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Analysts face many steep challenges when performing sensemaking tasks on collections of textual 
information larger than can be reasonably analyzed without computational assistance. To scale up such 
sensemaking tasks, new methods are needed to interactively integrate human cognitive sensemaking 
activity with machine learning. Towards that goal, we offer a human-in-the-loop computational model 
that mirrors the human sensemaking process, and consists of foraging and synthesis sub-processes. We 
model the synthesis loop as an interactive spatial projection and the foraging loop as an interactive 
relevance ranking combined with topic modeling. We combine these two components of the sensemaking 
process using semantic interaction such that the human’s spatial synthesis actions are transformed into 
automated foraging and synthesis of new relevant information. Ultimately, the model’s ability to forage 
as a result of the analyst’s synthesis activities makes interacting with big text data easier and more 
efficient, thereby facilitating analysts’ sensemaking ability. We discuss the interaction design and theory 
behind our interactive sensemaking model. The model is embodied in a novel visual analytics prototype 
called Cosmos in which analysts synthesize structure within the larger corpus by directly interacting 
with a reduced-dimensionality space to express relationships on a subset of data. We then demonstrate 
how Cosmos supports sensemaking tasks with a realistic scenario that investigates the affect of natural 
disasters in Adelaide, Australia in September 2016 using a database of over 30,000 news articles.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The overarching goal of this work is to computationally aug-
ment human sensemaking capabilities in the context of big text 
analysis problems. For example, intelligence analysts must forage 
large collections of text for relevant information and synthesize 
a coherent story from fragments. Such sensemaking activities are 
modeled by Pirolli and Card’s “sensemaking loop” [1], which is 
composed of two primary, interconnected sub-loops: the foraging 
loop and the synthesis loop. Traditionally, much of this sensemak-
ing activity, especially synthesis, requires human cognitive intel-
ligence. However, to efficiently scale up sensemaking to big data, 
more semi-automated augmentation is needed. To support the hu-
man cognitive activity, it is important that the automation fits 
naturally into the human sensemaking workflow.

The sensemaking loop is a cognitive model. Thus, to sup-
port automation, one challenge is to concretize the sensemaking 
loop into a computationally-oriented model with formalized sub-
components. In this work, we formally model the synthesis loop 
as an interactive data structuring process, and the foraging loop as 
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an interactive relevance model driven by the result of the struc-
turing model. A related challenge is the high-dimensional nature 
of text data, which makes it difficult to support real-time, interac-
tive structuring methods. Our approach is to exploit topic modeling 
methods to reduce dimensionality between the foraging and the 
synthesis models.

Yet a further challenge in enabling this automation lies in the 
human-centered, interactive, and iterative nature of sensemaking. 
For example, in the “dual search” process [1] that connects syn-
thesis and foraging, analysts simultaneously identify hypotheses 
that synthesize the supporting evidence while also foraging for 
additional evidence for the hypotheses. Through iteration, analysts 
incrementally formalize [2] their hypotheses and arguments. To sup-
port this user-driven nature of the models, we exploit the princi-
ples of semantic interaction [3] to steer semi-supervised machine 
learning algorithms, updating the models based on learned user 
interest. Semantic interaction methods seek to learn users’ cogni-
tive sensemaking intents by observing their interactions, such as 
their interactive structuring activities in the synthesis loop. This 
enables analysts to stay focused on their familiar sensemaking pro-
cess rather than thinking about manipulating underlying statistical 
models. For our computational sensemaking model, this requires 
designing machine learning “inverses” [4,5] for the synthesis and 
foraging models that learn from user’s structuring and searching 
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Fig. 1. A computational representation of how the sensemaking loop can be supported for big text analytics, following the conventions for depicting semantic interaction by 
Dowling et al. [5]. This pipeline is annotated with variables from Table 1 to show the transformation of data throughout the pipeline, including the equations and algorithms 
we use in Cosmos.

Fig. 2. An overview of the Cosmos system. (A) Analysts use keyword search foraging with a text field to begin populating (B) the synthesis visualization of the foraged subset 
of documents. (C) Documents within the visualization are projected according to similarity to each other. To the right of this visualization, (D) a selected document’s text can 
be read in a scrolling panel. Just above, (E) the document’s relevance and label can be updated.
actions. To support high-dimensional text data, the topic model-
ing approach therefore also needs to interactively update based on 
semantic interactions.

To address these challenges, we designed a sensemaking com-
putational pipeline (summarized by Fig. 1), embodied in a novel 
visual analytics system for big text called Cosmos (Fig. 2). Specifi-
cally, our contributions are:

1. Computational modeling of the sensemaking loop using a se-
mantic interaction pipeline to connect synthesis models to for-
aging models. The pipeline makes use of a user interest model 
based on weights on document terms and topics, which are 
learned via semantic interaction feedback.

2. Modeling the synthesis process as an interactive dimension-
reduction spatialization in which users can express similarity 
relationships in collaboration with the user interest model.

