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Figure 1: Albiero generates visual summaries of computational notebooks, such as the four shown above. Markdown (orange
rectangles) and code cells (blue circles) are encoded into an interactive force-directed graph, which is further enhanced by additional
features such as background annotations to label the space and paths tracing the use of variables and functions.

ABSTRACT

Computational notebooks have become a major medium for data
exploration and insight communication in data science. Although
expressive, dynamic, and flexible, in practice they are loose
collections of scripts, charts, and tables that rarely tell a story or
clearly represent the analysis process. This leads to a number of
usability issues, particularly in the comprehension and exploration of
notebooks. In this work, we design, implement, and evaluate Albireo,
a visualization approach to summarize the structure of notebooks,
with the goal of supporting more effective exploration and
communication by displaying the dependencies and relationships
between the cells of a notebook using a dynamic graph structure. We
evaluate the system via a case study and expert interviews, with our
results indicating that such a visualization is useful for an analyst’s
self-reflection during exploratory programming, and also effective
for communication of narratives and collaboration between analysts.

Keywords: Software visualization, computational notebooks,
provenance analysis, insight communication.

1 INTRODUCTION

Computational notebooks (e.g., Jupyter Notebook [27]) have become
a major medium for data exploration and insight communication
in data science. These notebooks combine code, documentation,
and output in a variety of forms (e.g., charts, tables, and images)
within a single document. Notebooks are expressive, dynamic, and
flexible, providing rich support for exploring and sharing ideas.
Notebooks have also been extended to support automated creation
via templates and scheduling, the injection of different parameter
sets, and container execution [36]. The content of a notebook is
broken down into cells, including markdown cells for documentation
and code cells for scripts. Unlike traditional code execution, these
cells can be executed in any order.

However, these computational notebooks, originally intended
to be digital narratives [25], are often loose collections of scripts,
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charts, and tables that rarely tell a story or clearly represent the
analysis process. Recent studies [23, 29] found that analysts use
these notebooks in a variety of ways, including sharing results, quick
experiments, prototyping code for inclusion in later pipelines, and
data analysis.

Both the popularity of computational notebooks, as well as the
variety of ways that they are used by data scientists, present a number
of challenges. Individual analysts may create multiple versions
of similar but not identical cells or entire notebooks to test small
changes in how data are collected, cleaned, and processed. They then
struggle to keep track of which version of the code produced specific
results, presenting a navigational challenge [17, 35]. Additionally,
the very act of using these notebooks for undirected, exploratory
data analysis [16] conflicts with the linear structure of the notebook.
These greatly increase the difficulty of following and explaining the
ideas in the notebook, especially in collaborative work settings.

Further, temporary experiments are treated as “throw-away” code
that is poorly annotated or documented [19], yet this may still end
up in the final notebook. Therefore, analysts who are collaborating
with others on a single notebook may struggle to make sense of
the high-level structure of an existing notebook [34], potentially
leading to slower development and/or the re-creation of already-
implemented analysis. For example, one analyst may be unfamiliar
with the conventions of the other, requiring additional assistance to
understand the purpose and structure of a notebook that has been
shared with them.

The above challenges motivate the need for a tool to facilitate
the exploration and communication of analyses presented in
computational notebooks. Visualizations have been proven effective
in helping analysts to record computational flows [3, 9] and
reasoning processes [10, 15], i.e., supporting the provenance of data
analysis [28]. In this work, we describe the design, implementation,
and evaluation of a visualization assistant, Albireo, to complement
standard computational notebook systems. Albireo supports the
exploration of notebooks at multiple levels, communicating both
a high-level overview of a notebook as well as permitting deeper
exploration of structures and cell relationships through interaction.
In particular, we note the following contributions:

1. An analysis of difficulties with existing notebook software via
expert interviews, which led to a set of tasks that motivated the
features of Albireo.



2. The design and implementation of Albireo, an interactive visu-
alization assistant that complements traditional computational
notebook software.

3. A demonstration of the usefulness of this system via a two-part
case study, followed by an evaluation via a set of interviews
with experienced notebook users.

We found that our expert evaluators responded generally
positively towards Albireo, and they were able to draw insights
from explorations of their notebooks than they did not notice in the
linear notebook view.

2 BACKGROUND

2.1 Computational Notebooks
Computational notebooks are programming environments that
support interactive, iterative development of software. While Jupyter
Notebooks [27] are anecdotally the most common, other tools such
as Databricks [8], Apache Zeppelin [2], and Sage Notebooks [30]
all share a common set of data-centric development features. Of
particular note to the visualization that we present is the structural
breakdown into blocks referred to as cells.

