
Aardvark: Comparative Visualization of Data Analysis Scripts

Rebecca Faust, Carlos Scheidegger, and Chris North

Deleted Node

Added Node

Updated Node

loop

function

val

0 3380

A B

C

Fig. 1: An overview of Aardvark. In the source view, (A), lines highlighted in green were added, while lines highlighted in red were
deleted. (B) shows the new generalized context tree. The tree for the original version builds downwards from the center block, while the
tree for the modified version builds upward. The border color of blocks indicates if they were changed. Red borders indicate deleted
nodes from the original execution, the blue border indicates nodes added by the modified execution, and gold borders indicate nodes
whose values changed between executions. (C) shows one of the comparative plots.

Abstract— Debugging programs is one of the most challenging and time consuming parts of programming. Data science scripts
present additional challenges as debugging often centers around more exploratory tasks, such as understanding the differences
between results under different parameter settings. In fact, a common exploratory debugging practice is to run, modify, and re-run
a script to observe the effects of the modification. Analysts perform this process frequently as they explore different settings and
algorithms in their analysis. However, traditional debugging methods are not well suited to comparing across multiple executions of a
script. They often require maintaining two instances of the debugging method and making manual, serial comparisons of program
values. To address this gap, we present Aardvark, a comparative trace-based debugging method for identifying and visualizing the
differences between two executions of data analysis scripts. Aardvark traces two consecutive instances of an analysis script, identifies
the differences between them, and presents them through comparative visualizations. We present a prototype implementation in
Python as well as an extension to support scripts in Jupyter notebooks. Finally, to demonstrate Aardvark, we provide two usage
scenarios on real world analysis scripts.

Index Terms—Interactive Visualization, Program Traces, Jupyter, Debugging, Comparison

1 INTRODUCTION

Debugging and understanding program behavior is one of the most time
consuming and challenging aspects of programming. Data analytics
programs present an additional challenge in that, frequently, no tradi-
tional “bug” exists to locate and correct. Rather, analysts often perform
exploratory debugging tasks where they want to understand the effects
of variations to their analysis programs, such as different parameters
or analysis algorithms. Analysts commonly perform comparative ex-

• Rebecca Faust and Chris North are with the Department of Computer

Science, Virginia Tech. E-mail: {rfaust,north}@vt.edu.

• Carlos Scheidegger is with the HDC Lab, Department of Computer Science,

University of Arizona. E-mail: cscheid@arizona.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

ploratory debugging tasks where they run the analysis, evaluate the
execution values, make a small change (e.g., modify a parameter), re-
run the analysis, and re-evaluate the execution values to understand
the effects of the change on the analysis. In fact, this is a recognized
process for general debugging tasks in the program development pro-
cess, labeled as the edit-run cycle by Alaboudi and LaToza [3]. The
edit-run cycle necessitates the comparison of consecutive executions
to understand the impacts of the edits. Several other studies of debug-
ging practices and processes identify strategies that also employ this
comparative process [17, 23, 36].

The serial nature of current debugging practices already present
limitations for exploratory debugging tasks, as described by Faust et.
al. [16]. These practices have virtually no support for comparative
debugging and understanding tasks. They either require the inspection
of simultaneous instances of the debugging method or require people
adequately remember the values from the initial execution. In print
statement debugging, people must compare simultaneous printouts.
Not only does comparing simultaneous printouts still suffer from the



problem of serial inspection, but it suffers an additional problem of
requiring people to make many pairwise comparisons and build those
comparisons into an overall view of the changes in the data. We know
that building mental representations of data causes significant mental
overhead and are often not an accurate view of the data [29]. Similarly,
to fully compare program executions with a step-through debugger,
people must step through simultaneous instances of the debugger, one
on the new version and one on the old. Just like with print debugging,
simultaneous inspection of individual pairs of values may not help
people build a faithful mental view of the data.

Faust et al. introduced Anteater, a method for visualizing analy-
sis scripts via their traces [16]. While employing visualization helps
overcome the limitations of serial value inspection by automatically
collecting and visualizing program values, it suffers the same problem
of requiring people to run and compare individual instances of Anteater
to identify the effects of changes. While visualizations help show larger
trends and behaviors in data, they still present challenges when com-
paring side-by-side or recalling past instances. For example, Fig. 6
shows the visualizations from two instances of Anteater. It may not
be immediately apparent that the modified version (the bottom row)
has fewer NaN’s than the original, especially if these are viewed in
succession rather than side-by-side. As a result, debugging methods
need to support the direct comparison of consecutive script executions
to quickly illustrate the effects of changes. To do so, we must address
the following two questions: 1) how can we identify and capture the
differences between two consecutive script executions and 2) how can
we apply the principles of comparative visualization to illustrate the
differences between two script executions?

In this paper, we present Aardvark, a method for creating compara-
tive visualizations of multiple instances of analysis scripts to illustrate
the effects of changes to the analysis. Aardvark leverages the existing
infrastructure in Anteater and expands beyond it in two primary ways:
1) it expands the tracing infrastructure to identify the differences be-
tween two consecutive executions of analysis script and 2) it modifies
the visualization system to apply principles of comparative visualiza-
tion to present visualizations that illustrate the differences in the values
across the two executions. Rather than requiring people to contrast
two instances of their debugging methods, Aardvark provides a single
view to illustrate the effects of source code change. Fig. 1 presents an
overview of the comparative views provided by Aardvark.

In summary, the contributions of this paper include:

• A trace-based comparative debugging method to automatically
identify and visualize the effects of script changes

• A prototype implementation in Python with an extension to
Jupyter notebooks.

• Two usage scenarios to illustrate the benefits of comparative
visualizations in analysis script debugging.

2 RELATED WORK

In this section, we discuss relevant works related to identifying and
visualizing differences in analysis programs from both the source code
and execution information. Note, we do not go into detail about vi-
sual debugging approaches here. While many works exist that aim to
bring visualization into traditional debugging methods, such as adding
visualization in breakpoint debuggers [10, 32], visualizing symbolic
executions [6], or approaches similar to ours that visualize data from
traces or value tracking [5,12], we aim to focus specifically on methods
that support comparison across multiple executions. For more detail on
visual debugging methods, see [16].

