Bandlimited OLAP Cubes for Interactive Big Data Visualization

Caleb Reach*

Chris North?

Virginia Tech

ABSTRACT

Visualizations backed by data cubes can scale to massive datasets
while remaining interactive. However, the use of data cubes intro-
duces artifacts, causing these visualizations to appear noisy at best
and deceptive at worst. Moreover, data cubes highly constrain the
space of possible visualizations. For example, a histogram backed
by a data cube is constrained to have a bin width that is a multiple
of the data cube bin size. Similarly, for dynamic queries backed
by data cubes, query extents must be aligned with bin boundaries.
We present bandlimited OLAP (online analytical processing) cubes
(BLOCs), a technique that uses established tools from digital sig-
nal processing to generate interactive visualizations of very large
datasets. Based on kernel density plots and Gaussian filtering,
BLOC:s suppress the artifacts that occur in data cubes and allow for
a continuous range of zoom/pan positions and continuous dynamic
queries.

1 INTRODUCTION

Interactive visualization tools that render visualizations by iterating
over each point in the dataset cannot handle large datasets, as this
iteration becomes prohibitively expensive. This problem may be
addressed by choosing a small random sample of the dataset for
visualization purposes; however, such a sample may omit important
outliers. For example, an event that occurs once every 10,000 data
points will likely be missed in a 1000 point random sample.

Data cubes address the interactive big data visualization problem
by binning all data points in a preprocessing step in which each
point in the dataset is assigned to a bin based on the values of one
or more attributes. This mapping between attribute values and bins
depends on the the resolution of the data cube, which is inversely
proportional to the size of the bins. A high resolution data cube with
small bin sizes can answer more precise queries and produce more
precise visualizations than a low resolution data cube with large bin
sizes. Resolution is task-dependent and is often chosen by hand.

A key advantage of data cubes is that their storage requirements
depend on their resolution rather than on the size of the source
dataset, and once constructed, a data cube can be used to quickly
answer visualization queries. For example, ImMens [16] demon-
strates that data cubes can allow a modern laptop to interactively
visualize one billion points at interactive rates.

However, data cubes are a fundamentally discrete representation
of a dataset, and as such, they constrain the space of possible visual-
izations to discrete forms such as histograms and binned heatmaps.
Such discretization introduces distracting, and potentially decep-
tive, aliasing artifacts [18]. Aliasing in visualization may be clas-
sified into two categories: spatial aliasing, which occurs when his-
togram or heatmap bins appear to indicate patterns that do not exist,
and temporal aliasing, which occurs when an interactive or anima-
tion visualization misrepresents patterns in the source dataset.

*e-mail: caleb.reach@vt.edu
fe-mail: north@cs.vt.edu

IEEE Symposium on Large Data Analysis and Visualization 2015
October 25-30, Chicago, I, USA
978-1-4673-8517-6/15/$31.00 ©2015 IEEE

For example, Figure 1 shows a simple sales dataset that exhibits
aliasing artifacts when visualized with a monthly histogram. When
the frequency of data cube binning does not appropriately match the
frequency of patterns in the dataset, spurious aliased frequency pat-
terns emerge. Since most datasets contain complex patterns, they
will exhibit aliasing artifacts when visualized with a histogram re-
gardless of bin width. Data cubes cannot be used to generate more
natural continuous representations, such as kernel density estima-
tion plots, that would more faithfully represent the distribution.

Further, interactive navigation and dynamic querying of the data
is critical to enabling exploration of big data, but data cubes limit
interaction to the pre-computed discrete boundaries. For example,
the bin width and bin positions of the data cube constrain the bin
width of positions of the histogram. While multiple data cubes
at different resolutions can enable simple discrete zooming, data
cubes cannot provide smooth continuous zooming and navigation
without further amplified aliasing. Likewise, when a data cube is
used to implement dynamic queries or brushing, the query or brush
must be box-shaped and positioned only on bin boundaries. This
results in significant temporal aliasing when dragging a brush or
query widget.

Although Lagrange interpolation can be used to draw a smooth
curve passing through histogram bins or to provide values for in-
between brush positions, these in-between values don’t have a sim-
ple, intuitive meaning in terms of the source dataset, as aliasing has
already been baked into the binning. Lagrange interpolation acts as
a anti-imaging lowpass filter [20], but it does not remove the alias-
ing introduced by binning.

