differences in implementing functions are not caused by
programmers’ coding knowledge but by the limitations of the platforms.
In Table 2, the O-Andromeda takes least lines of code for implementing
the user interactions due to D3 and reactive execution. Moreover, the
JEJ-Andromeda requires more lines of code to achieve the bidirectional
communication, due to NotebookJS transitions between Python and
JavaScript. The J-Andromeda Notebook takes the most lines of code for
implementing the draggable scatter plot. However, both J-Andromeda
and JEJ-Andromeda use less lines for data processing, by exploiting
common data-science libraries such as sklearn and pandas.



Function Jupyter Observable Jupyter+JS
Data
Processing WMDS 3 17 3

Data
Processing Inverse MDS 47 56 47

Visualization Draggable
Scatter Plot 32 11 12

Interaction Reset Plot
Button 7 2 7

Interaction
Bidirectional
Communica-
tion

4 0 28

Table 2. NCSL for Important Functions

4.3 Usability
4.3.1 Interactive Performance
To compare efficiency of each notebook, we performed a case study
on a numeric dataset with 49 rows and 36 columns to measure the
speed, as shown in Table 3, for specific methods such as Scatter Plot
Rendering, Dragging Dots, and Inverse MDS. The rendering speed of
the scatter plot is calculated by the time difference between the start
and end of the plot rendering function. The dragging speed of points
is collected by observing the time difference between the processing
of consecutive dragging events. In addition, the inverse MDS function
is measured for the time cost in one run. The O-Andromeda takes the
least time for both the scatter plot rendering and dragging dots method,
while J-Andromeda performs the slowest. The speed of dragging dots is
very slow in the J-Andromeda notebook compared to JavaScript, which
can be frustrating for users. Additionally, O-Andromeda takes the least
time to run the identical inverse MDS algorithm, presumably because
JavaScript execution has been highly optimized in most browsers.

Function Jupyter Observable Jupyter+JS
Scatter Plot Ren-
dering 30-50ms 0-2ms 0-20ms

Dragging Dots 90-115ms 10-25ms 10-25ms
Inverse MDS 900-1100ms 10-30ms 900-1100ms

Table 3. Speed Measurements

4.3.2 Notebook Organization
Due to the linear execution in Jupyter, visualizations are displayed
after the data is imported and processed. However, a data scientist may
want to display the visualization at the very beginning of the notebook.
By creating special empty placeholder cells during initialization and
filling them later in the code, the visualization can be placed at the
top of J-Andromeda and JEJ-Andromeda with extra lines of code. In
contrast, O-Andromeda is much more flexible, as cells can be placed in
any order without affecting the execution. As a result, O-Andromeda
benefit users by placing all the interfaces, including visualizations,
buttons, and sliders, at the very beginning of the notebook.

5 DISCUSSION

5.1 Considerations
We share our considerations of the three platforms to assist data sci-
entists in building their own visual analytics notebooks. The Jupyter
platform works the best when data science packages are heavily used
and less use of visualization. The Observable platform is the winner
when users have high expectation on visualizations, such as fast re-
sponse time, flexible plot design, CSS styles, and freedom of arranging
cells. Furthermore, the Jupyter embedded with JavaScript platform
will benefit users who are familiar with both languages and necessary
packages to take advantages of both sides. In any of the cases, users
will have to deal with workarounds to overcome the disadvantages of
each platform as listed below.

5.2 Challenges
Challenges require research on novel tools that support better ways to
implement visual analytics notebooks.

5.2.1 Jupyter Notebook
One challenge with visual analytics in Jupyter is that the developer
needs to integrate buttons into the notebook design so that the user
can easily execute the necessary code to re-compute visualizations
when needed. Otherwise the user will need to know which cells to
re-execute. Interaction sequences must be decomposed into smaller
chunks due to slow performance. Creating buttons requires writing non-
trivial code that is irrelevant to the data science task. Furthermore, data
processing code must be wrapped into functions that can be invoked
by such buttons. Special functions and placeholder cells are needed to
proximate visuals from multiple cells. Finally, debugging the values
of variables inside of widget-observed functions is difficult, since the
result cannot be displayed when users simply apply the “print” method.
It requires additional code such as creating placeholders or passing
values to global variables.

5.2.2 Observable Notebook
When a cyclical interactive algorithm is built in Observable, an endless
loop is caused by cyclical references causing users to lose control of the
notebook. An example from Andromeda is shown in Figure 2. Because
of the reactive nature, each procedure runs automatically and causes
an infinite loop. This problem is exacerbated by the fact that analytical
methods such as dimension reduction are sometimes non-deterministic,
meaning they get a different result each time around the loop, so the
reactive framework keeps firing. Unfortunately, such cyclical methods
are often needed in interactive visual analytics. One way to stop the
cycle is to introduce buttons into the notebook design (like the “Copy
to Sliders” button) that require the user to click to invoke the next cycle.

Fig. 2. A Reference Loop of Variables and Functions in Andromeda

5.2.3 Jupyter Notebook Embedded with JavaScript
In JEJ-Andromeda, JavaScript automatically keeps retrieving the pro-
cessed data and rendering the plot and sending updated coordinates
data to the Python side. Automatic re-rendering can interrupt the in-
teractive process. Each communication of data between python and
JavaScript involves expensive translation to/from text format. Further-
more, Javascript processes are repeatedly spun off, without a way to
terminate them from the notebook. Thus, JavaScript will not only send
the coordinates data from the current run but also from previous runs
after users rerun the notebook. Users must refresh the notebook web
page to stop the previous JavaScript runs. Improvements are needed to
allow better communication and control over JavaScript execution.

6 CONCLUSION AND FUTURE WORK

Merging data science and visual analytics tools together in notebooks
is important as computational notebooks become more popular. In this
paper, we presented and compared three platforms to explore the chal-
lenges of creating notebooks with visual analytics features. Full detailed
results are available in Liu [7]. Although we analytically compared the
three platforms on various aspects, how actual users are satisfied with
each version under difference task settings is unknown. Therefore, it
will be valuable to measure users’ satisfaction by conducting empirical
user studies.
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