These cells appear in two primary forms. Markdown cells
contain formatted text that is often used to provide context to the
accompanying code, supplementing traditional code comments with
discussion of the functionality, structure, and/or results of nearby
code. In contrast, code cells are executable components, performing
computations as any other executable file would, though limited
by the bounds of the cell itself. After successfully executing, these
code cells also contain formatted output of various types: text, table,
graph, image, video, and more.

Though a notebook appears to be intended to run linearly
through the cells, this sequencing is not enforced. An analyst
may create a notebook that is entirely code cells (or markdown
cells) executed in arbitrary order, potentially with some cells run
multiple times, edited between executions, and with potentially
multiple nonlinear execution paths within the notebook [29]. Indeed,
analysts use these notebooks for a variety of purposes, including
experimenting with alternate techniques, sharing results, temporary
code, and exploratory data analysis [23]. This range of uses
for computational notebooks naturally leads to communication
challenges when sharing notebooks with other analysts.

2.2 Software Visualization
Software visualization is a maturing field, with a number of
techniques proposed to provide visual overviews of functional and
structural components of existing code. Unified Modeling Language
(UML) is the standard approach, consisting of numerous views and
diagrams to describe software components, the interactions between
them, execution sequences, data propagation, and many more [4].
UML renders the structure of code at natural divisions such as
classes or modules, similar to but structurally different from the cells
of a computational notebook. Beyond the UML standard, Caserta
and Zendra provide a survey of existing 2D and 3D visualization
techniques for static software [7].

As with our visualization approach, many published methods
supplement the code to provide greater developer comprehension.
For example, Hoffswell et al. provide in situ visualizations within
the code itself to summarize variable values and distributions [21].
Similar to our work, Seider et al. use a force-directed scheme
to visualize modules and dependencies in code [31]. Likewise,
dependency graph techniques have been adopted for relationships
between variables and functions [14]. Other tools provide a
visualization aid to assist a developer in understanding code
structure [33, 37]. Still others focus on collaboration between
analysts, such as the collaborative code review tool CFar [20].

While these existing techniques are sufficient for traditional
software, computational notebooks include additional challenges

and behaviors that are not supported by existing tools (among
others, these include the previously mentioned overall cellular
structure and variable execution order). Indeed, the difficulties
inherent in comprehending notebooks were recognized and have
been addressed for standard paper notebooks as well [35]. With
respect to computational notebooks, some work has been done
to address these challenges, such as cell versioning in Variolite
to replace the tendency of analysts to create a sequence of cells
with slight parameter changes to test analysis alternatives [22], and
gathering relevant segments of code for a particular outcome [18].
However, there is no other broader software visualization work
specific to computational notebook challenges.

2.3 Provenance Visualization
As our goals are to support effective exploration and communication
of the analysis processes contained in computational notebooks,
the design of Albireo is influenced by the body of research on
provenance, which is the trace of the changes and advances during
the analysis. Ragan et al. provide an organizational framework
that outlines five types and six purposes of provenance information
in visualization design [28]. In particular, this work is related to
data and insight types and the purposes of recall, presentation, and
collaborative communication.

Numerous visual analytics tools have been proposed to visualize
these types of provenance and facilitate the above purposes. For
example, VisTrails is one of the earliest visualizations that formally
focuses on maintaining a pipeline of the analytical activities
generated from exploring raw data in scientific workflows [3].
The HARVEST system derives hierarchical semantic actions of
users in analyzing business and finance data to support insight
provenance [15]. In synchronous collaboration, Mahyar and Tory
explore how provenance information is used in team work and
develop CLIP to reveal relationships and awareness of users’
findings [24]. Recently, in asynchronous collaboration, KTGraph
employs a graph visualization and a timeline widget to facilitate
“hand-offs” between users [39]. However, few studies have explored
how to support provenance in exploratory programming, especially
with the new computational notebook environment that is rising in
data science. In this paper, we develop Albireo towards offering an
effective means, a visualization assistant, for analysts to explore and
communicate the complicated materials in notebooks.

To better show provenance by revealing clusters, trends, and
relationships for a set of unstructured objects, similarity measures
and projection techniques are widely used in visualization. As
the cells in a notebook are loosely connected, we employ a
“proximity ≈ similarity” metaphor to facilitate the exploration of
notebook content. We adopt the standard seen in similar tools,
in which the spatial positioning of an observation relative to
others in the population communicates a similarity or dissimilarity
measure. This is seen in tools designed for both quantitative
data [6, 11, 32, 38] and text data [5, 13]. Indeed, previous work
has shown that human analysts prefer to make use of space in
order to organize and synthesize data [1, 12], thereby supporting
their personal sensemaking process [26]. We adopt this similarity
projection approach to reveal the relationships between elements of
a computational notebook in an interactive and flexible manner.