3. Modeling the foraging process in two parts that collaborate 
with the user interest model:
(a) a document foraging process that filters documents (ac-

quired from a search engine) based on relevance to the 
user interest model,

(b) and a dynamic topic foraging process that reduces dimen-
sionality and updates in the presence of user interaction.

2. Related work

Our approach is designed from a synthesis of the following 
concepts from the literature and advances previous work in this 
area [3,5–9].
2.1. Information synthesis

A variety of visual analytics systems incorporate various synthe-
sis models, including network-based synthesis [10,11], entity pro-
file synthesis [12], spatial synthesis [13,14], and interactive clus-
tering [15]. We focus this discussion on spatial synthesis, in which 
space is used to represent the cognitive model of the analyst. This 
often takes the form of a “proximity ≈ similarity” visual metaphor, 
in which similar documents and data points are displayed near 
each other while dissimilar items are positioned at a distance.

Previous studies have shown that human analysts often make 
use of physical space to organize and synthesize text data [13,16,
17]. Such synthesis techniques have been implemented in a variety 
of systems. For example, Analyst’s Workspace [18] supports a man-
ual approach for spatial synthesis of documents, whereas Force-
SPIRE [3], StarSPIRE [6], and BigSPIRE [19] add computational sup-
port to assist with the spatial organization. However, these meth-
ods were based on heuristics. Building on lessons learned from 
these existing techniques, systems such as Andromeda [20], SIR-
IUS [9], and InterAxis [14] use a semi-supervised machine learning 
approach for spatial synthesis. We leverage a similar approach in 
Cosmos to enable the interactive positioning of documents within 
a visual display in a statistically valid and data-supported fashion.

2.2. Information foraging and retrieval

Many foraging models have also been developed for informa-
tion retrieval. These include techniques such as simple keyword 
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Table 1
A list of variables used throughout this paper and their descriptions. Variables that 
appear with a ′ indicate a change or update to that variable.

Variable Description

D Full set of documents in the corpus
q Set of documents returned by a query to D
� Set of relevant documents to add to the visualization; � ∈ q
d Set of documents to be visualized; � ∪ d = d′
c Set of low-dimensional coordinates for each di ∈ d
R A vector representation of relevances for all documents in q
T All terms in D
t Topics learned from d
M A d × T matrix that describes each di ∈ d in terms of each Ti ∈ T
m A d × t matrix that describes each di ∈ d in terms of its 

probability of belonging to each ti ∈ t
W A vector representation of weights on all terms in T
� A vector representation of weights on all topics in t

search foraging, creation of user interest models [6,21], data-based 
dynamic query expansion [22], query-by-example systems [23], 
and recommendation systems [24]. The foraging system used by 
Cosmos falls under the user interest model category. We take a 
“content-based filtering” approach, in which documents are as-
signed a score determined by profiles of the item in question and 
the analyst exploring the collection of all items [25]. Past work has 
shown that these user models can both broaden queries and help 
analysts to overcome bias in their foraging process [26].

2.3. Learning through interactive visual feedback

Both the synthesis and foraging processes described in the last 
two subsections can be learned incrementally through iterative 
user feedback as part of a human-in-the-loop [27] process. To 
achieve this incremental learning, semantic interactions [28] can 
be incorporated in visual analytics systems, emphasizing a contex-
tualized feedback loop between the system and the analyst. While 
methods implemented in past text analytics systems [3,6] make 
use of semantic interactions, the learning process implemented in 
those systems is heuristic. To scale up the benefits of semantic in-
teraction, more rigorous modeling is needed.

Visual analytics frameworks such as V2PI [29] and BaVA [30]
offer a potential solution to this modeling challenge. For example, 
Andromeda [20] enables analysts to interactively steer weighted 
multidimensional scaling (WMDS) projections of quantitative data. 
Analysts position a subset of the observations in the space to com-
municate desired similarity/dissimilarity relationships to the sys-
tem. Andromeda uses those positions to learn a distance metric 
that is applied to the full projection. This technique for manip-
ulating projections is referred to as observation-level interaction 
(OLI) [8,31] and is characterized by the learning step undertaken 
to generate the distance metric. In other words, the analyst’s intent 
is inferred from their interactions, leading to a learned parameter 
change in the system. This is in contrast to parametric interaction 
(PI), in which the analyst directly communicates a desired param-
eter change to the system [8]. In Cosmos, we adapt these methods 
to support text data.

3. Sensemaking pipeline for big text

The sensemaking loop described by Pirolli and Card is com-
prised of two main sub-loops: the foraging loop and the synthe-
sis loop [1]. Thus, we model the sensemaking loop by combining 
models for foraging and synthesis processes into a computational 
pipeline represented by Fig. 1. For reference, Table 1 describes fre-
quently used variables throughout this paper.
3.1. Synthesis Model

From the analyst’s perspective, the ultimate goal of sensemak-
ing with big text is to synthesize information to formulate and 
support a hypothesis. This places particular emphasis on the syn-
thesis loop, in which the analyst must explore relationships be-
tween documents and determine the relevance of information 
gathered. This is often accomplished by iteratively examining infor-
mation, organizing it, and returning to the foraging loop to gather 
more. This process may also include testing alternative hypotheses, 
or rejecting or refocusing the hypothesis as additional information 
is synthesized. Thus, the synthesis loop is accomplished iteratively 
over time, so a model of the synthesis process must support this 
continuous exploration and organization of information.

