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Abstract

Discovering latent connections between seemingly un-
connected documents and constructing “stories” from
scattered pieces of evidence are staple tasks in intelli-
gence analysis. We have worked with government in-
telligence analysts to understand the strategies they use
to make connections. Beyond techniques like cluster-
ing that aim to provide an initial broad summary of
large document collections, an important goal of an-
alysts in this domain is to assimilate and synthesize
fine grained information from a smaller set of foraged
documents. Further, analysts’ domain expertise is cru-
cial because it provides rich contextual background for
making connections and thus the goal of KDD is to
augment human discovery capabilities, not supplant it.
We describe a visual analytics system we have built—
Analyst’s Workspace (AW)—that integrates browsing
tools with a storytelling algorithm in a large screen
display environment. AW helps analysts systematically
construct stories of desired fidelity from document col-
lections and helps marshall evidence as longer stories
are constructed.

Introduction

What do the April’07 shootings at Virginia Tech, Bernard
Madoff’s Ponzi scheme uncovered in Dec’08, and the
March’09 recall of Zencore plus have in common? They
are all extreme happenings that lead us to question: ‘Why
didn’t somebody connect the dots?’ Our ongoing failures to
do so have led to these and many other, arguably avoidable,
catastrophes. Yet, piecing together a story between seem-
ingly disconnected information remains an elusive skill and
an understudied task.

Storytelling is an accepted metaphor in analytical rea-
soning and in visual analytics (Thomas and Cook (eds.)
2005). Many software tools exist to support story building
activities (Eccles et al. 2008; Hsieh and Shipman 2002;
Wright et al. 2006). Analysts are able to lay out evidence
according to spatial cues and incrementally build connec-
tions between them. Such connections can then be chained
together to create stories which either serve as end hypothe-
ses or as templates of reasoning that can then be prototyped.
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However, there are severe limitations to human sensemak-
ing capabilities, even on gigapixel-sized displays, when con-
fronted with massive haystacks of data. Algorithmic sup-
port to help sift through the myriad of possibilities is crucial
here. At the same time, storytelling is not entirely automat-
able since it is an exploratory activity and the analyst brings
in valuable intuition and contextual cues to direct the story
building process. Hence it is imperative that we view story-
telling as a collaborative enterprise between algorithmic and
human capabilities.

The focus of this paper is on exploring document collec-
tions and we present a visual analytics system called Ana-
lyst’s Workspace (AW) that aids intelligence analysts in ex-
ploring connections and building stories between possibly
disparate end points. Our key contributions are:

1. Design considerations that have emerged from a detailed
user study with five analysts working on intelligence anal-
ysis tasks.

2. New algorithms that find stories through document col-
lections and also help marshall evidence to support dis-
covered stories.

3. Implementation of both interactive visualization and algo-
rithmic storytelling support in AW; and a case study over
a public domain dataset.

How Analysts make Connections

We recently had the opportunity to interview and perform a
study with five intelligence analysts currently employed at a
government organization. The detailed results are presented
and discussed in [Andrews et al. 2010]. We begin by de-
scribing qualitative lessons from the interviews followed by
a study of their strategies in solving analysis tasks.

Interviews with Analysts

For the purpose of this paper, it suffices to note that the
goal of the interviews was to attempt to typify how analysts
approached the large quantities of data they were required
to sift through, and to learn what tools they used and how
they used them. From these interviews, the most interesting
fact that emerged was that the analysts largely used software
tools only at the beginning and at the end of their analysis.

Basic search tools were used to filter down a dataset at
the start of their analysis. At the end of the analysis, presen-
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Figure 1: How intelligence analysts make connections
(from (Pirolli and Card 2005).)

tation tools (such as PowerPoint) would be used to create
reports. For the middle of the analytic process, where the ac-
tual sensemaking occurs, the analysts in our study reported
that they tended to print out reports and other source mate-
rials. This allowed them to easily read them, annotate them
with notes and highlights, sort them into physical folders,
stack them in meaningful ways on the desk, and even lay
all the documents out on a large table where they could be
organized and rapidly skimmed.