Source Code Diffing Several tools exist for diffing source code.
The Unix diff utility and Git diff command support the diffing of two
textual source files by finding the minimum number of line additions
and removals to produce the new file from the old one. This method
provides very coarse grained differences in source code files. Canfora et
al. [8] expand on the Unix diff utility to provide more fine grained diff-
ing of textual source files that supports changes and moves, as well as
additions and deletions. Horwitz [25] expands their definition of diffing

to differentiate between semantic and textual changes when identifying
changes to the source code. Semantic Diff [26] provides a semantic
report of the differences between two versions of a procedure through
the inspection of input-output behavior of the procedure. Duszyanski
et al. present a method for generating N-way diff to compare across
many software variants [14].

Rather than diffing text source files, other methods first parse source
code into abstract syntax trees (AST’s) and then find diff the resulting
trees [13, 15, 19, 24]. Similar to textual diffing methods, these methods
look for the minimum number of edits to move from the original AST
to the new one, where an edit can be an addition, removal, change, or
move. These methods build off of Chawathe et al.’s algorithm for detect-
ing change in hierarchically structured information [9] by leveraging
structure and information specific to AST’s to more accurately iden-
tify differences. As part of Aardvark, we use gumtree [15] for source
code differencing to highlight the textual program changes. However,
Aardvark requires additional methods for diffing the resulting traces
(discussed in Section 5.1).

Trace Diffing and Comparison Suzuki et al.’s TraceDiff [33] re-
lates most closely to Aardvark. TraceDiff provides automatic feedback
and hints for students completing introductory programming assign-
ments. It uses program traces to illustrate differences between an
incorrect version of a program and a synthesized correct version. Lever-
aging these differences, it provides hints to guide students through their
mistakes. While similar to Aardvark, this tool focuses on assisting
students in their assignments and utilizes minimal visualization.

Taheri et al.’s DiffTrace [34] provides diffs of program traces for
debugging high-performance computing code. It collects whole pro-
gram function call traces per process/thread and uses concept lattices to
build the traces and identify the differences between a normal trace and
a fault laden trace. In contrast, Aardvark operates only on sequential
programs and presents differences in program values, such as variables
and expressions, in addition to calling structure.

Other methods exist for comparing traces without formally diffing
them. Miranksyy et. al. use trace comparison to find sources of errors in
software systems [28]. They take an existing trace with correct behavior
and compare it against a trace in which the software misbehaves to
calculate the entropy between them. German et al. [20] do not directly
collect a trace but allows people to specify an area of failure and then
build a change impact graph to demonstrate the effects of prior code
changes on this area.

Comparative Visualization Munzner’s framework for visual de-
sign identifies comparison as a low-level user goal when analyzing
data [29]. Many visualization applications support this goal in a variety
of domains, including volume rendering [38], event sequences [39],
and brain connectivity analysis [4]. While there exist many applications
supporting comparison, there exist few taxonomies and frameworks
for creating comparative visualizations. Pagendarm and Post describe
approaches for comparative visualization in images [30]. Graham and
Kennedy surveyed methods for visualizing (and thus comparing) mul-
tiple trees [22]. In 2011, Gleicher et al. [21] developed a taxonomy
for designing comparative visualizations for information visualization.
This taxonomy remains as the primary taxonomy for designing compar-
ative visualizations. It defines three types of comparative visualization:
juxtaposition, superposition and explicit encoding. We employ this
taxonomy in Aardvark’s visual design and discuss these types in more
detail in Section 5.2.

Visual Comparison of Traces Cornelissen and Moonen create
visualizations to highlight repetitive behavior and execution phases
in a single program identified by matching the trace to itself [11].
Intel’s Trace Analyzer provides timeline visualizations to compare
traces of parallel applications [2]. Trümper et. al. create multiscale
visualizations for comparing large traces using icicle plots and edge
bundles [35]. Voigt et al. [37] create trace visualizations of method
calls and object accesses for large scale traces. While all of these
tools visually compare traces, they all address a specific problem:
detecting similarities inside a single program, comparing executions of
parallel programs, and comparing executions of large scale programs.



Fig. 2: Overview of the Aardvark system. In (A), the analyst first specifies which values to track. Aardvark passes this information to the tracer which
automatically transforms the script to collect the specified values and execution structure. If no prior trace exists, it moves directly to (B) to organize
the data for visualization, before passing the organized data to the front-end for visualization, in (C). If a prior trace exists, Aardvark expands step (A)
to identify the differences between the source code of the scripts and the resulting traces, shown in (D). From (D) it passes the combined trace for
organization in (B) and then provides comparative visualizations, in (C).

In contrast, Aardvark supports comparing traces to understand the
impact of small changes to single-threaded Python analysis programs.

3 BACKGROUND

Aardvark leverages a prior method, Anteater, that visualizes traces
for debugging analysis scripts [16]. In this section, we give a brief
overview of the components leveraged from Anteater’s design. For full
description, see the Anteater paper [16].

Fig. 2 shows an overview of the Aardvark method. Aardvark lever-
ages the base infrastructure of the Anteater system in Fig. 2 (A), (B),
and (C). In (A), the analyst specifies which variables and expressions to
track, forming a trace specification. Anteater then passes this informa-
tion to the tracer. Once in the tracer, Anteater automatically transforms
the script to track the specified values and capture the execution’s struc-
ture, i.e., function calls and loops. It does this by parsing the abstract
syntax tree (AST) and inserting new nodes to capture script behaviors.
Once the transformation is complete, Anteater executes the transformed
script to generate the trace. After generating the trace, Anteater struc-
tures the data into a SQL database for efficient visualization. Finally it
passes the structured data to the front-end for visualization.