3 TASK ELICITATION VIA EXPERT INTERVIEWS

To determine the task requirements for this project, we employed
an iterative, user-centered design process. We began by
performing semi-structured interviews with three self-reported
frequent notebook users (these participants are referred to here as
P1–P3). These three subjects each reported more than 10 years of
experience with computational data processing, as well as several
years of experience with Jupyter notebooks specifically. Their
workflows included both single-user and collaborative notebook



development, and their reasons for using notebooks spanned the use
cases identified by previous studies [23, 29], including prototyping
code, sharing both code snippets and results, and exploratory data
analysis. As the development process continued, we consulted these
experts several more times, during which we discussed our design,
presented the current prototype state, and collected their feedback.
From these interviews, we uncovered the following four interrelated
tasks that could be supported by a visualization assistant:

T1: Summarize Notebook Content. We identified a common
need for a method to obtain an overview or summary of a notebook.
The study performed by Kery et al. identified the same issue, with
their participant IP01 noting “I can’t get an overview of what’s going
on in my notebook... it’s just a lot of stuff ” [23]. This overview
addresses one comment frequently noted in these interviews: while
markdown cells are a suitable method for explaining the contents of
a notebook, they take time to create and are often too much effort
for a notebook that may only see temporary use.

P1 noted that he would create only code cells during development,
saving markdown cells for a presentation version of the notebook
only created after all of the code was functional. P2 stated
a preference for using standard Python comments within code
cells rather than taking the time to create markdown cells, even
though he works collaboratively on notebooks with other data
analysts. It seems that unless the notebook is adapted to share
results in a professional venue, markdown documentation is not
prioritized by data analysts, despite being a useful summarization
and documentation feature.

T2: Provide Communication Support. Data analysts often
work collaboratively on notebooks, both in parallel and in series.
While there are certainly strengths to notebooks for collaboration
(P2: “sharing results is easier because they are embedded within
the notebook”), notebooks also present a deeper communication
challenge than the overview level addressed by T1. A data analyst
seeing a collaborator’s notebook for the first time must work to
understand the approach taken by the initial analyst, as well as
the portions of analysis that have already been completed. This
provenance information is not captured by current computational
notebook software.

Each of our interview participants reported using notebooks in
collaborations, and each expressed frustration with the process
regardless of whether the group developed a solution simultaneously
(the most frequent method of P1) or developed part of a solution and
then handed the notebook off to a collaborator (P2 and P3). P3 noted
that switching between datasets is often an issue when collaborators
are trying to develop a single notebook to handle multiple data
challenges. Similar to his statement in the previous task, P1
recognizes the importance of markdown cells for communication to
describe which cells provide what functionality, but still does not
create these cells until he is ready to share the notebook.

T3: Support Effective Navigation. The design of notebooks
to serve as computational narratives [25] directly leads to the
fact that notebooks can become quite long. The linear structure
enforces a one-dimensional ordering of cells, despite the fact that
two neighboring cells may be functionally independent. Tracing a
debugging issue through the notebook requires frequent scrolling up
and down to understand both the contents of the overall notebook
and the relationships between the cells. Even with such actions, an
issue with a single variable will likely not be obvious.

Rather than dealing with this issue directly, data analysts come
up with their own workarounds. P2 reports that in order to test a
variety of learning models, he will create a set of notebooks that
differ in only one or two cells. This results in his management
of a complex local folder structure to manage his projects, but he
finds that navigating this folder structure less of a challenge than
navigating a single massive notebook. P1 is more comfortable with
copying an existing cell to try a new version of existing code, but

Figure 2: High-level architecture of the Albireo system.

notes that this results in difficulty identifying the important structures
in the notebook and the ideal execution path through a notebook. P3
started with R notebooks and had previous Python experience, but
struggled to transition to Python notebooks due in part to the lengthy
and unwieldy format.

T4: Facilitate Nonlinear Development. Building on the linear
structure issue from T3, our interviews showed that exploratory
data analysis is a nonlinear process that is being forced into the
linear structure of notebooks. Indeed, P2 noted that he regularly
skips cells during development, often executes cells out of the linear
notebook order, and reorganizes cells frequently during development.
Development often involves testing various learning models or
analysis methods in separate cells that have no dependency to
each other, and yet the linear notebook structure implies such
a dependency. The ability to execute cells out of the notebook
sequence can also cause unexpected behavior to occur during
development and testing due to the persistence of variable values,
yet as P1 pointed out, no cell or variable dependency tool is provided
beyond the implied linear structure, despite the fact that tracing the
use of a variable is a standard debugging operation. He reports being
frustrated that no support exists for “integrating good debugging
beyond print statements.” P3 has become frustrated enough with
hidden variable states not conforming to his mental model of the
code structure; he now only uses notebook technology for temporary
or prototype code that is later incorporated into standalone systems.