To address these problems, we introduce a new approach that
applies well-established signal processing techniques to informa-
tion visualization. We avoid aliasing by filtering before binning the
dataset, and we allow continuous visualizations using the concept
of bandlimited interpolation. Our contributions are as follows:

1. We introduce Bandlimited OLAP Cubes (BLOCs), a tech-
nique for generating artifact-free interactive visualizations of
large datasets. Visualizations backed by BLOCs can support
brushing, dynamic querying, and zooming in realtime (60
FPS). Our technique allows continuous brush positions and
continous zooming.

2. We show that the assymetry between brush resolution and
graphic resolution can be exploited to reduce data cube stor-
age requirements.

BLOCs have two primary advantages over data cubes due to their
use of more advanced signal processing theory. First, BLOCs sup-
press aliasing, providing more accurate visualizations. Secondly,
BLOCs support continuous interaction. While the storage require-
ments for BLOCs are similar to the storage requirements for data
cubes, BLOCs support an infinite number of in-between zoom lev-
els and in-between brush positions.

2 BANDLIMITED DATA CUBES

BLOC:s are based heavily on digital signal processing techniques.
We first review some of these techniques.

107

108

2.1 Background

The Fourier transform decomposes a signal into complex sinusoids.
More precisely, the Fourier transform maps a signal x(¢) from the
time domain to a complex-valued signal X (@) in the frequency do-
main. For real-valued x(¢), the corresponding frequency-domain
signal has the property that each negative frequency is the com-
plex conjugate of the corresponding positive frequency. Because
the negative frequencies add no new information, X (®) is often
treated as containing positive frequencies only.

For a periodic signal, the sinusoids into which the time-domain
signal is decomposed are harmonically related such that the fre-
quency of each sinusoid is a multiple of the fundamental frequency
(the frequency corresponding to the period of the signal). Since
a finite-length signal can be encoded as a periodic signal, a finite-
length signal can be decomposed into a sum of harmonically-related
sinusoids.

The Nyquist—Shannon sampling theorem states that a signal con-
taining no frequencies higher than f;, is uniquely determined by a
sampling at sampling rate f; = 2f,. The frequency f, = f5/2 is
known as the Nyquist frequency. If X(®) is compactly supported
(i.e. is zero outside of some bounded interval) then the signal is
said to be bandlimited. A finite-length discrete (sampled) bandlim-
ited time-domain signal can thus be represented as a finite-length
discrete complex frequency-domain signal.

The Dirac delta function' §(f) can be seen as the derivative of
the unit step function or as the Gaussian probability density func-
tion in the limit as the standard deviation goes to zero. In the fre-
quency domain, the Dirac delta contains all frequencies with equal
magnitude.

An impulse train (also known as a Dirac comb) is a signal that
contains equally spaced Dirac deltas. The spacing of the Dirac
deltas is the period T of the impulse train, and the train is infinitely
long in both directions. The Fourier transform of an impulse train
is an impulse train with the reciprocal period 1/7. The sampling
of a continuous signal is often modeled as time-domain multipli-
cation with an impulse train. This model shows why aliasing oc-
curs: multiplication in the time domain corresponds to convolution
in the frequency domain, and convolving a signal with an impulse
train results in equally spaced copies of the signal. When the signal
has not been appropriately bandlimited, the copies overlap, causing
aliasing.

Guassian filters (which are used for blurring in image process-
ing) are filters with a Gaussian impulse response (called a kernel in
image processing). Interestingly, the frequency response of a Gaus-
sian filter is also Gaussian. Since the Gaussian function approaches
zero rapidly outside its central lobe, it can be regarded as approx-
imately finite length and approximately bandlimited and can thus
be very closely approximated by a discrete finite impulse response
(FIR) filter. Because a Gaussian kernel is symmetric, multiplica-
tions can be reduced by half in a direct implementation of the filter.
For example, a zero-phase Gaussian filter can be implemented as

k
y[n] = apx[n] + ; aij(x[n+i]+x[n—1]),

i=1

where x[n] is the input signal, ag is the center coefficient of the filter,
and ay,ay,...,a; are the filter coefficients to the right of the center
coefficient.