A formal way to characterize the above observations is
with reference to the schematic of Pirolli and Card (Pirolli
and Card 2005). As Fig. 1 shows, the process by which
intelligence analysts make connections is frequently tenta-
tive and evolutionary, with structures developing as under-
standing of the data increases. There are two ‘subloops’ in
Fig. 1: information foraging and sense-making. Most ana-
lytic systems, such as IN-SPIRE (PNNL ), Jigsaw (HCII ),
ThemeRiver (Havre et al. 2002), NetLens (Kang et al. 2007)
focus on support for the information foraging loop, leaving
the sensemaking to the analyst. Other tools, such as Ana-
lyst’s Notebook (i2group ), Sentinel Visualizer (FMS, Inc. ),
Entity Workspace (Bier et al. 2006), and Palantir (Khurana
et al. 2009) focus more on the the sensemaking loop, and
while many of them ostensibly support foraging, the analysts
reported using these tools primarily for late stage sensemak-
ing and presentation.

The key problem with this separation of the two halves of
the sensemaking process is that the schematic is not meant
to be a state diagram – it is a representation of some of
the thought processes and structures that are identifiable
during sensemaking and a description of how they relate.
There is an overall trend from a collection of raw data to
a final report, but inbetween, the analyst should be ranging
widely across the entire process, building up an understand-
ing through progressive foraging and structuring.

User Study

The tendency of analysts to resort to non-software methods
for information organization suggested to us the potential

Figure 2: A user works with Analyst’s Workspace on a 32
megapixel display.

for exploring the use of large screen displays and how they
can be integrated into the sensemaking process. If the sense-
making can be drawn back into the computational realm, it
provides the opportunity to better support the analysts.

We conducted a detailed user study with a large 32
megapixel (10,240×3,200) display, which consists of a 4×2
grid of 30′′ LCD panels, each with a maximum resolution
of 2560×1600. All of the panels in the display are driven by
a single computer, allowing us to run conventional desktop
applications on the display without modification. The dis-
play is configured for single-user use and is slightly curved
around the user, who sits in the center, with the freedom to
rotate around to access all parts of the display (Fig. 2).

For the study, we employed the VAST (Symposium on
Visual Analytics Science and Technology) 2006 Challenge
dataset. This dataset contains approximately 240 documents,
which are primarily synthetic news stories from a fictitious
city newspaper. Although this is a relatively small dataset,
most of it is actually noise, with only about ten of the docu-
ments being relevant to uncovering the plot. Another feature
of this dataset is that even if the analyst uncovers all ten doc-
uments, some analysis is still required to actually determine
the nature of the synthetic threat.

Five analysts were presented with the dataset as a direc-
tory of files, with only the search facilities of Windows XP’s
File Explorer, WordPad for reading and annotating docu-
ments, and a simple image viewer for the couple of images
included in the dataset. We asked them to uncover the buried
plot using any approach that they desired, using the space af-
forded by the display in any way that they found useful.

A key conclusion from this study was that the large dis-
play was treated in a fundamentally different way from
conventional displays. Conventional displays typically con-
strain the user to working with one or two applications or
documents at a time. Interaction in this environment is pri-
marily application oriented. The large display, on the other
hand, permits the user to work with a large number of ap-
plications and documents simultaneously. In our study, we
found that this simple change encouraged users to adopt
a more document-centric approach, working with the doc-
uments in a fashion more akin to the way one would in-
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Figure 3: An active session in Analyst’s Workspace. Full text documents and entities share the space, with a mixture of spatial
metaphors, such as clusters, graphs, and timelines all in evidence. The yellow lines are the links of the derived social network.

teract with physical pieces of paper laid out on a physical
desk. We found that our subjects freely moved documents
around the space, creating a form of “semantic layer” over
the document collection, in which position on the display
helped to convey additional semantics, such as relationships
between the documents. Using space to encode extra infor-
mation about the relationship between objects has a rich his-
tory, rooted in human perceptual abilities (Kirsh 1995). A
primary advantage of the use of space for this purpose is
that it is very flexible and allows the user to express transi-
tory or questionable relationships in a visually salient struc-
ture without committing to a strict and potentially confining
structure (Shipman and Marshall 1999).