Anteater provides two primary visualizations: the generalized con-
text tree and the value visualization. The generalized context tree (GCT)
illustrates the structure of the execution structure using an icicle plot,
as shown in Fig. 9. This enables people to see the calling and looping
structures of the script. The second visualization shows the behavior of
the values the analyst specified to track. Anteater generally uses either
a histogram or scatterplot to give overviews of the program values.
Aardvark builds on Anteater’s design, directly using its visualizations
as the base instance when no prior trace exists to compare with. Addi-
tionally, its comparative visualizations extend the base visualizations
of Anteater to illustrate the differences between the traces.

Aardvark uses this base infrastructure to visualize singular traces. To
support comparison, it expands each component. It expands component
(A) to identify and capture the differences between two instances of
a script (shown in Fig. 2 (D)). Aardvark modifies component (B) to
both traces and link between matching instances of values. Finally,
in (C) it provides comparative visualizations that illustrate the effects
of the changes on the program values. Each of these modifications is
described in greater detail in Sec. 5.

4 CLASSIFICATION OF PROGRAM CHANGES

In this section we describe a classification of changes to a program from
two perspectives: changes to the source code and changes to the trace.
We have found, through the inspection of various program changes, that
the two classifications do not have a direct mapping. As such, a change
in the source code does not have a single, well-defined corresponding
change in the trace. In fact, it may cause any type of change to the trace.
As such, we discuss the two classifications disjointly.

Several works exist on classifying types of changes to programs,
for several types of program representations. While most focus on
changes to static representations of the program (e.g., source code),
these changes generalize to traces as well.

Purushothaman and Perry classify changes based on the textual
changes to the source code [31]. They present 4 types of changes: (1)
modifications to existing lines, (2) insertions of new statements between
existing lines, (3) deletions of existing lines, and (4) modifications of
lines accompanied by an insertion and/or deletion of lines. The fourth
type combines the first three types.

Fluri and Gall [18] define a similar classification for changes to the
AST. They describe four program modification operations on an AST:
insert a new leaf node, delete a node from its parent, move a node to
a new parent, update the value of an existing node. Additionally, they
provide several higher level changes for object oriented programs stem
from one or more of the base modification operations. We use this
classification when describing the types of source code changes.

Lehnert et al. [27] have a similar taxonomy for classifying change,
based on that of Fluri and Gall [18]. Rather than classifying changes
to AST’s, they define software as a graph where nodes are artifacts
such as UML diagrams or C++ classes and edges are dependencies
between the artifacts. Lehnert et al. present two tiers of changes:
atomic and composite. Atomic changes include the addition, deletion,
and modification of both nodes and edges. Composite changes require
multiple atomic changes and include: move, replace, split, merge, swap.

While all of these classifications operate on slightly different pro-
gram representations, there seems to be a core set of operations for clas-
sifying change: add, update, and delete, with more complex changes
consisting of combinations of these operations. We use these core
change types to classify the changes in both the source code and the
traces. In the remainder of this section, we discuss the two classifica-
tions in more detail and how Aardvark supports them.

4.1 Source Code Changes

Fluri and Gall’s classification of change types includes a variety of
higher level changes that depend on additions, deletions and updates.
Aardvark only supports a subset of these changes, primarily those that
modify the execution and functionality of a program. We use these
changes to classify the changes supported by Aardvark and discuss
those it does not support.

Addition Fluri and Gall present a variety of changes that rely on the
addition operation, including additional functionality, statement insert,
parameter insert, and else-part insert [18]. Aardvark inherently supports
all of these when diffing the source, however some of them may not
directly appear in the trace and each type may cause updates, additions
or have no effect in the trace (discussed in the next section). For
example, the addition of a new parameter to a function will appear in a
source code diff, however unless that parameter affects the calculation



Fig. 3: The execution diff of a program after wrapping the initial function
call to func_A in a call to func_C. Doing this changes the depth of the
call to func_A, causing this call and all subsequent children to be marked
as additions.

of a value or the execution of a function call or loop, the change will
not appear in the trace. Aardvark highlights added lines of code using
green highlighting, as shown in Fig. 1 (A) line 18.

Deletion Fluri and Gall present a complementary set of changes
that rely on the deletion operation, including removed functionality,
statement deletion, parameter deletion, and else-part deletion. Again,
Aardvark supports all of these when diffing the source but they may not
directly appear in the trace. Deletions to the source may propagate to
the trace as deletions, updates, or not at all. Aardvark highlights deleted
lines of code using red highlighting, shown in Fig. 1(A) line 17.

Update The majority of update changes that Aardvark supports
fall under the “statement update” type (e.g., updated parameter/variable
values) with the rest falling under “condition expression change”. The
trace likely will not reflect the modifications themselves (e.g., the trace
likely does not directly capture an updated parameter) but may capture
residual changes caused by the update. Thus, source code updates
may result in any type of trace change. Rather than having an explicit
encoding for line updates, Aardvark treats them as an addition and
deletion, such that it highlights the original line of the update as deleted
and the new version as added, shown in lines 14 and 15 of Fig. 1(A).

Unsupported changes Some changes defined by Fluri and Gall
do not have any effect on the trace and, as a result, Aardvark does
not support them. The renaming of any program components, e.g.,
parameters, functions, variables, etc., will not have an effect on the
behavior of the program. The source code diff highlights this change
but, in the back-end, the originally named component still maps to
the newly named component and they are considered the same when
running the trace diffing algorithm.

Additionally, we do not support changes to the accessibility of a
component (e.g., a private or public variable), the type of variables,
modifications to object state, or changes to the inheritance structure of
classes. While these changes have significant effects in object oriented
programs, they do not inherently have a significant effect in Python
programs or on execution traces.

Last, we do not precisely support modifications that alter the depth
of components. For example, if, in the original program, function A
calls function B and someone modifies the program so that function C
calls function A which then calls function B, the call to A is now at a
new depth and will not be matched with the call to A in the original
trace. Aardvark will mark the calls to A and B in the original trace as
deleted and the calls to A and B in the new trace as added. We show an
example of this in Fig. 3.

4.2 Trace Changes

Addition Additions to the trace result from a variety of source
changes including: added function calls, increased iterations in a loop,
update of conditional statement, etc. We define an addition to a trace

as any node (function call, loop, assignment, etc.) that does not have a
corresponding node at the same depth in the previous execution. Note,
if a function call exists in the prior version but the call appears at a
different depth or from a different parent than in the original execution,
it will be marked as an addition. Fig. 3 shows an example of this.