Since the convolution of two Gaussian functions is a Gaussian
function [3], the effect of two Gaussian filters in serial can be pro-
duced by a single Gaussian filter. The variance of the resultant
Gaussian is the sum of the variances of the source Gaussians. Thus

! Although the Dirac delta is technically not a function, it is often treated
as one in engineering contexts.

the standard deviation o of the resultant Gaussian is given by

o.=\/02+0}

where 0, and o}, are the standard deviations of the serial Gaussian
filters.

The B-Spline kernels are given by successive convolutions of
the boxcar function. The polynomial bandlimited impulse train al-
gorithm (polyBLIT) [17] uses B-Spline interpolators to generate
bandlimited impulse trains, and we use the same technique to per-
form bandlimited binning. The first several kernels are repeated
here. The zeroth-order kernel by is simply the box kernel. The next
kernel, by, is the triangle kernel. The next kernel is

2

1 (t 3 3 t 1

z(fﬁi) 23S <73

§_<L) _ler o1
by(t) =4 * T, , 1S <3

1 (t 3 1 t 3

E(T,*i) 157 <2

0 otherwise

where T is the sampling period. We use the third-order B-Spline
kernel for binning and interpolation, which is given as

(2+%> 2< b <1
2
1 4—3(%) 2+%) 1< £ <0
bi(t) = ¢ 4+3<L72) L)z 0< i<l
6 T, : =T
3
- (%) 1<t<2
0 otherwise

The B-Spline kernels approach the Gaussian in the limit as the order
goes to infinity. Convolving a low-order B-Spline kernel with a
Gaussian gives a very accurate approximation of the Gaussian.

2.2 Method

Our goal is to visualize and interact with a dataset in a flexible man-
ner that does not introduce aliasing artifacts. BLOCs are a very gen-
eral technique in support of this goal. A BLOC is the data structure
constructed by any technique that satisfies the following:

1. The technique begins with a dataset signal, which is an in-
finitely precise and perfectly overfitted density function that
will be formally defined later in this section.

2. The technique filters this dataset signal to bandlimit it and pre-
vent aliasing.

3. The technique samples and stores this bandlimited signal.

4. The technique responds to queries using this sampled signal,
filtering it to avoid imaging.

BLOC:s can be used to implement kernel density estimation, kernel
smoothing, brushing, and dynamic queries, provided that the kernel
used in all cases is bandlimited. Although BLOCs as thus defined
are very general, we also introduce a specific BLOC-based tech-
nique in this paper to motivate the use of BLOCs and to begin to
explore the BLOC design space.

Our goal for this specific technique is to produce a visualiza-
tion of a dataset that suppresses spatial aliasing and allows dynamic
querying in a way that suppresses temporal aliasing. Histograms
exhibit severe aliasing artifacts and therefore cannot be used to sat-
isfy this goal. However, kernel density plots do suppress spatial

- <
Ik :
8- E
7- E
0- =
2= 2
3- 3
[o
3 5
0-

10 - 2

92 =
g - E
g

4- ®

5_ g

T,

0-

10 -

92

7- =

0~ E

J (<]

1- o

2014 2015 2016 2017 2018 2019
Date

Figure 1: Histograms compared to kernel plots. The input is a very
simple synthetic sales dataset that contains one sale per weekday
and no sales on the weekends. The histograms show a deceptive
20% variation in monthly sales, even though the sales pattern for
each week is identical. This variation exhists regardless of whether
bins are month-aligned or 30 days wide. The kernel plot accurately
shows that the sales pattern is constant at the monthly level.

aliasing when an appropriate kernel is used. Our technique uses the
Gaussian kernel, which offers excellent alias suppression.

For dynamic queries, a commonly used scheme is to have a range
selector for one or more dimensions. The start and end points of this
range selector can be dragged individually, and dragging the center
of the range moves the start and end points together, allowing the
range to be swept across the extents of the dimension. However,
such a scheme exhibits temporal aliasing artifacts when the range
is swept quickly and when the start and end points of the range are
constrained to pixel positions.

Our scheme instead uses Gaussian selectors along one or more
dimensions. For each dimension, the user specifies a center and
standard deviation. Instead of a strict subset, data points are
weighted based on their distance from the selector center using the
Gaussian function given by the chosen standard deviation. Given
that Gaussian functions exhibit low-pass characteristics, this natu-
rally suppresses temporal aliasing as the center is dragged.