For example, most of the analysts used the space to clus-
ter the documents that they found important. The interesting
feature of these clusters is that they were frequently vague
and grouped documents on an assortment of different lev-
els. For instance, documents in the same workspace could be
clustered because they related to a particular person or place,
because they had a related theme such as weapons, or even
because of how the analyst regarded the documents (e.g.,
many of the analysts created a pile of documents that they
thought were probably junk but seemed related enough that
they did not want to close them and lose them). Sometimes,
clusters would form without the analyst having any clear
thought about why the documents in the collection might
fit together.

While the study demonstrated the appeal of working spa-
tially for sensemaking, it is worth noting that most analysts
did not solve the analysis task. At the end of most sessions,
the analysts had all identified the major themes and created
representative structures, but they did not connect the dots
to put the entire story together. Here, we can point to the
impoverished foraging support, which could not help them
to identify the critical linchpins that would draw the whole
story together.

The above observations motivated us to develop a vi-
sual analytics environment—Analyst’s Workspace (AW),
and open the door to our algorithmic assistance for foraging

connections of exploration within AW. AW i) closely mim-
ics information organization layouts employed by analysts,
ii) relates multiple representations to accommodate different
strategies of exploration, and iii) provide automated algo-
rithmic assistance for foraging connections and hypothesis
generation.

Analyst’s Workspace

AW provides the user with a plethora of interaction tools for
use with large screen displays (e.g., familiar click-and-drag,
selection rectangles, multi-click selections) as well as infor-
mation organization facilities (e.g., graph layout, temporal
ordering). Because these operations are local, they only af-
fect the local area or the currently selected documents and
hence enable the analyst to freely mix spatial metaphors (see
Fig. 3).

While the primary visual elements in AW are full text
documents, we also provide support at the entity level. Doc-
uments are marked up based on extracted entities, and the
analyst can use context menus to quickly identify new en-
tities and create aliases between entities. Double clicking
an entity of interest in a document opens an entity object,
which is initially displayed as a list of documents in which
that entity appears. Entities can also be collapsed down to a
representational icon, and AW automatically draws links be-
tween entities when they co-occur in a document. These two
features allow the analyst to rapidly construct and explore
social networks, which are commonly used tools in intelli-
gence analysis.

AW also provides basic facilities for text-based search.
Search results are displayed as lists of matching documents
in the space, like the entities. The documents are color coded
to tell the analyst the state of a document: open, previously
viewed, or never viewed.

Visual links play a strong role in AW. These allow a num-
ber of relationships to be expressed, freeing spatial proxim-
ity to be used to express more complex relationships more
directly related to making sense of the dataset.

While Analyst’s Workspace is designed to support a flex-
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Figure 4: AW’s entity browser, here showing the people
identified in the dataset, sorted by the number of documents
in which each appears.

ible approach to sensemaking, it does encourage a particular
analytic approach that we observed being used by the ana-
lysts. This is a strategy that Kang et al. (2009) referred to as
“Find a Clue, Follow the Trail”. In this strategy, the analyst
identifies some starting place and then branches out the in-
vestigation from that point, following keywords and entities.

In AW, a starting point can be provided by the entity
browser (Fig. 4), which allows the analyst to order enti-
ties by the number of occurrences in the dataset. The ana-
lyst opens this entity and gets a list of documents in which
this entity appears. The analyst then works through these
documents, opening new entities or performing searches as
new clues are found. Since all of the search results are inde-
pendent objects in the space and there is a visual record of
which documents have been visited, AW can support both a
breadth-first and a depth-first search through the informa-
tion. As the investigation progresses, the analyst uses the
space to arrange the information as it is uncovered, building
and rebuilding structures to reflect his or her current under-
standing of the underlying narrative.