Specifically for text datasets, we propose that there are two 
main methods for synthesis: leveraging document relevance or 
using document similarity. Representing similarity spatially for 
sensemaking has proven to be intuitive and powerful in other vi-
sual analytics systems [6,7,14,20,9,27,32–34], including those with 
big text [19]. These methods for visualizing similarities also enable 
exploration of different similarity and dissimilarity relationships by 
manipulating a weight vector. Thus, we propose that the Synthesis 
Model should be a projection method that takes document-topic 
matrix m and topic weight vector � to produce coordinates c in 
the visualization. This concept can be represented by the equation 
c = S ynthesize(m, �). � thereby forms the first necessary compo-
nent of a user interest model that represents how interested the 
analyst is in each topic, with topics defined by another model in 
the pipeline.

3.2. Foraging models

The synthesis loop becomes difficult for analysts to perform 
when there is too much information for the analyst to organize 
manually all at once. This leads analysts to direct their attention 
to information highly relevant to their investigation first and then 
forage for additional, related information that is also relevant to 
the investigation to either support or refute their hypothesis.

The use of relevance to forage for additional documents re-
sulted in modeling one foraging component with a Document For-
aging Model. This model filters documents to ensure that only 
highly relevant documents are displayed, focusing synthesis on just 
the documents relevant to the investigation. Such filtering is rep-
resented by the equation R = DocRel(q). By applying thresholds, 
relevant documents, �, (and therefore visualized documents d′) 
can be determined.

In addition to foraging for specific documents, analysts may 
wish to forage based on a topic, ti . Indeed, analysts performing 
keyword search foraging often relate certain keywords with each 
other (e.g., synonyms or co-occurrences). Therefore, we argue that 
keyword search foraging is actually performed based upon topics 
of interest rather than one specific keyword. Additionally, using 
term-based representations of documents is problematic due to 
the sparsity of the data (i.e., the majority of terms do not occur 
across many documents), leading to documents being represented 
by a vector consisting primarily of zeros. This sparsity complicates 
the Synthesis Model, hindering its ability to scale to large datasets. 
Reducing the data to a “medium”-dimensional space by transform-
ing sets of terms into topics permits the Synthesis Model to run 
more efficiently, even as the number of documents visualized in-
creases.

To accomplish this translation of terms to topics, a Topic Forag-
ing Model is also necessary. This model is responsible for dynam-
ically detecting topics in the visualized documents based on the 
equation m, � = T opicF orage(M, W ). In other words, term weight 
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vector W forms the second necessary piece of the user interest 
model by capturing how interested the analyst is in each term.

Performing this topic foraging on only the visualized documents 
and not the entire dataset keeps the foraged topics closer to the 
analyst’s notion of which topics exist in the dataset. This is be-
cause the analyst only knows of the subset that has already been 
investigated. Another benefit is that which documents to forage 
can be based on a set of weights on terms rather than just on the 
single term that is queried. This can produce richer results from 
the Document Foraging Model for the Topic Foraging Model to uti-
lize, culminating in more relevant topics for the Synthesis Model 
to visualize. Using topic weights to reflect analyst interest in each 
topic results in a more accurate reflection of the analyst’s notion 
of document similarity. Thus, the results of these models produce 
a succinct yet accurate representation of relevant documents for 
the analyst to synthesize via a similarity-based projection.

3.3. User interest model

To support the sensemaking process, the foraging and synthe-
sis models must learn from the analyst’s interactions and respond 
according to their sensemaking activity. This learning means the 
analyst’s interest must be modeled (i.e., a user interest model). 
Closer inspection of the Foraging and Synthesis Models reveals an 
interesting feature: all three can be tied together using an inter-
est model that is centered on W and �. Alterations to W and �
can be accomplished by learning from user interactions. Following 
semantic interaction techniques, this learning can be accomplished 
by pairing each model’s computation that helps produce the vi-
sualization with an inverse computation. This inverse computation 
learns the analyst’s intent and updates the interest model appro-
priately. While this concept is more thoroughly discussed in [5], 
we note our use of a semantic interaction pipeline to represent 
our sensemaking pipeline in Fig. 1.

An example of this inversion is when an analyst drags docu-
ments within the projection to redefine their similarities/dissim-
ilarities. This interaction then triggers a learning process to de-
termine a new � that describes the analyst-defined layout. Thus, 
�′ = S ynthesize−1(c′, m). This supports analysts as their notion of 
similarity changes between investigations or throughout the course 
of a single investigation while their hypothesis becomes more re-
fined. Analysts could also perform a semantic interaction to assert 
a desired relevance for a selected document, Mi,∗ , as described by 
W ′ = DocRel−1(R ′

i, Mi,∗) for a user-specified relevance R ′
i . These 

interactions lead to the Document Foraging Model learning a new 
set of term weights that best mirrors the analyst’s interest.