Thus, our technique can be seen conceptually as follows:

1. Weight each point based on the given Gaussian selectors.

2. Generate a kernel density plot where each point contributes to
the plot proportionally to its weight.

A naive implementation would iterate over each point in the dataset,
assigning a weight to each point, and then generate a kernel den-
sity plot. However, such an approach would not scale well to large
datasets.

Our approach has two phases: preprocessing and interactive ren-
dering. The preprocessing steps are conceptually as follows:

1. Construct the dataset signal S(x) from the source dataset.

2. Filter this dataset signal using B-Spline anti-aliasing filters.

3. Sample the filtered signal.
4. Construct a mipmap from this filtered signal.

In practice, the first three steps are combined into a single anti-
aliased binning step. The steps for interactive rendering occur each
frame and are as follows:

1. Select an appropriate mipmap level.

2. Collapse this mipmap level’s discrete signal based on the
Gaussian selectors, reducing the dimensionality of the signal.

3. Run a matching filter to ensure that the final signal will have
the desired target standard deviation. This matching filter is a
Gaussian discrete FIR filter.

4. Filter this discrete signal using B-Spline anti-imaging filters.
5. Sample this signal at the desired target sampling rate.

In practice, the last two steps are combined into a single anti-aliased
interpolation step. The whole procedure is summarized in Figure 2.

The Dataset Signal

The first step is to place all dataset points into a dataset signal,
which maps from k-dimensional attribute space to density. This
dataset signal is zero at all locations where there are no data
points and infinity at the locations of data points. For an input
dataset py,po2,...,Pn, Where each data point is represented by a k-
dimensional vector, the dataset signal S(x) is given as

-

S(x) =) o(x—pi).

i=1

The dataset signal can be seen as the empirical density function of
the dataset multiplied by the number of points in the dataset. To
see what this signal represents, suppose we have a simple access
log dataset where each log entry is a timestamp. A 1D data cube
can be used to quickly visualize this dataset, where each bin in the
data cube stores the number of accesses that occurred within its
time range. This data cube can be represented as a function f(r)
mapping from time ¢ to access log rates, which are given by the
number of points in the bin containing the given time divided by
the bin’s duration.

Using this function, the number of accesses occurring within
some time range is given by integrating f(¢) over the time range.
This gives the correct result in all cases where the query time range
is aligned with bin boundaries, i.e. when neither the start time nor
end time cut through the middle of a bin. In order to admit more
precise query regions, the data cube must be constructed with a
higher resolution, resulting in bins with shorter durations. In the
limit as the data cube resolution goes to infinity and bin durations
go to zero, the function f(r) approaches the dataset signal S(z), as
illustrated in Figure 3. Whereas there are many datasets that can
produce a given data cube, there is a one-to-one mapping between
datasets and dataset signals. Furthermore, integrating the dataset
signal over any region correctly gives the number of points con-
tained within that region. The dataset signal described in the pre-
ceding paragraph S(x) is a simply a multidimensional generaliza-
tion of this idea.

B-Spline Binning
This dataset signal is then discretized using B-Spline anti-aliasing
filters to bin the data points, as illustrated in Figure 4. This anti-

aliasing filter distinguishes BLOCs from traditional data cubes:
in traditional data cubes, each point is assigned to a single bin,

109

110

’ Mipmap Filter |2

’ Mipmap Filter |2

'y

’ Mipmap Filter |2

S(x) ﬂ

Anti-Aliased Bin

~

Mipmap

Loy

’ Query Collapse ‘

A,

Matching Filter ‘

— ()

’ Interpolate 1r

Figure 2: Overview of mipmap creation. Here, ris f;/f;, where f; is the sampling rate of the mipmap level and f; is the target sampling rate.
Both the mipmap filters and the matching filter are Gaussian FIR filters. Both the anti-aliased binning and the interpolation steps use third order

B-Spline filters.