While this approach has been shown to be fairly effective
(Kang et al. 2009), it does not permit greater characteriza-
tion of the dataset and does not support more complex ques-
tions that the analyst might ask. For example, this approach
relies entirely on the analyst to pick the right keywords and
entities to “chase,” and can miss less direct lines of investi-
gation. It is common for terrorists to use multiple aliases or
code words that can easily thwart this approach. However, it
is possible that common patterns of behavior or other docu-
ment similarities might help the analyst to uncover some of
these connections.

The analyst may also need the discovery of paths through
the dataset to be more efficient. For example, the analyst
may have uncovered that a revolutionary in South America
shares the same last name as a farmer in the Pacific North-
west who has been implicated in some nefarious affairs and

wishes to ask if there is any link between them or if their last
name is a coincidence. An exhaustive background check of
the two men is possible through AW if the dataset is rela-
tively small, but it is an indirect and time consuming pro-
cess.

Algorithmic Support for Storytelling

We attempted to formalize and support the ways by which an
analyst conducts unstructured discovery, chases leads, and
marshalls evidence to support or refute potentially promis-
ing chains. Our story generation framework is exploratory
in nature so that, given starting and ending documents of in-
terest, it explores candidate documents for path following,
and heuristics to admissibly estimate the potential for paths
to lead to a desired destination. The generated paths are then
presented to the AW analyst who can choose to revise them
or adapt them for his/her purposes.

A story between documents d1 and dn is a sequence of in-
termediate documents d2, d3, ..., dn−1 such that every neigh-
boring pair of documents satisfies some user defined criteria.
Given a story connecting a start and an end document (see
Fig. 7 (a)), analysts perform one of two tasks: they either
aim to strengthen the individual connections, possibly lead-
ing to a longer chain (see Fig. 7 (b)), or alternatively they
seek to organize evidence around the given connection (see
Fig. 7 (c)). We use the notions of distance threshold and
clique size to mimic these behaviors. We designed our sto-
rytelling algorithm to work with these two criteria that are
under the AW analyst’s control and experimentation. (These
are not magic parameters whose values have to be tuned but
are rather controls that mimic the natural process by which
analysts tighten or strengthen their hypotheses.)

The distance threshold refers to the maximum accept-
able distance between two neighboring documents in a story.
Lower distance thresholds impose stricter requirements and
lead to longer paths. The clique size threshold refers to the
minimum size of the clique that every pair of neighboring
documents must participate in. Thus, greater clique sizes
impose greater neighborhood constraints and lead to longer
paths. See Fig 7 (d) for a new path with both stricter clique
size and stricter distance thresholds. These two parameters
hence essentially map the story finding problem to one of
uncovering clique paths in the underlying induced similarity
network between documents.

We use the term “clique chain” to refer to a story along
with its surroundings connections of evidence. In contrast,
a story only constitutes the junction points between con-
secutive cliques. Another way to characterize them is that
a clique chain constitues many stories.

Fig. 5 describes the steps involved in generating stories for
interaction by the AW analyst. For document modeling, we
use a bag-of-words (vector) representation where the terms
are weighted by tf-idf with cosine normalization. Our search
framework has three key computational stages:

1. construction of a concept lattice,
2. generating promising candidates for path following, and
3. evaluating candidates for potential to lead to destination.
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Figure 5: Pipeline of the storytelling framework in AW.
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Of these, the first stage can be viewed as a startup cost that
can be amortized over multiple path finding tasks. The sec-
ond and third stages are organized as part of an A* search
algorithm that begins with the starting document, uses the
concept lattice to identify candidates satisfying the distance
and clique size requirements, and evaluates them heuristi-
cally for their promise in leading to the end document.