These interactions could also be leveraged to perform seman-
tic interaction foraging, an automated foraging technique defined 
by Wenskovitch et al. [26] that queries for new documents on be-
half of the analyst. Which documents are foraged is based on the 
interest model (specifically the term weights derived from topic 
weights using W ′ = T opicF orage−1(m, �′)).1

As a result, these interaction techniques – namely, (1) dragging 
documents within the projection to express synthesized relation-
ships, or (2) adjusting the relevance rating of documents to express 
foraging feedback – provided through the synthesis and foraging 
models provide a natural interface to large-scale text data. By dis-
playing documents highly relevant to the analyst’s investigation, 
we avoid overwhelming the analyst. By using semantic interaction 
foraging, we learn which documents may also be relevant to the 
analyst and automatically add them into the visualization to fur-
ther assist in synthesizing information.

1 Note that M is not part of T opicF orage−1 since which terms appear in which 
documents never changes, meaning it is not necessary to include M in this inverse 
equation.
4. Example prototype

4.1. Design goals

In developing our sensemaking prototype for big text, we note 
a number of high-level design goals, with design choices relating 
to each model described in the next subsections. The primary de-
sign goal is to provide a simple prototype interface that naturally 
reflects the analyst’s sensemaking process. The emphasis on a sim-
ple prototype means that Cosmos is meant to demonstrate how 
the different models of the pipeline support sensemaking activities 
as opposed to being a fully-functional system ready for thorough 
usability evaluation.

A related goal providing an intuitive interface, implying the an-
alyst should not require knowledge of underlying algorithms to 
interact with the interface. Accomplishing this goal enables the an-
alyst to remain focused on their synthesis processes rather than 
trying to learn the mathematical underpinnings for this specific 
system [3,13,27]. The tradeoff in achieving this goal is that details 
of the mathematical algorithms or user interest model will be hid-
den; there is no method for analysts to directly access this kind of 
information, including W and �. If the analyst feels that the vi-
sualization has missing documents or an inaccurate representation 
(i.e., an inaccurate W or �), then they must use one of Cosmos’s 
interactions to rectify the situation.

Another goal is helping analysts focus on synthesis tasks as this 
is the part of the sensemaking process that they particularly excel 
in. To support such synthesis tasks, a similarity-based projection of 
documents produced by the Synthesis Model dominates the visu-
alization. While a text field is also provided for notes on a single 
document in further support of goal, analysts may draw various 
relationships between documents and want to externalize them in 
a report. Such relationships include content similarity, when they 
occur relative to each other, coverage of a topic, and others [6,
17]. Rather than attempting to support all possibilities in this final 
phase of the sensemaking process, we focus on demonstrating how 
a simple prototype of our pipeline supports sensemaking tasks 
with big text, allowing analysts to use external mediums (e.g., 
word processors, hand-written notes, flow charts, etc.) for report 
writing activities. Specifically, we focus on synthesizing by spatially 
organizing document nodes in a 2D space. However, our prototype 
can easily be augmented to support other forms of synthesis for 
report writing activities, as discussed in Section 6.

4.2. Interface and interactions

In order to accomplish the aforementioned design goals along-
side supporting the necessary components implied in the pipeline 
itself, we developed the web-based visualization depicted in Fig. 2. 
A similarity-based projection of the documents is the dominating 
component of the visualization (Fig. 2-B), which reflects the sys-
tem’s focus in supporting the analyst’s synthesis processes. Here, 
we project each document di ∈ d such that more similar docu-
ments are projected closer together and dissimilar documents far-
ther apart (Fig. 2-C). In recognition of the fact that analysts may 
also wish to leverage document relevance, we map the relevance, 
Ri , of each di to the radius of the document’s corresponding node 
in the projection. To the right of this projection, detailed infor-
mation is provided for a single selected document, including the 
document label, its calculated relevance, and the document’s con-
tents (Fig. 2-D & E). A text field is also provided for the analyst to 
externalize notes on a selected document. Both the field to view 
the document’s contents and to take notes scroll to fit their con-
tents, allowing these fields to take up a fixed amount of space in 
the visualization while still scaling to varying amounts of text.
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Table 2
A list of additional variables used to describe the algorithms 
in our prototype implementation and their time complexities.

Variable Description

N The total number of documents in D or |D|
n The total number of documents in d or |d|
P The total number of terms in T or |T |
k The total number of topics in t or |t|

Within Cosmos, a number of interactions are afforded. Follow-
ing interactions to alter the similarity-based projection, document 
nodes smoothly transition from one location to another, with new 
nodes appearing in one corner of the projection and transition-
ing to their specified location. The simplest interaction is keyword 
search foraging, which is enabled through a search box above the 
document projection (Fig. 2-A) and results in a higher weight for 
that term in W . Then, new topics, t , and their weights, � are 
then learned, causing the projection to update. The corresponding 
document node can also be clicked, causing the document’s label, 
relevance value, contents, and notes to populate the area to the 
right of the projection (Fig. 2-D & E).