I
soynuIw ()|

\
sonuI ¢

oo W <
[-

N

- = N

Accesses per minute

sonuI g

5—
0-
0-

Il_ln:_

[ewISAIUGU

o (R RARIN

|
00:50 01:10 01:20 01:30
Time

I I
01:00 01:40 01:50

Figure 3: The data signal can be seen as an infinitely precise data
cube. Here, the histograms show the density of points for each bin.
As the bin size decreases, the densities more accurately represent
the source dataset. In the limit as the bin size approaches zero,
the density function perfectly represents the source dataset and is
equivalent to the data signal. The arrows in this final plot represent
the Dirac delta impulses.

whereas in a BLOC, a single point is distributed across a neigh-
borhood of bins. In a traditional data cube, a point at the left end of
a bin is indistinguishable from a point on the right end of a bin once
the data cube has been constructed. In a BLOC, however, a point
on the left end of a bin affects bins to the left more than a point on
the right end of a bin.

Conceptually, discretizing using B-Spline anti-aliasing filters in-
volves convolving the dataset with the B-Spline kernel and then
sampling by multiplying with an impulse train. The period of this
train is given by the resolution of the BLOC. In practice, however,
B-Spline binning involves iterating over each point and increasing
the values in a small neighborhood of bins near the point. The
amount that each value is increased is given by the B-Spline ker-
nel. Once all points have been binned, this binning forms the lowest
(finest) level of a mipmap [1].

Each level of the mipmap has an associated sampling rate f
and standard deviation 6. The sampling rate for this lowest level
is given by the BLOC resolution. To determine the standard de-
viation associated with a B-Spline filter, we used a computer al-
gebra system to perform a least-squares fit between the B-Spline
kernel and the Gaussian probability density function. We found
that the minimizing standard deviation for the third order B-Spline
function was 0.596553. Given that the B-Spline kernel is scaled
based on the standard deviation, this gives a standard deviation of
o =0.596553/ f;.

Mipmap construction

To generate higher (courser) levels, the base level is successively
filtered using a Gaussian filter and downsampled by a factor of two.
The Gaussian filter is designed to have a standard deviation of two
samples at the downsampled rate, as this effectively bandlimits the
signal [21]. Although any downsampling factor could be used in
theory, a factor of two represents a good trade-off between space re-
quirements, which are higher for lower downsampling factors, and
rendering time requirements, which are higher for higher downsam-
pling factors because the matching filter must be more powerful.
The sampling rate for all mipmap levels except for the lowest is
half of the sampling rate of the level beneath it. The standard de-
viation for each mipmap level except for the lowest is given by the
cumulative effect of the B-Spline binning filter, the mipmap filters
for all lower layers, and the B-Spline interpolation filter, which has
a standard deviation of 0.596553/ f;, where f; is the sampling rate

y
ouridsg euss ejeq

sordweg

Figure 4: Discretizing the data signal using B-Spline binning, which is
based on the PolyBLIT algorithm [17]. Conceptually, the data signal
is convolved with a B-Spline filter and then sampled. In practice,
each point in the dataset is directly binned into a neighborhood of
bins. The top subplot shows the data signal comprising Dirac delta
impulses. The middle subplot shows each impulse replaced with a B-
Spline kernel and arranged in a stacked graph formation. The black
outline of the middle subplot is the result of the convolution. The
signal in the bottom subplot is given by convolving this result with an
impulse train.

of the mipmap level. The variance 0'1'2 for the current level is found
be adding the variance 0',{1 of the level below the current level and

the B-Spline filter standard deviation 0.596553/f;. The standard
deviation is then simply the square root of this variance.

Mipmap level selection

To render at a desired sample rate f; and a target standard devia-
tion or, a mipmap level is selected that can satisfy o7. A mipmap
level satisfies a given standard deviation if its associated standard
deviation is small enough that a matching filter can be designed to
accomplish this goal.

Matching filter

The selected mipmap level is run through a matching filter and an
interpolation filter. The matching filter is a Gaussian FIR filter that
is designed to bring the final cumulative standard deviation to the
given target standard deviation. For a mipmap level with standard
deviation o; and a target standard deviation or, the matching filter’s
standard deviation oy, is given by

oy = \/ 0% — 6.

In our tests, the result was acceptable as long as the matching fil-
ter has a standard deviation greater than one. A more conservative
choice would be to require the matching filter to have a standard
deviation of at least two to ensure that the coefficients are bandlim-
ited. To be even more conservative, the matching filter could have a
polyphase implementation that upsamples by a factor of two to ease
the burden of the B-Spline interpolation filter to remove imaging.

sordues

surdsg

0.3 -
0.2 -

parejodiouy

0.1 =

TNH

0 5 10 15

Figure 5: After the matching filter, the data must be interpolated to
convert to the target sampling rate. Although the use of B-Spline
filters for interpolation causes the interpolated curve to not pass
through the source points, this effect is anticipated and accounted
for in the calculation of the matching filter’s standard deviation.