Concept Lattice Construction

The concept lattice is a data structure that models conceptual
clusters of document and term overlaps and is used here as a
quick lookup of potential neighbors that will satisfy the dis-
tance threshold and clique constraints. Given a (weighted)
term-document matrix, we use the CHARM-L (Zaki and Ra-
makrishnan 2005) closed set mining algorithm on a boolean
version of this matrix to generate a concept lattice. Each con-
cept is a pair: (document set, term set) as shown in Fig. 6.
Further, we order the document list for each concept by the
number of terms. Note that we can find an approximate set
of nearest neighbors for a document d from the document
list of the concept containing d and the longest term set.

Successor Generation

Successor generation is the task of, given a document, using
the distance threshold and clique size requirements to iden-
tify a set of possible successors for path following. Note that
this does not use the end document in its computation.

The basic idea of our successor generation approach is, in

addition to finding a good set of successor nodes for a given
document d, to be able to have sufficient number of them
so that, combinatorially, they contribute a desired number
of cliques. With a clique size constraint of k, it is not suffi-
cient to merely pick the top k neighbors of the given docu-
ment, since the successor generation function expects mul-
tiple clique candidates. (Note that, even if we picked the top
k neighbors, we will still need to subject them to a check to
verify that every pair satisfies the distance threshold.) Given
that this function expects b clique candidates (where b is the
branching factor), a minimum m documents must be identi-
fied where m is given by the solution to the inequalities:(

m− 1
k

)
< b and

(
m
k

)
≥ b

For a given document, we pick the top m candidate doc-
uments from the concept lattice and form combinations of
size k. Our successor generator thus forms combinations of
size k from these m documents to obtain a total of b k-
cliques. Since m is calculated using the two inequalities,
the total number of such combinations is equal to or slightly
greater than b (but never less than b). Each clique is given an
average distance score calculated from the distances of the
documents of the clique and the current document d. This
aids in returning a priority queue of exactly b candidate k-
cliques.

We evaluated our successor generation mechanism by
comparing it to the brute force nearest neighbor search and
the cover tree based (Beygelzimer et al. 2006) nearest neigh-
bor search mechanisms. We found that our concept lattice
based successor generation mechanism works faster than
these other approaches (not described due to space limita-
tions). Therefore we adopt the concept lattice in our succes-
sor generation procedure.

Evaluating Candidates

We now have a basket of candidates that are close to the
current document and we must determine which of these
has the potential to lead to the destination document. The
primary criteria of optimality for the A* search procedure
of our framework is the cumulative Soergel distance of the
path. The Soergel distance between two documents d1and
d2 is given by:

D(d1, d2) =

∑
t

|wt,d1 − wt,d2 |∑
t

max (wt,d1
, wt,d2

)

where wt,di
indicates the weight for term t of document di.

We use the straight line Soergel distance for the heuristic
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CIA_05 FBI_28CIA_17

Boris Bugarov (a Russian bio-weapon 
scientist) was hired by Pyotr Safrygin.

vector, moscow, pyotr, institute, live, 
safrygin, russia

Algorithm connects Pieter Dopple with 
Safrygin, but the link is weak.

request, live, name, september

(a) Clique size=2, distance threshold=0.99: Example of a story with weak connections.

(b) Clique size=2, distance threshold=0.96 : Example of a story with stricter links.

CIA_05 FBI_28NSA_22

Algorithm connects Boris 
Bugarov (a Russian bio-
weapon scientist) and Pyotr
Safrygin via an intercepted 
phone call.

pyotr, central, airline, 
moscow, russia

Algorithm finds Pieter 
Dopple involved in the stone 
business and money 
laundering.

pakistan, ramundo, stone, 
ortiz, diamond, africa, 

tanzanite, panama, precious

CIA_14
central, havana, cuba, 

middle, east

Algorithm connects these 
two documents based on 
place names but the 
connection is vague.

CIA_05 FBI_28

CIA_14

CIA_17

Boris Bugarov (a Russian bio-weapon scientist) was 
hired by Pyotr Safrygin.