4 ALBIREO SYSTEM DESIGN

4.1 Architecture and System Overview
We address the aforementioned tasks with a visualization solution,
with the design heavily influenced by the comments of our
interviewees. In particular, P2 noted that it would be useful to have
a cell dependency graph, saying that “understanding the execution
order of cells out-of-sequence is often a critical issue” during
development and debugging. P3 suggested a need to visualize
larger functional structures within the notebook as well, a sentiment
echoed by P2 during a later interview when suggesting that the cell
dependency graph could more broadly communicate functionality
dependencies. There was hesitation to visualize structures smaller
than the cell granularity level, as both P1 and P3 observed that the
division of code cells often follows a natural semantic segmentation
of the problem they are trying to solve, and that the relationship and
dependence of variables is often more important to understand across
multiple cells rather than within a single cell. We also acquired some
more general visual and structural feedback from analysts who were
not necessarily notebook users during an internal poster session near
the end of the development process.



Figure 3: Five different types of output badges: (A) text output,
(B) chart, (C) table, (D) no output, (E) file output. The size difference
of the nodes corresponds to the frequency with which the cell
components are used in the overall notebook.

Given these issues, we developed a visualization assistant
to complement standard notebook software. This visualization
would better show relationships and similarities between cells,
and would enable an analyst to glimpse the structure of an entire
notebook in a single view. Both P1 and P3 stressed this difficulty,
especially when working to restructure an existing notebook for
presentation. Figure 2 shows an architectural overview of the Albireo
system. Taking a computational notebook as input, we extract each
markdown and code cell. We extract a collection of properties,
including data stored in the notebook (e.g., execution order) and
properties computed by processing the notebook (e.g., frequency
of each variable). Each cell is then embedded as a node in a
force-directed graph visualization, with these properties influencing
the structure of the graph. The graph and its properties are discussed
in the next subsection.

4.2 Visualization and Interaction Features
Here, we discuss both the visualization and interaction design and
features of Albireo at three different levels of the visualization. We
begin with a description of the types of nodes and their properties,
which are mapped to the notebook at the cell level. This is followed
by a discussion of some of the variable-level features that are
extracted from the individual cells. Finally, we bring these nodes
and features together into the full dynamic graph structure, shown
with the accompanying interface in Fig. 5.

4.2.1 Cell-Level Properties
As with notebooks, we create two types of nodes in Albireo:
markdown nodes and code nodes, to visually summarize the contents
in notebooks at the cell level (T1). Because of the substantial
difference in the meaning and usage of markdown and code cells in
notebooks, we render a difference in the visual design of the nodes:
markdown cells are rendered as orange rectangular nodes, while
code cells are designed as blue circular nodes.

The markdown nodes display the first few words of text from that
cell in the notebook, allowing an analyst to glean the purpose of
nearby code cells. Each of the markdown cells are represented as
identically-sized nodes, with the intention of these nodes serving
as labels or control points for sets of subsequent code cells
that comprise higher-level functions (e.g., data loading, feature
construction, and pre-processing).

For code nodes, their area is roughly mapped to the “complexity”
of the code in the cell. This complexity measure and size is the result
of a circle-packing technique described in Sec. 4.2.2. Additionally,
an output badge in the lower-right region of code nodes indicates the
type of output produced by that cell, as shown in Fig. 3. The goal
of these badges is to provide a quick visual reference to these code
cells, allowing an analyst to identify regions of the visualization that
correspond to file output, charts, tables, and text in the notebook.

Mousing over the markdown node provides the full source text
for the associated cell. Likewise, hovering over the background of
a code node displays the source code for the matching cell. With
the above visual representation and interaction of notebook cells, an
analyst exploring a shared notebook for the first time can browse
these markdown and code nodes to determine high-level information
about the notebook (T1).

4.2.2 Variable-Level Properties
Summarization at the cell level alone is not enough for analysts to
gain an informative big picture of a complicated notebook (T1).
Thus, in each code cell, we extract all of the variable names
and function calls, and also tokenize each of the string literals
(this collection of extracted features is referred to hereafter as
“components” of the cell). As our expert interviewees only expressed
interest in viewing information more fine-grained than the cell level
when it conveyed information about the relationship between cells,
we filter this collection to only include the components that are used
in more than one code cell. The collection is also filtered for stop
words. We further compute the frequency with which each of the
components appear in the entire notebook, and map that frequency
to the area of a collection of component sub-nodes.

Each of these sub-nodes is then placed within its related code
nodes via a circle-packing technique. The five most frequently-used
components are also encoded with a unique color, further drawing
the attention of an analyst to these components (see Fig. 4 for an
example). We limit this color encoding to the top five components as
a balance between indicating many of the most common components
while also not introducing too much color variety. Users are also
provided with an option to remove these component sub-nodes from
the display, in order to reduce visual clutter.