B-Spline Interpolation

The interpolation filter is a simple B-Spline filter, and the interpo-
lation process is shown in Figure 5.

2.3 Analysis

Space complexity is determined by the resolution of the BLOC.
The space complexity of the initial binning is given by the prod-
uct of the number of samples in each dimension. For an applica-
tion where we wish to show 1D kernel density plots for each of k
dimensions and support dynamic filtering along these dimensions,
we can generate k BLOCs, each of which is high-resolution in the
dimension of the kernel density plot and low-resolution in all other
dimensions. The space complexity is then given by the kernel den-
sity plot resolution p and the brushing resolution b as O(kpbkil).
Because the brushing resolution is generally much lower than the
kernel density plot resolution, this asymmetric approach represents
a significant savings over the alternative approach of storing a single
high-resolution data cube, which has a space complexity of O(p).
The time complexity for binning a set of such asymmetric BLOCs
is O(kpb*=! +4*n), where n is the number of data points in the
dataset. The base of the 4% component can be reduced by using
lower-order B-Spline kernels at the expense of increased aliasing,
but given that data cubes only practical when low-dimensional, this
should not be necessary. Binning is readily parallelized and can be
implemented using Map Reduce [8].

The number of samples required for a mipmap level [, is based
on the number of samples of the mipmap level below /,_;. For a
mipmayp filter with s coefficients, we have

= (lnfl +S)/2'

The storage requirements L for the whole mipmap is given by the

111

112

sum of the lengths of the mipmap levels:

n
L= Z l;
i=0
Solving the recurrence relation and the sum gives
L=02-2"b+2 " +i—1)s.

The first component, (2 —27")b, approaches 2b as i goes to infinity.
The second component approaches is as i goes to infinity. However,
in practice, we stop producing mipmap levels before the second
term becomes problematic. With this stipulation, adding a mipmap
for k dimensions requires roughly 2 times the storage of the base
binning.

3 IMPLEMENTATION

We built two implementations: one that generates a two-
dimensional mipmapped bandlimited cube using a B-Spline 3 ker-
nel and one that generates a non-mipmapped three-dimensional
bandlimited cube using a B-Spline 2 kernel. Both were tested with
the OpenStreetMap dataset [12], and the two-dimensional cube was
additionally tested using a synthetic dataset.

The 2D cube uses a C++ back-end and Javascript front-end. For
the OpenStreetMap dataset, the C++ back-end use the Osmium li-
brary to process a dump of OpenStreetMap data in Protocol Buffer
format and generate the cube. The attributes used to generate the
cube are longitude and time, and the cube has a size of 250,000 bins
in the time dimension and 38 bins in the longitude dimension. The
back-end processes just over three billion points in just over eight
minutes on a late 2013 MacBook Pro. The front-end performs the
mipmap generation and rendering and supports zooming and dy-
namic querying using Gaussian queries. Rendering is performed
using the canvas element, and each frame is rendered within 1-3
milliseconds except for the first, which takes between 8 and 40 mil-
liseconds. The initial page load takes seven seconds.

The synthetic dataset uses a data cube with a significantly lower
resolution in the time axis (12500), but the render-time performance
is similar to the OpenStreetMap cube. This is unsurprising, since
mipmapping allows an appropriately-sized cube to be selected for
each frame. The back-end for the synthetic dataset can bin roughly
50 million points per second using a single core. The initial page
load completes in just under three seconds, which is also faster than
the larger cube.

Because the initial 2D binning for our example is high-resolution
along the mipmapped dimension and low-resolution along the
brushed dimension, we use a tall-and-skinny memory layout for
the initial binning to improve cache performance. In this layout,
adjacent samples along the brushed dimension are stored in adja-
cent locations in memory. Once binning is complete, we transpose
this representation, giving a short-and-fat layout such that adjacent
samples along the mipmapped dimension are stored in adjacent lo-
cations in memory. This should improve caching performance for
mipmap computation, where filtering processes a sliding window
of samples along the brushed dimension. We should note that we
did not measure the performance of an alternative implementation
that does not take locality into account, and additionally, a GPU
implementation would likely be less sensitive to locality issues.