CIA_34

vector, moscow, pyotr safrygin,  
institute, live, russia

Algorithm links Pieter Dopple with diamond 
transactions. Pieter Dopple has relationships with 
militant Islamic groups.

request, live, name, september

(c) Clique size=3, distance threshold=0.99 : Example of a better story with small amount of surrounding
evidence.
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CIA_17 CIA_14

Boris Bugarov (a Russian bio-
weapon scientist) was hired by 
Pyotr Safrygin.

CIA_34 NSA_20 CIA_09

pakistan, sell, receive, 
tanzanite, panama

phone, pakistan, caller, 
intercept, let, know

airline, moscow, central, 
russia

This clique explains some 
intercepted phone calls 
involving Pyotr Safrygin, the 
director of security for Central 
Russia Airlines. The phone 
conversations were transaction 
related and mention tanzanite.

Algorithm connects Pieter Dopple
with diamond transactions using 
neighboring evidence. Pieter Dopple
has relationships with militant 
Islamic groups.

NSA_18

(d) Clique size=4, distance threshold=0.95 : Example of a better story with more surrounding evidence. 

Figure 7: A sample story illustrating the impact of change of clique size and distance threshold. The goal is to connect bio-
weapon scientist Boris Bugarov with money launderer Pieter Dopple. As the distance and clique size thresholds are experi-
mented with, we observe surrounding evidence connecting Pieter Dopple with militant Islamic groups.

and, because it obeys the triangle inequality, it can be shown
that this will never estimate the cost of a path from any doc-
ument d to the goal. Therefore our heuristic is admissible
and our A* search will yield the optimal path.

It is important to note that our algorithm never explicitly
computes or materializes the underlying network of similar-
ities at any time. As a result, it is very easy for the AW ana-
lyst to vary the clique size and distance thresholds to analyze

different stories for the same start and end pairs.

Experimental Results

We conduct both quantitative and qualitative evaluation of
AW’s visual and algorithmic support for storytelling. The
questions we seek to assess are:

1. What is the interplay between distance threshold and
clique size constraints in story construction? How does
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our heuristic fare in reference to an uninformed search
and as a function of the constraints?

2. What is the quality of stories discovered by our algo-
rithm?

3. How do the algorithmically discovered stories compare to
those found by analysts?

4. How can analysts mix-and-match algorithmic capabilities
with their intuitive expertise in story construction?

For our experiments, we used an analysis exercise
(Hughes 2005) developed at the Joint Military Intelligence
College. The exercise dataset is sometimes referred to as the
Atlantic Storm dataset.

Evaluating Story Construction

To study the relationship between distance threshold and
clique size constraints, we generated thousands of stories
with different distance and clique size requirements from the
Atlantic Storm dataset, and computed the maximum clique
size for which at least one story was found. As expected, we
see an anti-monotonic relationship and that it is more diffi-
cult to marshall evidence as distance thresholds get stricter
(Fig. 8).

To study the performance of AW’s heuristic over a non-
heuristic based search, we picked 1000 random start-end
document pairs from our document collection and generated
stories with different distance threshold and clique size re-
quirement. The non-heuristic search is simply a breadth-first
search version of our A* search framework (in other words,
the heuristic returns zero for all inputs). Fig. 9 compares av-
erage runtimes of AW’s heuristic based search against the
non-heuristic search. From top to bottom, three consecutive
plots of Fig. 9 depict the average runtimes respectively as
functions of story length, distance threshold, and clique size.
Astute readers might expect a monotonic increase of average
runtime with longer stories in Fig. 9 (top). Stories tend to
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Figure 8: Atlantic storm dataset: interplay between distance
threshold and clique size constraints.