In addition to variable-level visualization, Albireo allows an
analyst to navigate a notebook based on selected variables of interest.
When a user clicks on one of these component sub-nodes, an
animated marching ants-style path is drawn that connects each of the
cells in which that component appears. The path is drawn in the order
that the cells appear in the notebook, and a numerical label is added
near each of the nodes indicating this order (Fig. 6). This could be
useful if, for example, an analyst exploring a collaborator’s notebook
wishes to manipulate the iris dataset, and hence is interested in
seeing where the initial analyst has already used that dataset. By
highlighting a path for that variable through the notebook, the current
usage of that variable can be quickly identified (T3). If an analyst is
searching for a specific component to inspect, an alphabetized list is
provided in the dropdown seen at the bottom-right of Fig. 5.

Displaying these paths also permits a data scientist to visually
debug some issues with their code (T4). For example, variables
such as i and x are frequently used as counters. If a data scientist
forgets to reset that counter between cells, unexpected behavior can
result. This unexpected behavior is compounded in computational
notebooks because the data scientist can choose to execute cells out
of order. Using the variable path allows for a quick summary of the
code cells that should be inspected for a missing counter reset.

Figure 4: Cell nodes include the collection of common variables,
functions, and string literals used in the corresponding code cell. The
frequency of each component within the full notebook is indicated
using both area and color.



Figure 5: The Albireo system interface, including a large graph exploration space to the left and a panel of controls to the right. The markdown
(orange rectangles) and code cells (blue circles) are positioned in a force-directed graph, with resting edge lengths representing the similarity of
two cells. Individual variables, function calls, and string components are visualized as sub-nodes within the code cells, and are also used as
background annotations to tag the space.

Finally, we select the top ten most frequent components and
position them as annotations in the background of the exploration
space, providing a contextual summarization of notebook cells
(T1). Like the markdown and code nodes, these are also positioned
by force-directed means, but without visible links connecting the
annotations to the rest of the graph. This provides contextual
information to the analyst, allowing them to quickly see which
portion of the graph corresponds to what functionality of the
code. The rationale behind selecting the top ten was again a
balance between providing extra information to a data scientist
while also minimizing visual clutter. A mouseover interaction on
these annotations renders the text in black rather than in the default
gray, which was selected to indicate their secondary importance.

Figure 6: An example path connecting all cells that use the variable
iris. The iris annotation in the background has also been
highlighted via a mouseover interaction.

4.2.3 Notebook-Level Properties
After creating each of the nodes and extracting their properties, the
full set is placed into an interactive force-directed graph. The graph
aims to provide a high-level summarization of the structure of a
notebook (T1) and facilitate the communication between analysts
with semantics (T2). Because cells in a computational notebook
can be executed out of linear order, we determined that such an
undirected graph is more appropriate than a more standard directed
dependency graph. We note that this does lead to a visual tradeoff in
which we lose some structure and ordering of the cells which can
lead to difficulty in tracing some execution paths, though gaining
the benefit of more clearly showing relationships between cells
that may be spread throughout the notebook. Within this graph,
node proximity indicates similarity (similar nodes are pulled close
together, dissimilar nodes are widely separated). We compute the
similarity between two code nodes as the number of components
shared by the pair, with the pair of cells sharing the greatest number
of these components mapped to the strongest link strength in the
graph. However, other alternative approaches towards computing
these similarities could include (but are not limited to) allowing
users to specify strengths, identifying components that are unique to
certain cell pairs, taking into account the distance between cells in
the linear notebook structure, and using a deep learning approach to
identify underlying cell commonalities. In this prototype, we opted
for an efficient similarity computation in order to better support
interactivity within the visualization.

We also draw links between the nodes in the graph by default,
though these too can be removed by a user to reduce visual clutter.
The width and opacity of the links are mapped to the measured
similarity of the node pairs that they connect. The length of the
link is also mapped to this measured similarity, but the non-optimal
layout of the force-directed computation can make the rendered
length imprecise, justifying the dual encoding.

We define three types of links in the graph: code–code links,
code–markdown links, and markdown–markdown links. Each type
of link has an associated weight, which allows a data scientist to
update the graph layout to enhance certain structures. In the current
implementation, fine-grained control of these weights is permitted
by a set of sliders in the control panel, but these controls can be
simplified into a list of useful views from which a data scientist can
select. For example, in the top view of Fig. 7, the user has increased
the weight applied to the code–code links and decreased the weight
on code–markdown links. As a result, the global relationship



Figure 7: Restructuring the graph exploration space to highlight
similarity between code cells by increasing the weight on code–code
links and decreasing the weight on code–markdown links (top), and to
highlight high-level structures in the notebook by increasing the weight
on code–markdown links and decreasing the weight on code–code
links (bottom).

between code cells is treated as the most important feature of the
visualization. With such a view, a data scientist could identify if a
cell might be better positioned linearly within the notebook, as such
a node will be pulled away from its corresponding markdown node
and towards the code nodes of another group.