Deletion Deletions in the trace result from a complementary set
of source changes to those that cause additions in the trace including:
a removed function call, fewer loop iterations, etc. Consequently, we
define a deletion in the trace as any node in the original execution
that does not have a corresponding node at the same depth in the new
version of the trace.

Update In traces, we limit the definition of update to only include
updated variable/expression values. When two matched instances of a
variable differ in value, we mark that value as updated. These updated
values stem from program changes such as the modification of a cal-
culation statement or parameter, the insertion/deletion of a calculation
step or simply the use of a different randomly generated value.

We do not consider “updates” to function calls or loops in our traces.
A clear definition of what it means to update a function call does not
exist in this setting. Likewise, the definition of “updating” a loop could
mean a variety of things, such as changing the number of iterations,
changing the values iterated over, etc. However, those updates would
likely spawn subsequent trace changes that our definitions encompass.

Mapping between source changes and trace changes Cre-
ating a well defined mapping between any change in the source to
corresponding changes in the trace proves difficult without enumerat-
ing all possible changes of each type. We identify situations in which
each type of source change leads to each type of trace changes. For
example, adding a function or loop to the source creates additions in
the trace. Meanwhile, adding new expressions that impact a variable’s
calculation causes updates in the trace (i.e., different values of the vari-
able). Finally, adding new conditional statements that reduces the how
often a function is called causes deletions in the trace. Similar cases
exist for source updates and deletions as well.

5 AARDVARK’S DESIGN

Aardvark’s design consists of two primary challenges: (1) identifying
the differences between two consecutive traces, as well as the source
code, and (2) designing visualizations to facilitate comparison of the
values from the two traces. In this section, we discuss each extension
in detail. We implement Aardvark’s design in a prototype Python
tool as well as a Jupyter notebooks library. Note, with computational
notebooks, Aardvark currently supports diffing across two complete
workflows (e.g., two runs of the notebook) rather than within a single
workflow (see Sec. 7 for more discussion).

5.1 Source and Trace Diffing

Aardvark incorporates two forms of program diffing: diffing the source
code and diffing the resulting trace. Aardvark uses source diffing to
seed the tracer with hints about where changes may occur to help
it identify differences in the traces. In this section, we discuss how
Aardvark performs each of these diffs.

Source Diffing As previously mentioned, Aardvark uses
Gumtree [15] to create the source code diff by diffing the AST’s of the
original and modified version of the program. This allows Aardvark to
highlight the textual differences between the two versions of the source
code, as shown in Fig. 1 (A).

Additionally, Aardvark uses these changes to seed the tracer with
areas of the program that may cause changes in the trace. Gumtree
identifies nodes of the AST that are added, deleted or updated. Be-
cause Aardvark already parses and traverses the AST to transform the
script for tracing, it easily marks the AST nodes affected by the source
changes, specifying the type of change, as defined in Sec. 4.1. When
Aardvark traces the script, this information enables it to mark areas
of the trace that may have changed. This in turn provides hints to the
trace differ for identifying differences between two consecutive traces.



Fig. 4: The comparative histogram views. (A) shows the superposition view. The left bars (colored red for all quantitative values) represent the
count from the original version and the right bar (colored blue) represent the count from the modified version of the program. (B) shows the explicit
encoding of the difference of counts between the two traces. The count represents the count of the original version subtracted from the count of the
modified version.

However, it alone is insufficient for identifying all changes for two
primary reasons.

First, not all changes in a trace result from changes to the corre-
sponding node in the AST. For example, consider a variable that sets
how many iterations a loop runs. Changing the value of that specific
variable will cause the loop to execute more or fewer times. However,
the loop node of the AST will remain unchanged. Thus, simply diffing
the AST’s and marking the changed nodes would not mark the loop
nodes as new/changed, just the iteration variable. Thus, the AST diff to
mark changes in the trace would not mark all changes.

Second, to use the AST diff to match the old trace with the new
trace, Aardvark would need to re-run the original trace to mark the
nodes that we know will change, thus allowing it to match them with
the nodes in the new trace. However, we do not want to re-run the
original trace because if the script contains any randomness, this may
change the tracked values from the original trace. As a result, AST
diffing only marks nodes in the new trace and does not provide means
to link the two traces together. Thus, while AST diffing makes sense
for identifying the differences in the two versions of the source code,
we need an additional algorithm for diffing the resulting traces.

Trace Diffing Using the hints provided by the source diffing, Aard-
vark performs trace diffing to identify how these changes actually affect
the execution, as captured by the trace and merge the two traces into
a single combined trace. The trace differ operates in two steps. First,
using the output from the source diffing, it creates a mapping, M, be-
tween the two versions of the program to enable easy identification of
matching nodes in the trace. With this mapping, the trace differ moves
to the second step of aligning the traces and identifying the differences.

The traces inherently have a tree structure, where each child node
was executed from within the parent node. Because of this, to identify
the differences in the traces, Aardvark can use a tree diffing algorithm.
Aardvark employs a basic tree diffing algorithm, adapted from [7].
The algorithm operates as follows. First, the algorithm takes in two
traces, V1 and V2, and traverses them simultaneously with the goal
of labeling each node in the trace with one of the types in Sec. 4.2 or
as “unchanged”. Starting with the root nodes, Aardvark inspects the
children of both nodes and identifies pairs of matching children in V1
and V2 as possible. Aardvark considers two nodes to match if 1) the
mapping, M, identifies them as corresponding to the same source code
and 2) they are in the same relative order with preceding paired child
nodes. If Aardvark identifies the nodes as a match, by default it marks
them as “unchanged” because the node exists in both traces. However,
in the case of variable and expression nodes, it performs an additional
check to determine if the recorded values changed. If the nodes match
but the recorded values differ, it identifies them as “updated”, rather
than “unchanged”. All remaining, unmatched children were either
added in the new trace or removed from the original trace. As such,
Aardvark marks the remaining unmatched nodes in V1 and all of their
descendants as “deleted” and the remaining nodes in V2 and all of their
descendants as “added”.