In our current implementation, the binned BLOC is transferred
in its entirety to the client. The client then computes all higher
mipmap layers from this base layer. In production, the server would
instead generate the full mipmap and then send tiles to the client
on-demand in the manner of mapping applications. In this scheme,
each mipmap level would be broken up into tiles such that each
level of zoom can be rendered using a small number of tiles.

For the 3D cube, the binning code uses C++ and processes all
OpenStreetMap nodes in eleven minutes and constructs a 3D data

Figure 6: An example of a visualization generated using BLOCs. This
visualization adds a small amount of a Gaussian blurred version of
the image to the original density function, and then uses log scaling
of density followed by tanh saturation and color mapping to produce
the final image. The addition of Gaussian blurred version produces a
glare effect that emphasizes regions of high density.

cube with a spatial resolution of 1024 by 1024 and a temporal reso-
lution of 256. Each point has a geographical location and timestamp
and is projected into Web Mercator. This BLOC is then processed
with Python scripts to generate the final visualizations. Because
the cube is large, we did not attempt to render it in realtime. The
Python scripts are used to generate an animation showing the den-
sity of points over time, and they generate frames at a rate of two
frames per second. An example visualization generated from the
BLOC is shown in Figure 6. More examples are shown in the video
that accompanies this paper.

Although our implementation is not parallel and runs only on a
single node, the BLOC technique is very simple to parallelize be-
cause BLOCs are linear. If a dataset is split in half, then the BLOC
for the whole dataset is equal to the sum of the BLOCs computed
for each half. Assuming that the BLOC size is small enough that it
fits in the memory of a single node and can be communicated over
the network quickly, BLOC construction is embarrassingly parallel,
as each node can independently generate a BLOC for a portion of
the dataset, and then all generated BLOCs can be summed together
afterwards.

4 DiscussION

Computer-based visualizations are defined using discrete programs
to process discrete data and display discrete frames. Yet, often this
discrete data is a representation of a continuous concept. For ex-
ample, a floating point number is a discrete approximation of a real
number, and real numbers are a continuous set. Similarly, pixels on
a screen are both spatially discrete and display a discrete set of col-
ors at discrete moments in time, but the pixel array approximates a
continuously-changing spatially continuous image with a continu-
ous color space. Digital audio is also stored as a discrete sequence
of discrete samples, but this sequence represents a continuous wave.

Both the pixel approximation to continuous images and the sam-
ple approximation to audio rely on limitations of the human percep-
tual system: both eyes and ears are bandlimited and have bounds on
sensitivity. The human ear and eye both have low-pass character-
istics where sufficiently high frequencies cannot be perceived. As

long as digital audio is sampled at a rate twice that of the highest
frequency that the human ear can perceive, a reconstruction should
be indistinguishable from the original, provided that each sample
is recorded with sufficient resolution that quantization error is be-
low the just noticeable difference threshold. Similarly, if pixels are
sufficiently small and have sufficiently high frame-rates and color
resolution, they should be perceptually indistinguishable from the
continuous case.

However, just as catastrophic cancellation is the bane of numer-
ical computing, aliasing is the bane of sampled and binned rep-
resentations. Even though a floating point number may have 15
significant figures of precision, if a numerical algorithm isn’t care-
fully designed, most of these significant figures may be wrong in a
result. Similarly, if a graphics or audio system is not carefully de-
signed, much of the output bandwidth may be inhabited by aliasing
artifacts.

We advocate an approach where visualizations are defined in the
continuous domain as a mapping from datasets to continuous im-
ages and animations. Only after the visualization algorithm has
been defined in the continuous domain should an attempt be made
to implement it in a program. By designing first in the continuous
domain, a ground truth is established, and the implementation can
be checked for accuracy against this ground truth.

We have presented BLOCs, a very general big data visualization
technique that provides a discrete representation of a continuous
concept. Using the techniques in this paper, BLOCs can be used
to construct accurate emulations of continuous-domain visualiza-
tions such as kernel density estimation. The key benefit of BLOCs
is that they improve performance while retaining the same simple
mathematical elegance of continuous-domain techniques.