become longer with stringent distance threshold and clique
size. Further stringency, however, results in broken stories
(the length of the story theoretically becomes infinite). As
a result, we found a smaller number of longer stories than
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Figure 9: We used 1000 random start-end pairs to com-
pare the performance of AW’s heuristic search against un-
informed search.
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Figure 10: (left) A dispersion plot of an ideal story. The dispersion coefficient ϑ = 1.0. (right) A dispersion plot of a non-ideal
story of same length. The dispersion coefficient ϑ = 1− 3

8×8 − 1
8×7 = 0.94.

the shorter ones. In all the plots of Fig. 9, we calculated the
average time over only the discovered stories. Since most
of the long stories were found quickly by our algorithms,
the curves of Fig. 9 (top) increase first and then descrease
instead of being monotonically increasing. All the plots of
Fig. 9 depict that the heuristic yields significant gains over
the uninformed search.

Evaluating Story Quality

It is difficult to objectively evaluate the quality of sto-
ries. Here, we adopt Swanson’s complimentary but disjoint
(CBD) hypothesis (Swanson 1991) and assess the pairwise
Soergel distance between documents in a story, between
consecutive as well as non-consecutive documents. An ideal
story is one that meets the Soergel distance threshold θ only
between consecutive pairs whereas a non-ideal story “over-
satisfies” the distance threshold and meets it even between
non-consecutive pairs. As shown in Fig. 10 (left), an ideal
story has only diagonal entries in its dispersion plot (con-
trast with Fig. 10 (right)). If n documents of a story are d0,
d1, ..., dn−1, then our formula for dispersion coefficient is
given by:

ϑ = 1− 1

n− 2

n−3∑
i=0

n−1∑
j=i+2

disp (di, dj)

where

disp (di, dj) =

{
1

n+i−j , if D (di, dj) > θ

0, otherwise

We also compute p-values for each generated story. Re-
call that at each step of the A* search we build a queue
of candidate documents by investigating the corresponding

Table 1: Sample story fragments from an analyst. How did
our algorithm fare in discovering them?

Story Found by 
algorithm

Found in the 
clique path

Found by 
merging 
stories

FBI_30�FBI_35�FBI_41�CIA_43 

CIA_41�CIA_34�CIA_39�NSA_09
�NSA_16 

CIA_01�CIA_05�CIA_34�CIA_41�CIA_17�
CIA_39�NSA_22 

NSA_11�NSA_18�NSA_16 

CIA_06�CIA_22�CIA_21 

CIA_24�FBI_24 

NSA_06�CIA_32�CIA_42 

NSA_16�CIA_38�CIA_42 

concepts of the concept lattice. To calculate the p-value of
a clique of size k, we randomly select k − 1 documents
from the entire candidate pool and check if all the edges
of the formed k-clique satisfy the distance threshold θ, it-
erating the test 50,000 times. This allows us to find p-values
down to 2×10−5. We repeat this process for every junction-
document of a discovered clique chain. The overall p-value
of a clique chain is calculated by multiplying all the p-values
of every clique of the chain.

Story Validation

We have depicted stories with different distance and clique
size requirements in Fig. 7. The story connects a Rus-
sian bio-weapon scientist (Boris Bugarov) with a money
launderer (Pieter Dopple) who has ties to militant Islamic
groups. In Table 1 we compared some discovered stories
with fragments put together by analysts. The inputs from
the analysts are not complete stories but rather scattered,
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The analyst requests a story connecting a pair of interesting 
documents. 

Unsatisfied with the strength of the connection, the analyst requests 
information about documents in the surrounding neighborhood (i.e., 
within the local clique).

Having explored the local neighborhood, the analyst has identified 
two additional documents that form a more meaningful connection 
and extends the original story.

The generated story between the two endpoints. The system has identified 
two linking documents, and connected them together into a linked story.

A list of the neighbors of the third document. The lines 
provide visual links to open documents.

hi

th t

New connections have been manually added to extend the story

Figure 11: Illustration of AW usage.

piecewise connections. The table illustrates that all the sto-
ries were discovered by our algorithm with two exceptions:
the stories were not in the directly discovered path but were
present in the clique chain (i.e., the story did not exhibit the
same junction points), or the fragment can be discovered by
merging multiple stories together. This depicts the potential
of our heuristic in helping AW analysts discover stories al-
gorithmically.