Three semantic interactions are also afforded, which are en-
abled by learning new term weights, W , followed by calculating 
new topic weights, �, to update the projection. The first is to 
delete a node from the projection by clicking the “Delete Node” 
button below these fields. This decreases the term weight, W i , for 
each term in that document. Two semantic interactions trigger au-
tomated foraging: OLI and manipulating the relevance slider. OLI 
always triggers semantic interaction foraging, but foraging after 
manipulating the relevance slider is conditional. When the rele-
vance slider is increased, this is interpreted as analyst interest in 
the given document, implying a wish to see additional similar doc-
uments. In contrast, decreasing the relevance slider, like deleting 
a document node, only informs the system of what the analyst 
is not interested in, and does not provide enough information for 
what the analyst is interested in to perform such foraging. How our 
prototype enables these interactions is described in the remaining 
subsections, with additional variables described in Table 2.

4.3. The Synthesis Model

To develop our Synthesis Model, we drew inspiration from in-
teractive dimension reduction systems like Andromeda [20], SIR-
IUS [9], and InterAxis [14] to support synthesis as an interac-
tive process performed within a similarity-based projection of a 
small set of documents using WMDS [35]. We chose WMDS due 
to its ability to enable analysts to express their synthesis pro-
cess through manipulation of document proximities to reflect their 
perceived similarity. Also, WMDS supports a variety of similarity 
metrics in both high- and low-dimensional space. Thus, WMDS 
enables us to fulfill the goals of the Synthesis Model while af-
fording us the flexibility to define the high-dimensional similarity, 
distH , as a weighted Euclidean similarity and the low-dimensional-
similarity, distL , as the projected Euclidean similarity. Equation (1)
reflects this, where each document is represented as a single row 
of m, or mi,∗ . Using an iterative implementation results in a time 
complexity of O (n2k) per iteration.

c = arg min
c1,...,cn

n−1∑
i=1

n∑
j>i

(
distL(ci, c j) − distH (�,mi,∗,m j,∗)

)2 (1)

We enable analysts to change these topic weights through OLI 
to denote the perceived similarity/dissimilarity between them. The 
Synthesis Model can then learn new topic weights (i.e., amount of 
interest) using the following equation:
�′ = arg min
�′

1,...,�′
k

n−1∑
i=1

n∑
j>i

(
distL(c′

i, c′
j) − distH (�′,mi,∗,m j,∗)

)2
(2)

Note that this equation effectively inverts Equation (1). This in-
version is achieved via gradient-based iterative minimization. As 
the objective’s derivative takes O (n2k) operations to evaluate, and 
must be evaluated for each of k variables to optimize, the time 
complexity of this algorithm is O (n2k2).

After learning new term weights from these topic weights the 
term weights can be leveraged to perform semantic interaction 
foraging [26], thereby automatically revealing additional relevant 
information after OLI. Further details on how we accomplish se-
mantic interaction foraging in our prototype are provided in Sec-
tion 4.4 and Section 4.5, with an example provided in Section 5.2.

4.4. The Document Foraging Model

In addition to traditional keyword search foraging, our Doc-
ument Foraging Model enables semantic interaction foraging to 
automatically bring additional, relevant documents into the visu-
alization after semantic interactions like OLI. To create this model, 
we drew inspiration from StarSPIRE [6], which uses a simple yet ef-
fective calculation for document relevances combined with thresh-
olds to determine which of the foraged documents to display in 
the projection [26].

In our implementation, all foraging is accomplished through 
queries to an Elasticsearch database [36]. Each query to the 
database has a time complexity of O (1) since the documents 
within the database are indexed and hashed. After receiving the 
query results, the model then determines the top 10 documents 
that are above a fixed relevance value.2 This ensures that only 
highly-relevant documents are displayed while also guaranteeing 
that the analyst will not be overwhelmed by too many documents 
appearing at once. Thus, the analyst is provided with a simple yet 
effective interface to large scales of text data.

Our relevance computation represents each document as a vec-
tor of TF-IDF values, which effectively represents the document 
data as a Bag of Words or Vector Space Model [37]. These TF-IDF 
values combined with term weights leads to the following equa-
tion to compute the relevance of a single document, represented 
as a single row of document-topic matrix M or Mi,∗:

Ri = MT
i,∗W . (3)

Initially, these term weights are set to 1, and they update to reflect 
their level of importance to the analyst’s investigation. Since this 
process is repeated for each document, the time complexity of this 
computation is O (nP ).