After pairing any matching children together the algorithm recurses
on each pair and repeats this process. Once the algorithm recurses
on the paired children, the V1 and V2 are combined and added to a
combined trace. Unmatched nodes are added to the combined trace
with empty attributes in place of a matched node. The combined trace
maintains the relative ordering of the two traces, such that each trace
could be recreated by removing all information from the other trace.

5.2 Comparative Visualizations

Aardvark designs the visualizations to support comparative visualiza-
tions and interactions. Gleicher et al. [21] provides a taxonomy of
different comparative visualizations. They present three types of com-
parative visualization for two datasets: juxtaposition, superposition,
and explicit encoding of relationships. Juxtaposition provides separate
but adjacent plots in the aligned space (i.e., with aligned scales), that
allow people to view each individually as well as facilitate comparison
of the two datasets. Superposition combines the two datasets into a
single plot, fully displaying both datasets in the same space. Explicit
encoding directly encodes the relationship between the two datasets,
rather than presenting them as two disjoint datasets. For each type of
comparative visualization supported, Aardvark provides a view using
each of the three types with controls to toggle between them.

Generalized Context Tree The comparative generalized context
tree (GCT) needs to show the two execution structures, while high-
lighting the differences between the two executions. When creating
the comparative GCT we must ensure that corresponding parts of the
execution align horizontally in the plot. The diffing algorithm merges
the two traces into a single, combined trace. Aardvark combines each
pair of matched nodes into a single node, maintaining the relative order
for each trace. We use the combined trace to generate the comparative
GCT. We present three comparative GCT views based on Gleicher et
al.’s taxonomy [21], two juxtaposition views and a superposition view.

The first juxtaposition view presents side by side GCTs, one for
each trace. In the GCT for the original version, we draw all nodes
that are updated, deleted, or unchanged. These nodes correspond to
those that existed in the original trace. However, we leave gaps for
nodes added in the second trace. This ensures that the two GCTs
align correctly. We draw the GCT for the modified version in the
same manner, leaving gaps for deletions from the original trace. While
this view gives the entire view of both traces, it suffers when locating
corresponding positions in the two traces. The second juxtaposition
view presents a single GCT visualization for both traces, as shown in
Fig. 1. The single view does not combine both traces, but rather, roots
the GCTs at the same block and builds the original trace downwards
and the trace from the modified version upwards. Doing this instead
of presenting two separate views enables faster comparison of the two
traces. Again, we use the combined trace to build the GCTs, leaving
gaps for additions and deletions as necessary. People no longer have
to shift back and forth between two plots and instead only need to find
nodes at the same horizontal position and vertical depth.



Fig. 5: The comparative scatterplot views. For the sake of space, we exclude the juxtaposition view and only show superposition and explicit
encoding views. The x-axis represents the occurrence (or instance) in the execution of the shown value. (A) shows the superposition view. We
color points from the original version red and points from the modified version blue. (B) shows the explicit encoding of the difference between the
occurrence in the modified execution and the original occurrence. Gold points represent the difference between the two occurrences. Selecting a
point shows the actual values from both versions (in red for the original and blue for the modified version).

The superposition view presents a single GCT containing both traces,
shown in Fig. 3. Unlike the second juxtaposition view, this view only
builds downward. It builds the entire combined trace, highlighting
the additions, deletions, and updates. While this view presents all of
changes to the trace, it does not as easily illustrate the individual GCTs.
While Aardvark offers all three versions of the GCT, our examples
primarily use the bi-directional juxtaposition view as it provides the
individual GCTs for each trace while aligning for quick comparison
and highlighting the changes.

Histogram Aardvark provides three histogram views - a side-by-
side (juxtaposition) view, a superposition view, and a difference (ex-
plicit encoding) view. For the sake of space, we only provide examples
of the comparative and difference histograms, shown in Fig. 4.

We designed three comparative histogram views. First, the jux-
taposition view places a histogram of each dataset adjacent to each
other. We ensure that the bins and y-axis align in both plots to enable
easier identification of similarities and differences. This view offers
the advantage of allowing people to view the whole dataset, without
interrupting, visual clutter. However, it requires mental overhead of
matching positions for comparison in two disjoint views.

The superposition view shows the two histograms side by side on the
same axis. As shown in Fig. 4-A, there are two bars for each bin, one
for the original version and one for the modified version. In contrast
to the juxtaposition view, people can easily compare matching bars
without mental overhead. However, the combined histogram interrupts
the global view of each individual dataset, making it more difficult to
get the entire view.

Last, the difference view (Fig. 4-C) directly encodes the difference
in the frequencies between the new trace and the original trace. Each
bar represents the change from the original frequency to the new fre-
quency. As a result, some differences may end up negative, requiring
the histogram to account for negative values. This view strays the
farthest from a traditional histogram, as values cannot have negative
frequencies. This view allows people to easily and quickly see how the
frequencies changed between the two versions. However, on the other
hand, people lose the context of the actual distributions of the values.

Scatterplot Aardvark also provides three scatterplot views, com-
plementary to those in the comparative histograms. Fig. 5 shows the
scatterplot views, again without the juxtaposition view for space. For
scatterplots we must ensure that all corresponding instances are aligned
on the x-axis and account for instances that correspond to “added” or
“deleted” nodes that do not have a matching node in the other trace.

Much like the juxtaposition histogram view, the juxtaposition scat-
terplot view simply plots two adjacent scatterplots, one of each version
of the data. While these give a clear view of each dataset, they require
additional effort to match instances together and inspect individual
differences, particularly if there exist unmatched instances.

The superposition view (Fig. 5-A) plots both sets of points on the
same axes and colors the points depending on which version they belong
to, red for the original version and blue for the modified. Aardvark plots

matching instances, as identified during diffing, at the same location
on the x-axis. This plot allows easy comparison of matching instances
across the traces by inspecting their horizontal positions. However, in
some cases, it suffers from clutter and overlapping of values that do not
significantly change, making some comparisons difficult.