In contrast, the bottom view of Fig. 7 is produced by the
analyst increasing the weight applied to the code–markdown links
and decreasing the weight applied to the code-code links. As
a result, the higher level functional groups of cells within the
notebook become more visible in the structure of the graph, while
the relationship between individual cells in the notebook is lost.
With this view, an analyst can quickly identify these high-level
functional structures within a notebook. Increasing the strength of
the markdown–markdown links will pull similar structures closer
together, indicating functional relationships or interdependencies
between these structural groups.

In addition to the optional variable paths mentioned previously,
we provide two more animated paths through the graph: one that
connects the cells in linear order through the notebook, and one
that connects the cells in execution order. These paths allow a
data scientist to map the structure of the graph to the structure
of the notebook, and can further assist with visual debugging and
non-linear development (T4). For example, combining a variable
path with the execution order path narrows the search space for a
missing counter reset by eliminating code cells that have not been
executed yet.

5 CASE STUDY

In this section, we briefly demonstrate the utility of Albireo via a
use case with two parts, based on a real-world notebook retrieved
from the repository collected by Rule et al. [29]. In the first part, a
data scientist Alice has created a scikit-learn tutorial notebook
for a collaborator Bob, who is inexperienced with both notebooks
and machine learning. She is trying to track down a bug in her
notebook with the assistance of Albireo. In the second part, she has
now sent the working notebook to Bob, who seeks to understand its
components and functionality.

5.1 Identifying a Bug
Alice has been given responsibility for training Bob on the use
of scikit-learn for a significant company project. She has
developed a tutorial notebook to walk Bob through the features
of the library, including classification and regression, as well as
plotting results with Matplotlib. She is also demonstrating the
effects of these features on a variety of datasets. The notebook she
has developed is nearly finished, but she realizes that she forgot to
demonstrate one of the features of the regression package earlier
in the notebook. She scrolls up to an area twenty cells previous to
where she was recently working, adds a few lines of code to the cell,
and executes it again. Unfortunately, the plot generated by that cell
is completely different from what she had expected.

Puzzled, she opens Albireo, performs a search for the cell in
question, and begins to inspect the glyph. As she does so, she
notes that this cell uses the counter variables x and c to iterate
over some data. Though these counter variables are reused in other
cells, she knows that they are always initialized in their loops. But
then she recognizes that a similar variable reuse issue might be the
problem. She locates and clicks on the sub-node representing the
data variable, drawing a path for this variable through the graph
(shown in Fig. 8, with the node she is inspecting at the beginning of
the path). She immediately sees that this variable has been reused in
several different regions of the notebook. Hovering over another cell
later in the path, she realizes that she had reprocessed and overwritten
part of this dataset later in the notebook for a later demonstration.
Though she returned back to a previous cell and executed it out of
linear order, the updated version of the data variable still persisted
in Python, and so she saw a plot of the new data rather than the
old. To prevent this issue for also happening to Bob, she elected to
change the variable name during the reprocessing step.

5.2 Understanding Notebook Functionality
Bob has now received the tutorial notebook from Alice, and wants
to first grasp the big-picture idea of the structure and contents of the
notebook. He also opens Albireo, and restructures the graph to best
view the functional groups of cells by selecting options from the
control panel to emphasize code–markdown links and de-emphasize
all others (shown in the lower panel of Fig. 7). He immediately can
see the groups of cells in the notebook that walk through the tutorial,
including among others groups for classification, data loading, and

Figure 8: Showing the usage of the variable data within the notebook
with a path overlaid on the cell nodes.



sampling. As he begins to work through the examples that Alice has
provided in the notebook, he is puzzled by the operations necessary
to plot some of the results. He has seen the plot 2d dataset()
function call in the background, but cannot find any documentation
for that function online. He begins to inspect some of the cell
nodes in the region of that background annotation. He quickly sees
that Alice has helpfully created this function to abstract away the
complexities of MatPlotLib plotting, so that Bob only needs to
provide his data and color selection as arguments to get a basic plot.

Continuing through the notebook, Bob discovers that he also is not
fully grasping the concept of data frames. He selects the dataframe
variable from the dropdown list, but sees that it only appears in two
cells. Still confused, Bob then notices the iris frame variable
shown in the background annotations in gray text, which is always
placed next to a cluster of large code cells in different layouts. This
indicates that it might be critical for analysis in this notebook (see
Fig. 7). Further, scrolling down through the list further, he finds the
iris frame variable and selects it. He sees that Alice has used this
variable to manipulate the Fisher’s Iris dataset in a plotting example
near the end of the notebook, and scrolls down to that region of the
notebook to revisit the data frame concept in more detail. Eventually,
Bob comes to understand that data frames are a central data structure
in Pandas for storing and manipulating data.