Illustration of AW Usage

Fig. 11 shows an example of the usage of AW and our al-
gorithms. In this scenario, the analyst requests a story con-
necting a pair of interesting documents. The algorithm re-
turns a story but the analyst is not satisfied with parts of
the story. The analyst then requests information about doc-
uments in the surrounding neighborhood (i.e., within the lo-
cal clique) of an intermediate document. Having explored
the local neighborhood, the analyst identified two additional
documents that form a more meaningful connection and ex-
tends the original story. The two story fragments of Table 1
that were not directly found by the algoritm could be modi-
fied by the analyst to obtain more meaningful stories.

Related Literature

We organize related work in this space under various cate-
gories.

Relationships via associations: Jayadevaprakash et al.
(2005) advocate a transitive method to generate an associ-

ation graph to find relationships between non-cooccurring
text objects. The authors advocate the use of transitive meth-
ods because transitive methods do not require expensive
training by human experts. Similarly, our approach does
not require expensive training, but we situate our meth-
ods in a visual analytics setting with intelligence experts
providing active feedback in the discovery process. Vaka
and Mukhopadhyay (2009) describe a method to extract
transitive associations among diseases and herbs related to
Ayurveda. The method is based on a text-mining technique
designed for discovering transitive associations among bio-
logical objects. It uses a vocabulary discovery method from
a subset of PubMed corpora to associate herbs and diseases.
Thaicharoen (2009) aims to discover relational knowledge in
the form of frequent relational patterns and relational associ-
ation rules from disjoint sets of literature. Although the aim
of the research of Vaka and Mukhopadhyay and Thaicharoen
is somewhat similar to our objective, we focus on finding
connecting chains in an induced similarity network of docu-
ments rather than finding a chain of associations via external
knowledge.

Topic based hypotheses generation: Jin et al. (2007)
present a tool based on link analysis, and text mining
methodologies to detect links between two topics across two
individual documents. Srinivasan (2004) presents text min-
ing algorithms that are built within the framework estab-
lished by Swanson (1991). The algorithms generate ranked
term lists where the key terms represent novel relationships
between topics. Although we do not conduct explicit topic
modeling in our work, the requirement to impose clique
constraints in story construction essentially helps transduce
slowly between topics.

Classification and clustering for hypotheses genera-
tion: Glance et al. (2005) describe a system that gathers spe-
cific types of online content and delivers analytics based on
classification, natural language processing, and other mining
technologies in a marketing intelligence application. Faro et
al. (2009) propose a clustering method aimed at discovering
hidden relationships for hypothesis generation and suitable
for semi-interactive querying. Our method does not depend
on classification/clustering for information organization but
harnesses CBD structures in finding chains between docu-
ments of different clusters.

Connecting the dots: The “connecting the dots” problem
has appeared in the literature in different guises and for dif-
ferent applications: cellular networks (Brassard et al. 1980),
social networks (Faloutsos et al. 2004), image collections
(Heath et al. 2010), and document collections (Das-Neves et
al. 2005; Kumar et al. 2006; Shahaf and Guestrin 2010). Our
work explicitly harnesses CBD structures whereas many of
these works focused on contexts with weaker dispersion re-
quirements. For instance, the model proposed by Shahaf and
Guestrin (2010) explicitly requires a connecting thread of
commonality through all documents in a story.

Discussion
We have described a visual analytics system (AW) that
provides both exploratory and algorithmic support for an-
alysts in making connections. Privacy considerations pro-
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hibit us from describing the new applications that AW is
being used for but the experimental results demonstrate its
range of capabilities. Future work is geared toward more
mixed-initiative facilities for story generation and proba-
bilistic methods to accommodate richer forms of analyst’s
feedback. We are also working toward techniques to do au-
tomatic story summarization and concept map generation.
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