The explicit encoding view directly plots the difference between the
two versions for each instance. For each paired instance, it calculates
the difference between the new version and the original version, and
plots that point. For points from the original version that do not have a
matching instance, we simply treat their matching instance as 0. Thus
for an unmatched value x from the original version, we plot it as −x.
Similarly, we plot unmatched instances from the new version as their
true value (i.e., if x is in the new trace and does not have a matching
instance, we plot it as x). While this plot reduces the clutter of the
superposition plot, it loses the context of the actual values from the
traces. To bring back some context, when someone selects a point we
plot the corresponding points from both traces to give them context of
the original values. Fig. 5-B shows the explicit encoding scatterplot.

Aardvark currently only supports scatterplots with a single value,
plotted by occurrence in the execution. Two variable scatterplots do not
have an inherent ordering of the points, making it difficult to visually
cue people towards matching pairs of points. Only the juxtaposition
view, with accompanying interactions that link the two plots could
facilitate the comparison of two variable scatterplots. However, even
that view does not make the differences visually salient.

6 USAGE SCENARIOS

To illustrate the usage of Aardvark, we present two usage scenarios. The
first usage scenario mimics a usage scenario presented in the Anteater
paper, with the goal of illustrating how comparative visualizations
further ease the debugging and understanding process. The second
usage scenario illustrates the use of Aardvark for exploratory debugging
in a computational notebook from an active research project.

6.1 Gradient Descent

In this scenario, we will inspect the effects of changes on a misbehaving
gradient descent program. This example comes from a question on
Stackoverflow [1]. In the question, the presented gradient descent
program returns NaN’s instead of minimized values. To understand
and fix the problem, we inspect the effects of parameter changes using
Aardvark. Additionally, we contrast with the views from the original
Anteater method to demonstrate the need for comparative views.

To begin, we track the values being optimized, “x” and “x1”. We
inspect the Aardvark views for the initial script, shown in the top row
of Fig 6. From these views we see that the optimized values oscillate
between increasingly large positive and negative values, before reaching
infinity which then causes the NaN’s.

While we see the problem, we do not know precisely how to fix it.
We adjust the main parameter in the script, the training rate. We lower
the training rate, re-run the script and observe the changes. At first
glance in the single views, it seems that this may not have had any effect



Original Version

Histogram of “x”

Fr
e

q
u

e
n

cy
 o

f “
x

”

x

Ocurrence of “x”

Plot of “x” vs. the occurence of “x”

x

Modified Version

Histogram of “x”
Fr

e
q

u
e

n
cy

 o
f “

x
”

Plot of “x” vs. the occurence of “x”

Ocurrence of “x”

x

Printed Text Values of “x”

Printed Text Values of “x”

Fig. 6: The Anteater views for gradient descent along with example print statement debugging printouts. The top row shows the visualizations for the
original execution. The bottom row shows the visualizations for the execution after lowering the training rate. Note, the scatterplots use a symmetric
log scale. In this example, the differences between the two script executions may not be immediately apparent when comparing the two instances
side-by-side, and even less so when viewing them individually, in succession.

Fig. 7: The Aardvark scatterplot after dropping the training rate twice
more. Note, the plots use a symmetric log scale. In (A) we see that,
while the oscillation continues, we no longer have any NaN’s. In (B),
after dropping the training rate one more time, we see that the solution
converges, which, because of the log scale, appears as a line at zero.

as shown in the bottom row of Fig. 6. However, to compare directly
with the previous instance, we enable the comparative visualizations of
Aardvark, shown in Fig. 4 and Fig. 5. The histograms in Fig. 4 show
that the number of NaN’s decreased after lowering the training rate
and the scatterplots in Fig. 5 show that the oscillation narrowed which
resulted in fewer NaN’s. From these plots we see that, while we did not
completely fix the problem, lowering the training rate still improved
the optimization. We continue to drop the training rate, shown in Fig. 7
and see from the Aardvark views that continuing to lower the training
rate further improves the optimization until it finally converges.

Note, were we to only use traditional methods or Anteater, it would
have been more difficult to determine whether lowering the training
rate improved the optimization. Fig. 6 shows the beginning of the text
printouts as well as the singular visualizations as in Anteater. Typically,
people would inspect these one after another, in isolation, as part of
their workflow rather than in two side by side debugger instances. In
isolation, the differences are particularly challenging to identify. Even
side by side differences may not be immediately apparent. However,

with Aardvarks comparative visualizations it is immediately apparent
how the values being optimized differed across the two instances.

6.2 Interactive Dimension Reduction

In this scenario, we perform exploratory debugging in a computational
notebook that performs interactive dimension reduction. The interactive
dimension reduction works by allowing people to specify clusters
in the 2D space and then passing that information to the dimension
reduction by optimizing weights on the high dimensional features. It
aims to weight the high dimensional features such that the pairwise
high dimensional distances reflect the specified pairwise 2D distances.
Our task is to explore the number of datapoints in each class we need
to use when defining the clusters. We aim to understand how well
our optimization matches the task and continually works toward a
better clustering. To do this, we measure and track the quality of the
clustering at each iteration of the weight optimization process. In the
ideal scenario, the clustering quality would converge to a good solution
(higher value), as the weight optimization converges.

Fig. 9 shows the Aardvark views for the clustering quality when
defining the clusters with two points per cluster. We see that, with
two points,the clustering quality does not stabilize or converge as the
learning process converges. While this returned a reasonable result, this
does not behave precisely as we would expect. We expect the learning
process to converge towards a good clustering as the learning process
converges. To further evaluate our optimization, we re-run the script,
specifying three points per cluster. Fig. 8(A) shows the comparative
Aardvark views after re-running the script with three points per cluster.
We see that while the optimization took a bit longer to converge and
the clustering overall improves, the DR quality still does not really
stabilize. This suggests that our learning process may match the task
but requires more points per cluster to stabilize. Fig. 8(B) shows the
comparative visualizations after another instance with four points per
cluster. Now, we see that the DR quality seems to largely converge
towards a reasonable clustering, although not as good as in previous
iterations. For good measure, we run another instance with 5 points per
cluster, shown in Fig. 8(C) where we see that the DR quality continues
to improve and stabilize as the optimization converges.