6 EXPERT INTERVIEWS

To further support the first component of our case study, we
conducted three interviews with frequent notebook users. These
interviews lasted approximately one hour each. One of the three
participants in this interview study also participated in the task
elicitation interviews discussed in Sec. 3; the other two participants
were interacting with the visualization for the first time during this
study, though they had passing familiarity with it. Each of these
participants regularly uses notebooks in their day-to-day work as
machine learning and HCI researchers.

6.1 Procedure and Design
During these interviews, each study participant (denoted as SP[x]
hereafter) was presented with side-by-side views of Jupyter and
Albireo. Both systems were used simultaneously by the participant
to explore a series of notebooks that the participant originally
developed. In some cases, the participants had not reviewed the
contents of these notebooks in months or longer. The notebooks that
were explored by the participants also came in a variety of forms,
ranging from roughly 10 to 100 cells and both with and without
markdown cells. The interviews were semi-structured, with general
topics of inquiry centered around the four tasks from Sec. 3.

6.2 Results
Here we report both our observations as well as quotations from the
participants with respect to the tasks from Sec. 3.

6.2.1 Summarize Notebook Content
All three participants found different methods for summarizing the
contents of a notebook that they explored using Albireo. SP1
used the annotations in the background to quickly summarize
his notebook (the leftmost notebook in Fig. 1) as “creating
a convolutional model that is tested for accuracy,” using the
annotations conv2d, model, and accuracy. Evaluating a notebook
that had no markdown cells for structure and guidance, SP2 turned
off many of the visual options, and then was quickly able to explain
the purposes of several groups of cells as being responsible for data
loading, processing, and displaying (Fig. 9). This was aided in
part by locating the annotations hrv and rr interval, noting that
these variables measured the same property. He also noted some
of the structural properties of his notebook, seeing quickly that the
larger nodes are the implemented functions and the smaller nodes

Figure 9: A notebook explored by SP2 in our expert interview study,
highlighting the functional structures that this participant identified as
the clusters within the graph structure.

are calling those functions. SP3 noted that she was able to quickly
get an idea of the size of the notebook, noting that “most of the cells
involve a lot of computations with a lot of variables, though there are
some smaller cells...” before proceeding to identify those smaller
cells as responsible for loading data. These three very different
summarizations demonstrate the flexibility of Albireo as a tool to
see high-level notebook structures.

6.2.2 Provide Communication Support
To investigate the qualities of Albireo with respect to collaboration
and communication, we prompted our participants to demonstrate
how they would explain their notebook to a colleague. SP1 and
SP3 both highlighted the structure, behavior, and key results within
their notebooks. SP3 specifically noted that she could imagine
“explaining to a collaborator that these four cells (circles with
mouse) are most relevant to this dataset,” and could also “show
collaborators where the results that are important are located,
picking out cells to highlight early when presenting a notebook.”

SP1 similarly noted that having the visualization would enable
an analyst to quickly point to and reference individual cells, and
could imagine telling a collaborator to “hover over the big node” and
“pick the model variable from the dropdown list and look for what it
interacts with in the graph node.” SP2 stated that the background
annotations could be used to quickly comprehend an overview of the
notebook that he was seeing for the first time, and that these would
effectively serve as a visualization substitute for documentation in a
notebook that is not well documented.

6.2.3 Support Effective Navigation
We observed that while the participants were interacting with the
notebook, they were frequently performing a substantial amount of
scrolling, often pausing in their verbal explanation while searching
relevant information in the notebook. This presents an obvious
navigation challenge with notebooks, as we discussed earlier.
Though this pause-to-search behavior was also occasionally visible
while seeking some information in Albireo, it was not nearly as
prevalent. Further, each of the participants noted the convenience
of quickly being able to quickly trace the usage of a function or
variable through the notebook, identifying its usage and purpose.
SP1 noted that it was “fascinating to trace how the model was being
transformed through the sequence of code cells.” SP2 noted the
convenience of following the variable-level paths from function calls
to their definitions and back for debugging purposes.



6.2.4 Facilitate Nonlinear Development
Both SP2 and SP3 noted that visually identifying similarities
between cells in the visualization could lead to assistance in
development when testing multiple learning models in parallel. SP2
noted that he could easily “reference a node in a functional group to
locate and potentially copy for another test.” SP3 quickly spotted
two cells that were positioned close together in the visualization and
identified them as cells that were both performing similar clustering
analyses with slightly different models, though they were separated
by two other cells in the linear notebook. Indeed, SP3 also noted
that she has always “had a linear mental model of the notebook”
but was pleasantly surprised by how easy it was to see relationships
between cells that were not obvious in the notebook view.