To support the semantic interaction of manipulating the rele-
vance slider, we must determine how to calculate the specified 
relevance value, R ′

i for a given document. This necessitates an 
inverse computation to determine new term weights to produce 
R ′

i . The following equation performs this computation, where Mi,∗
represents a single row of document-topic matrix M:

W ′ = W + Mi,∗
(Ri − R ′

i)

MT
i,∗Mi,∗

(4)

This equation rescales term weight vector W by another vector 
proportional to the document’s TF-IDF values, Mi,∗ , whose rele-
vance is being changed from Ri to R ′

i . The time complexity of our 
implementation of DocRel−1 is O (P ).

2 These thresholds were based on our particular use case (described in Section 5) 
For other use cases, altering the thresholds may forage greater/fewer new docu-
ments at each iteration.
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Fig. 3. A depiction of how the interaction with the relevance slider in Cosmos works. After a query for a person’s name, (A) 5 documents appear in Cosmos. One of these 
documents (cia11) seems particularly relevant to the analyst’s investigation. After increasing the relevance of this document using the slider, (B) new documents related to 
the document the analyst interacted with appear using semantic interaction foraging. The node sizes and positions in document projection are also updated based on this 
interaction.
With the new term weights, automated foraging is performed, 
followed by recalculating the relevance for all displayed documents 
using Equation (3). After learning new topics via Algorithm 1, the 
document projection updates via Equation (1). Thus, manipulation 
of the relevance slider triggers semantic interaction foraging en-
abled by the Document Foraging Model learning which terms are 
most important to the analyst’s investigation. An example of this 
interaction is depicted in Fig. 3. Semantic interaction foraging af-
ter OLI is similarly handled by the Document Foraging Model once 
the Topic Foraging Model translates topic weights to term weights, 
as described in the next subsection.

Algorithm 1 Generative Model for LDA.
1: for i = 1 : k do
2: ti ∼ Dirichlet(η)

3: for i = 1 : n do
4: mi,∗ ∼ Dirichlet(α)

5: for j = 1 : Ni do
6: zi, j ∼ Multinomial(mi,∗)
7: Mi, j ∼ Multinomial(tzi, j )

4.5. The Topic Foraging Model

To transform a term-based representation of documents into 
a topic-based representation usable to the Synthesis Model, our 
Topic Foraging Model produces a vector of probabilities that mir-
ror the prevalence of each topic in each document. This requires 
learning which terms belong to which topics, expressed as a prob-
ability distribution across terms. Given the terms that appear in 
each document, inferences can be made on the topic probabilities 
of that document.

We generate this topic-based representation of documents us-
ing Latent Dirichlet Allocation (LDA) [38]. We chose LDA because 
it enables us to represent the prevalence of topics within each 
document, which provides more fine-grained information to the 
Synthesis Model. Specifically, we use a weighted modification of 
the uncollapsed variational algorithm presented by Blei et al. [38]
which has a time complexity of O (nkP ) per iteration. We fix the 
number of topics, k, to 5 for the purposes of our prototype.3 The 
generative model for the topics and document contents is shown 
in Algorithm 1. Each topic, represented as a simplex valued vari-
able, is denoted as ti . We denote the vector containing document 

3 In general, choosing the number of topics is a challenging task and an open 
research problem (e.g., [39]). Given research suggesting people have difficulty think-
ing in more than 2–3 dimensions simultaneously [4], we chose a smaller k to mirror 
the analyst’s perception.
lengths as N , and zi, j a latent variable indicating which topic the 
j’th word of document i references. The proportion of each topic 
in document di , also simplex valued, is denoted by mi,∗ . ti and 
mi,∗ are each endowed with Dirichlet prior distributions with ex-
changeable concentration using parameters η and α respectively, 
which represent the number of times each word or topic reference 
was observed a priori. Once estimated, the mi,∗ for each document 
is passed to the Synthesis Model to use in projecting the docu-
ments in Cosmos.

These topics are also given weights to use in the Synthesis 
Model to denote the analyst’s levels of interest across the different 
topics. Initially, these weights are set to 1. However, our foraging 
technique necessitates weights on terms rather than on topics. In 
such cases where new term weights, W ′ , must be learned from 
topic weights, �, we use the following formula:

W ′
i = t′

i� (5)

Repeating this equation for each W ′
i transfers importance to words 

which have a higher probability in topics with a time complexity 
of O (Pk).

5. Use case scenario

This example demonstrates using Cosmos in a realistic scenario 
to accomplish a sensemaking task, showing how the synthesis 
and foraging models interact jointly to accomplish an analytical 
goal. The scenario centers on a dataset of over 30,000 documents, 
primarily consisting of news articles of varying lengths. These 
documents were obtained from LexisNexis [40] using a keyword 
search on “adelaide” to create the foundation of a scenario fo-
cused on the worst series of storms that hit South Australia in 
50 years [41]. These storms occurred on 28 September 2016. Addi-
tionally, 30 hand-picked articles specifically related to the storms 
were added to the dataset and assigned IDs less than 30.