7 DISCUSSION

Trace Diffing Algorithm The diffing algorithm has limitations, its
design assumes more simplistic nodes where all nodes are the same
type but may differ in value. However, program traces contain a variety
of node types, each of which have a value. Therefore, when looking



Fig. 8: The comparative visualizations when specifying three, four and five points per cluster. (A) show the comparative visualizations between two
and three points per cluster. From the GCT, we see that it took longer for the DR to converge but the quality of the clustering does not seem to
have greatly improved. (B) shows the comparative visualizations from three to four points per cluster. We see that the clustering largely converges,
although the final clustering is of lower quality than previous iterations. (C) shows the comparative views from four to five points per cluster. Finally,
we see that the clustering quality seems to converge with the optimization and takes fewer iterations to do so.

Fig. 9: The initial visualizations for the interactive DR with two points per
cluster. Although the optimization converged, the plot shows that while
the optimization converged, the clustering quality does not.

for diffing the execution trees, the algorithm may overlook certain
commonalities due to slight structural differences. However, the diffing
algorithm used in this work is only one possible example of a diffing
algorithm. Due to the modular nature of the system, a different diffing
algorithm can easily be inserted into the system. The exploration of
more sophisticated diffing algorithms is left for future work.

Changes in Computational Notebooks The current extension to
notebooks relies on consecutive traces of the entire workflow. However,
analysts do not necessarily re-run the entire notebook with every change.
While Aardvark captures these changes in a single trace, it does not
currently provide comparative views of repeated portions in a single
workflow. We explored the option of identifying repetition within a
single notebook workflow, however, this relies on the ability to track
and identify the specific cells that were run, such as through a cell
id, to match them throughout the execution. We were unable to find
a consistent way to track which specific cell was executed, short of
inferring based on similarities between executed code. Future work is
still needed to further explore methods for identifying and visualizing
repeated cell executions within a single notebook workflow.

Supported Program Changes Aardvark is designed to support
minor changes. Minor changes include those that primarily alter pro-
gram values and only minorly alter the execution structure. Aardvark
will still work on more significant changes, however as the changes
become larger and fewer parts of the executions align, the visualiza-
tions become more complex and less readable. Additionally, Aardvark
assumes nothing about a program other than that it is written in Python.
It does not assume anything about the structure of the program or even
the type of changes made to the program. As a result, Aardvark limits
the types of questions people can ask when performing comparative
tasks. Specifically, Aardvark only allows us to ask general comparative
questions, such as “how does the behavior of this version of value x
compare to the behavior of this other version of value x.” It does not
enable us to ask deeper, more program dependent questions such as
“what is the influence of value x on dependent variable y”. To address
these questions, further work is needed to explore the types of assump-
tions we can make about analysis scripts and the types of comparative
questions enabled by these assumptions.

8 CONCLUSION

In this paper, we presented Aardvark, a comparative trace-based visual
debugging method for visualizing the effects of changes to analysis
scripts. Aardvark builds on the tracing infrastructure of a prior trace-
based visual debugging method, Anteater, to trace two versions of
an analysis script, identify the changes between the two traces, and
present these changes through interactive visualizations. Additionally,
we presented two usage scenarios to demonstrate Aardvark’s ability to
illustrate the effects of changes in analysis scripts. Aardvark presents a
promising first step towards automatically illustrating the differences
across multiple versions of analysis scripts to help people better under-
stand their analyses.

ACKNOWLEDGMENTS

This work is partially supported by the NIST Graduate Student Mea-
surement and Engineering Fellowship, through a grant with the GFSD,
and the National Science Foundation under Grant # 2127309 to the
Computing Research Association for the CIFellows 2021 Project.

DISCLAIMER

This work represents an official contribution of NIST and hence is not
subject to copyright in the US. Identification of commercial systems
in this paper are for demonstration purposes only and does not imply
recommendation or endorsement by NIST.



REFERENCES

[1] Gradient descent implementation in python returns nan.

https://stackoverflow.com/questions/15211715/gradient-descent-

implementation-in-python-returns-nan, 2013. Last visited on 2020-04-30.

6

[2] Admin. Intel trace analyzer and collector, Oct 2019. 2

[3] A. Alaboudi and T. D. LaToza. Edit-run behavior in programming and

debugging. arXiv preprint arXiv:2109.02682, 2021. 1

[4] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete. Weighted

graph comparison techniques for brain connectivity analysis. In Proceed-

ings of the SIGCHI conference on human factors in computing systems,

pp. 483–492, 2013. 2

[5] B. Alsallakh, P. Bodesinsky, A. Gruber, and S. Miksch. Visual tracing for

the eclipse java debugger. In 2012 16th European Conference on Software

Maintenance and Reengineering, pp. 545–548. IEEE, 2012. 2

[6] M. Angelini, G. Blasilli, L. Borzacchiello, E. Coppa, D. C. D’Elia,

C. Demetrescu, S. Lenti, S. Nicchi, and G. Santucci. Symnav: Visually

assisting symbolic execution. In 2019 IEEE Symposium on Visualization

for Cyber Security (VizSec), pp. 1–11. IEEE, 2019. 2

[7] L. Burgess-Yeo. F# tree diff algorithm, Jan 2020. 5

[8] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your changes: A

language-independent approach. IEEE software, 26(1):50–57, 2008. 2

[9] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change

detection in hierarchically structured information. Acm Sigmod Record,

25(2):493–504, 1996. 2

[10] Y.-P. Cheng, C.-Y. Ku, W.-C. Pan, C. Yang, and T.-S. Lin. Toward arbi-

trary mapping for debugging visualizations. In Proceedings of the 38th

International Conference on Software Engineering Companion, ICSE ’16,

pp. 605–608. ACM, New York, NY, USA, 2016. doi: 10.1145/2889160.

2889167 2

[11] B. Cornelissen and L. Moonen. Visualizing similarities in execution traces.