We also noted that each of the participants learned new facts
about the variables that they used in their notebooks. SP1 and
SP2 both identified duplicate variables: two variables that stored
the same data and performed the same purpose. Neither reported
being aware of these duplicates when developing their respective
notebooks. Similarly, SP3 found that she created a variable that
was never used again. She loaded multiple datasets into their own
dataframes, but one of the dataframes was never processed and
used after this data loading stage. Again, she reports that she did
not notice this oversight during development, but she detected it
quickly with Albireo while she was tracing the usage of the other
dataframes through the notebook.

7 DISCUSSION

As would be expected, both the Jupyter notebook view and
Albireo have their own ingrained strengths and weaknesses.
Participants were more comfortable with the Jupyter view and
better able to perform tasks regarding cell dependencies and
low-level functionality of code as a result, though at the expense
of greater exploration time. Albireo allowed participants to better
see deeper connections and functional structures, but presented both
an unfamiliar interface and method for thinking about notebooks,
leading to occasional frustration.

7.1 Limitations
We noted several limitations to our implementation approach for
Albireo in the previous section. Most significantly, our focus on
the relationships between cells is not ideal in notebooks that have
significant internal functionality built into a single cell. Interview
participant SP1 was unable to locate the function critical to the
operation of one notebook in the dropdown list, as that function was
only defined and used in a single cell. One solution to this issue
could be a hierarchical display in which an analyst could select a cell
to examine in more detail, thereby seeing relationships between code
structures within the cell in a similar manner to what is currently
displayed between cells.

Our use of frequency as a measure of importance was also
criticized by several participants, who noted that the annotations and
largest component circles often displayed common data reduction or
processing functions, which would not be as interesting to display as
variables or functions that are unique to the notebook. Constructing
a balance of uniqueness and frequency in choosing the “important”
components to display and highlight could resolve this issue. A
similar issue was raised concerning the inclusion of strings in the
components list with the variables and functions. While some strings
like axis labels and column names are useful to include, others like
input prompts are not. This could be resolved by examining the
context of the string within the cell, making an importance decision
based upon semantics. It could also be left as a choice to individual
users, who could upload their own set of rules for components to
display and components to suppress in the visualization.

In addition to the criticisms of the participants, we note that our
expert interviews are somewhat biased, as the experts developed

the visualized notebooks themselves. Some of the small clues
suggested by the visualization could have been sufficient to trigger
the memories of the experts to recall large purposes. This is certainly
a helpful feature when a data scientist is revisiting one of their own
notebooks for the first time in weeks or months, but these clues might
be useless to someone else. We also note that the graph structure will
occasionally present some occlusion effects, particularly when large
nodes are positioned close to each other. While we offer controls to
users that can overcome this by “expanding” the size of the overall
graph, adding some automated overdraw prevention in the graph
would reduce the interaction workload of those users.

7.2 Future Work
In addition to the extensions discussed in the previous subsection,
several possibilities exist to further augment the functionality of
Albireo. We previously noted that the final vision of this tool would
ideally be implemented as a plugin to Jupyter or other computational
notebook software. Such a plugin could then more efficiently
implement brushing and linking features, connecting interactions
with the nodes in the graph to the code cells in the notebook view
and vice versa. This would also enable live updates to the graph
as an analyst is developing a notebook, dynamically adding new
cells and updating the execution path. Currently, analysts need
to save their notebooks to trigger updates of the visualization, so
that the live updates experience could be somewhat mimicked by
using the auto-save feature of notebooks. As such, it would also
provide a means to view the structural development history of the
notebook. Each of our expert interview participants noted that such
an implementation would be useful.

We also noted several usability issues during both studies that
could be improved. Several participants noted that encoding variable
access versus variable assignment information into the paths would
enhance the visual debugging capabilities of the system. In the
same vein, displaying the initialization values of variables in cells
where they are declared or reset would be beneficial. A future
controlled study is planned to better test the usability of Albireo
against standard notebook software.

8 CONCLUSION

All new software presents usability issues, and computational
notebooks are no exception. Indeed, previous studies [23, 29] have
documented usability issues with computational notebooks that are
not addressed by Albireo, including tracking cell versioning and
notebook history. Still, computational notebooks appear to be a
dominant exploration tool for data science in the near future.

In this work, we introduced Albireo, a visualization assistant
designed to supplement computational notebooks. Through
interviews with frequent notebook users, we identified a need for
a better method to survey the contents of a notebook, develop
nonlinearly, and effectively navigate through these nonlinear
structures. To support these tasks, we developed Albireo as a
force-directed graph visualization which, among other data, encodes
relationships between notebook cells based on similar variables,
function calls, and strings. We evaluated Albireo through a case
study and expert interviews and presented a discussion of its
strengths and weaknesses. We found that Albireo increased the
exploration and insight abilities of our expert evaluators.
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