In response to reports of tornadoes and severe weather, the 
United States plans to send humanitarian assistance to Adelaide, 
Australia [42]. A hypothetical analyst must assess the impact of 
these storms from the dataset and determine the level of sup-
port needed. This example analysis took 75 minutes to complete, 
including reading 20 documents that averaged 700 words. Given 
the average response time for interactions was 1–2 seconds, with 
the longest interaction taking 4 seconds (still well within inter-
active rates), this means that the analyst’s time was focused on 
reading and synthesizing the information within the documents. 
Thus, through using the interactive similarity-based projection of 
documents in Cosmos, the analyst was able to successfully focus 
on their synthesis-related tasks to investigate the given scenario 
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Fig. 4. After searching “tornado,” Cosmos (A) visualizes foraged documents. The analyst (B) uses OLI to express perceived similarities/dissimilarities between documents, 
resulting in (C) an updated projection, including new documents from semantic interaction foraging. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
without needing to learn or directly interact with the underlying 
algorithms. However, it is important to note that a different ana-
lyst may take a different approach in the investigation, leading to a 
different set of initial insights regarding the impact of the storms.

5.1. Initiating the investigation

To begin the investigation, the analyst queries documents us-
ing the search term “tornado”. Ten foraged documents then pop-
ulate the document projection (Fig. 4-A). Three of the documents 
(181411, 18530, and 4835) reference previous storms. One docu-
ment (720) is about a sports team called the “Tornadoes.” Another 
document (6231) references a person named “Adelaide” and is 
clearly unrelated to the storms. Two other documents (29108 and 
27575) mention the storm but do not focus on it. The final three 
documents (29, 25, and 5) are all planted documents related di-
rectly to the storm.

5.2. User-driven synthesis modeling using OLI

The analyst begins to form an initial mental model about the 
storms, focusing on how some discuss previous storms and others 
describe the recent storms of interest. To clarify this distinction, 
the analyst uses OLI to express these perceived similarities/dissim-
ilarities between the documents. This is accomplished by moving 
the document nodes related to the recent storm (25 and 29) to-
gether in one corner (Fig. 4-B-1) and a document node referencing 
previous storms (1814) in an opposing corner (Fig. 4-B-2). The 
analyst then clicks “Update Layout,” which triggers the Synthe-
sis Model to learn which topics in the dataset best reflect these 
similarities/dissimilarities. After the Topic Foraging Model learns
new terms weights, the Document Foraging Model uses these term 
weights to automatically forage for new documents to add to the 
visualization.

Note that through the analyst’s interpretation of the visualiza-
tion and the subsequent OLI, the analyst was able to focus on their 
synthesis task and also express the results of their synthesis to 
the system. In response, semantic interaction foraging occurred, 
meaning that the analyst did not have to switch their cognitive 
focus to foraging tasks to continue synthesizing information. Ad-
ditionally, the analyst did not require any knowledge of the un-
derlying algorithms in order to perform this interaction; the ana-
lyst only needed to understand the “proximity ≈ similarity” visual 
metaphor of the similarity-based projection.

5.3. Exploring foraged and synthesized documents

The resulting document projection (Fig. 4-C) includes nine new 
documents from the semantic interaction foraging triggered by OLI. 
Documents related to the storm are in the red (rightmost) group. 
The unrelated documents in the blue group are farthest from the 
red group. The historical storm documents in the black group are 
slightly closer but still separate. All newly foraged documents were 
related to the storm due to the Document Foraging Model’s abil-
ity to identify their relevance from the OLI made by the analyst. 
The visual structure created by the Similarity Model reinforces the 
analyst’s mental model about how these documents relate to each 
other and helps in quickly sorting through the newly added docu-
ments (which were placed in the red and green groups).

The analyst now explores the new documents in the important 
red group and the nearby (and therefore similar) green group. The 
analyst reads one of the newly foraged document nodes (26433) 
from the green group and finds out that the storms have caused 
statewide power outages (Fig. 5-Left). Based on this, the analyst 
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Fig. 5. The contents of foraged documents in Cosmos that reveal how the storms have impacted Adelaide and surrounding areas.
determines that disaster relief will need to consider massive power 
outages in addition to assistance for the physical damage that the 
storm has caused. Since this document does not directly reference 
tornadoes, this insight was possible due to semantic interaction 
foraging triggered by OLI.

Following this insight, investigating another document in the 
same group (26425) reveals areas north of Adelaide also with-
out power and experiencing extensive flooding (Fig. 5-Right). Thus, 
relief efforts must also consider flood-related issues (e.g., people 
trapped in houses). Note this document is not directly focused on 
the storm and would likely not be found by reading storm reports. 
Continuing to read and interact with documents to gain additional 
insights can lead semantic interaction foraging to quickly uncover 
other relevant information.

6. Discussion

Cosmos provides a foundation for future research in sensemak-
ing for big text. As shown in Section 5, our prototype enables 
analysts to investigate large sets of documents and begin to quickly 
draw conclusions from them. Our multi-model approach to forage 
for documents and allow analysts to synthesize this information is 
at the core of our approach. We next discuss some limitations of 
the Cosmos system and describe future work to resolve the issues 
we uncovered.