In Proceedings of the 3rd Workshop on Program Comprehension through

Dynamic Analysis (PCODA), pp. 6–10, 2007. 2

[12] V. Dashuber and M. Philippsen. Trace visualization within the software

city metaphor: Controlled experiments on program comprehension. Infor-

mation and Software Technology, 150:106989, 2022. 2

[13] G. Dotzler and M. Philippsen. Move-optimized source code tree differ-

encing. In 2016 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE), pp. 660–671. IEEE, 2016. 2

[14] S. Duszynski, V. L. Tenev, and M. Becker. N-way diff: Set-based com-

parison of software variants. In 2020 Working Conference on Software

Visualization (VISSOFT), pp. 72–83. IEEE, 2020. 2

[15] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. Fine-

grained and accurate source code differencing. In Proceedings of the 29th

ACM/IEEE international conference on Automated software engineering,

pp. 313–324, 2014. 2, 4

[16] R. Faust, C. Scheidegger, K. Isaacs, W. Z. Bernstein, M. Sharp, and

C. North. Interactive visualization for data science scripts. In 2022

IEEE Visualization in Data Science (VDS), pp. 37–45, 2022. doi: 10.

1109/VDS57266.2022.00009 1, 2, 3

[17] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, and C. Zan-

der. Debugging from the student perspective. IEEE Transactions on

Education, 53(3):390–396, 2009. 1

[18] B. Fluri and H. C. Gall. Classifying change types for qualifying change

couplings. In 14th IEEE International Conference on Program Compre-

hension (ICPC’06), pp. 35–45. IEEE, 2006. 3

[19] B. Fluri, M. Wursch, M. PInzger, and H. Gall. Change distilling: Tree

differencing for fine-grained source code change extraction. IEEE Trans-

actions on software engineering, 33(11):725–743, 2007. 2

[20] D. M. German, A. E. Hassan, and G. Robles. Change impact graphs:

Determining the impact of prior codechanges. Information and Software

Technology, 51(10):1394–1408, 2009. 2

[21] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D. Hansen, and J. C.

Roberts. Visual comparison for information visualization. Information

Visualization, 10(4):289–309, 2011. 2, 5

[22] M. Graham and J. Kennedy. A survey of multiple tree visualisation.

Information Visualization, 9(4):235–252, 2010. 2

[23] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J. Snover.

Males? and females? script debugging strategies. In International Sympo-

sium on End User Development, pp. 205–224. Springer, 2009. 1

[24] M. Hashimoto and A. Mori. Diff/ts: A tool for fine-grained structural

change analysis. In 2008 15th working conference on reverse engineering,

pp. 279–288. IEEE, 2008. 2

[25] S. Horwitz. Identifying the semantic and textual differences between

two versions of a program. In Proceedings of the ACM SIGPLAN 1990

conference on Programming language design and implementation, pp.

234–245, 1990. 2

[26] D. Jackson, D. A. Ladd, et al. Semantic diff: A tool for summarizing the

effects of modifications. In ICSM, vol. 94, pp. 243–252, 1994. 2

[27] S. Lehnert, M. Riebisch, et al. A taxonomy of change types and its appli-

cation in software evolution. In 2012 IEEE 19th International Conference

and Workshops on Engineering of Computer-Based Systems, pp. 98–107.

IEEE, 2012. 3

[28] A. V. Miranskyy, M. Davison, R. M. Reesor, and S. S. Murtaza. Using

entropy measures for comparison of software traces. Information Sciences,

203:59–72, 2012. 2

[29] T. Munzner. Visualization analysis and design. AK Peters/CRC Press,

2014. 2

[30] H.-G. Pagendarm and F. H. Post. Comparative visualization: Approaches

and examples. Delft University of Technology, 1995. 2

[31] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of

small source code changes. IEEE Transactions on Software Engineering,

31(6):511–526, 2005. 3

[32] D. Rozenberg and I. Beschastnikh. Templated visualization of object state

with vebugger. In 2014 Second IEEE Working Conference on Software

Visualization, pp. 107–111. IEEE, 2014. 2

[33] R. Suzuki, G. Soares, A. Head, E. Glassman, R. Reis, M. Mongiovi,

L. D’Antoni, and B. Hartmann. Tracediff: Debugging unexpected code

behavior using trace divergences. In 2017 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), pp. 107–115. IEEE,

2017. 2

[34] S. Taheri, I. Briggs, M. Burtscher, and G. Gopalakrishnan. Difftrace:

Efficient whole-program trace analysis and diffing for debugging. In 2019

IEEE International Conference on Cluster Computing (CLUSTER), pp.

1–12. IEEE, 2019. 2

[35] J. Trümper, J. Döllner, and A. Telea. Multiscale visual comparison of

execution traces. In 2013 21st International Conference on Program

Comprehension (ICPC), pp. 53–62. IEEE, 2013. 2

[36] I. Vessey. Expertise in debugging computer programs: A process analysis.

International Journal of Man-Machine Studies, 23(5):459–494, 1985. 1

[37] S. Voigt, J. Bohnet, and J. Dollner. Object aware execution trace explo-

ration. In 2009 IEEE International Conference on Software Maintenance,

pp. 201–210. IEEE, 2009. 2

[38] J. Woodring and H.-W. Shen. Multi-variate, time varying, and comparative

visualization with contextual cues. IEEE transactions on visualization and

computer graphics, 12(5):909–916, 2006. 2

[39] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. Matrixwave:

Visual comparison of event sequence data. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems, pp.

259–268, 2015. 2

https://doi.org/10.1145/2889160.2889167
https://doi.org/10.1145/2889160.2889167
https://doi.org/10.1109/VDS57266.2022.00009
https://doi.org/10.1109/VDS57266.2022.00009

	Introduction
	Related Work
	Background
	Classification of Program Changes
	Source Code Changes
	Trace Changes

	Aardvark's Design
	Source and Trace Diffing
	Comparative Visualizations

	Usage Scenarios
	Gradient Descent
	Interactive Dimension Reduction

	Discussion
	Conclusion