Firstly, we recognize that the concepts we chose to model (as 
represented in Fig. 1) may not be optimal. For example, there may 
be other concepts that better reflect an analyst’s notion of syn-
thesis than similarity-based methods. Alternatively, perhaps more 
models are needed to properly capture the complexity of the for-
aging and synthesis processes. These types of alternatives warrant 
further investigation (perhaps through comparative user studies) 
regarding the tradeoffs in different computational models and vi-
sualizations and whether they accurately embody components of 
the sensemaking loop.

We also note several limitations to our Cosmos prototype. Be-
ginning with the visualizations, the time complexities of WMDS 
(Equation (1)) and its inverse (Equation (2)) limit the number of 
documents that can be efficiently projected into the display and 
interacted upon. We are already researching optimizations of both 
of these equations to permit visualization and interaction on even 
larger sets of documents. Similarly, we recognize that altering the 
relevance threshold would impact the documents added to the vi-
sualization. We plan to reformulate the Document Foraging Model 
to enable variable relevance thresholds, allowing the analyst to 
control how many documents should be foraged and the density 
of the projection. This can be accomplished via direct user input 
(e.g., slider bars) or by developing new semantic interactions that 
learn these parameters.

Additionally, our implementations of each model were based on 
our previous research [5,6,9,20,26] as well as algorithm common-
ality, simplicity, and flexibility. We acknowledge that alternative 
methods for implementing the same model components exist (e.g., 
using weighted or otherwise interactive variants of t-SNE [33], 
PCA [43], LAMP [34], or other similarity-based methods in place 
of WMDS; Rocchio [44] or PageRank [45] can replace our rele-
vance calculations; and LSA [46] or clustering algorithms could 
be leveraged as alternatives to LDA). Each alternative method im-
plies different tradeoffs in the visualization and/or interactions. For 
example, we chose WMDS because it provides a “proximity ≈ sim-
ilarity” visual metaphor, which matches how analysts naturally or-
ganize information [17]. However, the resulting projection is non-
deterministic, meaning changes in the projected pairwise distances 
may not accurately reflect changes in the user interest model, and 
the projection can rotate between states. Thus, while these changes 
are not meaningful, the analyst may mistake them to be. These 
issues can be solved by further improving our current WMDS im-
plementation or experimenting with other projection methods.

We can address these limitations regarding how we imple-
mented Cosmos by performing user studies using an iteration of 
Cosmos as described in this paper against alternative versions. 
These other versions would implement existing concepts in dif-
ferent manners (e.g., using other similarity-based projections), per-
haps drawing inspiration from other systems that support synthe-
sis or foraging models (e.g., TIARA [47]). Such user studies would 
be immensely informative for future visual analytics systems for 
big text by helping researchers understand the tradeoffs implied 
by different modeling and implementation methodologies.
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So far, we have focused on supporting spatial structuring forms 
of synthesis. An interesting future opportunity is to explore an-
other form of synthesis that is incorporated in the final step of 
the sensemaking loop: report writing. In this final step, the analyst 
must synthesize all relevant text into a narrative. Such a narra-
tive may involve a number of relationships between documents, as 
indicated in Section 4.1. Thus, to support externalizing such a nar-
rative, Cosmos should be extended to incorporate additional visual 
components or interactions.

Other extensions to Cosmos include enabling analysts to see 
and interact with the top terms in the top topics or the top terms 
among the visualized documents. Such interactions may enable 
manipulation of the term or topic weights from the Topic Forag-
ing Model more directly. Alternatively, the document projection 
can be augmented with information such as uncertainty in the 
projection resulting from Equation (1). This may help mitigate the 
aforementioned issue of analysts misunderstanding changes to the 
projection. Interaction in such a projection can allow the analyst 
to express uncertainty, providing additional feedback for under-
lying algorithms to learn from. Cosmos could also be augmented 
with geographical component of the user interest model, which 
the analyst can interact with via a map visualization. Finally, Cos-
mos might also be extended with a collaborative mode, allowing 
multiple analysts to interact with the same data. Such collabora-
tions may help analysts reach conclusions faster, result in higher 
confidence in the results, or assist in disseminating the informa-
tion learned.

7. Conclusion

This paper introduced a new computational model of the hu-
man sensemaking process to enable systems that support interac-
tive big text analytics. This model takes the form of a pipeline, 
which is comprised of a series of smaller computational mod-
els (namely, a Document Foraging Model, Topic Foraging Model, 
and Synthesis Model) that mirror the foraging and synthesis loops 
within the sensemaking loop [1]. By leveraging a user interest 
model, these computational models are connected and interactive, 
allowing the analyst to iteratively investigate the dataset and dy-
namically refine their investigation. We demonstrated a prototyped 
implementation of these models through Cosmos, a new visual an-
alytics system for big text data. We described the mathematics and 
functionality of each implemented model in detail, and demon-
strated how they support the exploration of a 30,000 document 
collection in a realistic use case.
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