In practice, BLOCs are useful in many cases where data cubes
are useful. Like data cubes, however, BLOCs do not scale well to
high-dimensional datasets. However, for cases when it is only nec-
essary to filter based on a few attributes, BLOCs provide a valuable
tool for constructing interactive visualizations. Like data cubes,
BLOC:s can be used as building blocks for a vast array of visualiza-
tions. They can be used to show the density of events. Given that
mean shift clustering is defined in terms of kernel density estima-
tion, BLOCs can be used to determine the cluster of any location
within the BLOC. They can also be used to construct parallel coor-
dinate plots, since the lines drawn in parallel coordinate plots can
be seen as spatially-varying projections of a BLOC.

BLOCs could also be used in combination with an existing big
data system such as Hadoop, Spark, or Drill. These tools could
be used to generate a low-dimensional BLOC for two or three at-
tributes at a time while possibly applying Gaussian filtering on other
dimensions. The user could then perform real-time dynamic queries
with data cube’s attributes and then freeze the dynamic query posi-
tions on the current BLOC and request another BLOC with different
attributes.

There are many open questions about the design space of
BLOCs. For example, some visualization systems that are based
on data cube provide a way to visualize the minimum and maxi-
mum values along a certain dimension for each bin. Our technique
cannot produce these, and it is unclear whether or not there is way
to provide this information without introducing aliasing artifacts.

Some visualization systems also provide a way to see average
values across bins, e.g. the average receipt amount per month. Our
technique can handle this case by storing two separate BLOCs: in
the first BLOC, each point is weighted by the receipt amount, and
in the second BLOC, all points are weighted equally. To render,
kernel plots are calculated for both BLOCs and then each resulting
sample from the first plot is divided by the corresponding sample
from the second plot. This produces a Kernel Smoothing [22] plot.
Kernel density plots can be also be used as inputs to higher-level
processes [19], and BLOCs can be used in support of this too.

Future work might explore sparse encoding of BLOCs. The sim-
plest approach to this would be to use hash tables to store all non-
zero samples during the initial binning and the subsequent mipmap
construction. In this scheme, the server would continue to serve
tiles to the client, but these tiles would be sparsely encoded. A more
sophisticated approach would transfer unbinned points to the client
in areas where the sparse encoding is more space-efficient than the
dense encoding. Using this scheme, zooming into sparse regions
would not require the server to send new tiles, as the tiles could be
generated on-the-fly from the unbinned points on the client. Such
an encoding could present a great space savings for high dimen-
sional datasets, and such an encoding would also provide a way for
the client to drill-down to the levels of individual points.

5 RELATED WORK

BinX [2] offers a method for visualizing large time series datasets.
ImMens [16] provides a method for scalable visualizations based
on data cubes. Nano cubes [15] provides an in-memory approach
to scalable visualization based on a data structure similar to range
trees. All of these techniques exhibit aliasing artifacts.

Multiscale representations similar to ours are very common in
signal and image processing. Scale-space representations [24] and
pyramid representions [5] [1], like our technique, compute mul-
tiple Gaussian-filtered versions of an input signal using different
standard deviations. However, in scale-space and pyramid repre-
sentations, the goal is to produce a representation that can used as
input to computer vision algorithms. In scale-space representations
in particular, the Gaussian-filtered signals are then transformed into
a tree that captures the extrema of the filtered versions. Wavelets
[4] are another multi-scale representation commonly used as input
to image processing algorithms.

In computer graphics, mipmaps [23] are used to render images
quickly at varying scales. However, the trilinear interpolation de-
scribed in the paper is less accurate than the scheme we describe. In
audio processing, mipmaps are used to quickly resample recorded
audio at rates [7]. These mipmaps use brickwall lowpass filters,
which are ideal for audio but result in undesirable ringing artifacts
in graphical applications. Although a Gaussian filter at the end of
the mipmapping could be used to remove most of these artifacts,
our technique avoids the introduction of ringing artifacts at all.

Integration-based methods such as summed area tables [6] [13]
in computer graphics and integrated wavetable synthesis [10] [9]
in audio processing could be adapted for visualization purposes.
However, mipmaps likely have better cache performance and allow
for tile-based techniques where clients can produce visualizations
based on a subset of the whole dataset. Moreover, integration-based
methods have problems with numerical stability when used on large
datasets.

The simple and commonly-used brute force method to comput-
ing kernel density estimation requires execution time proportional
to the number of pixels on the screen multiplied by the number of
data points for displaying a 2D kernel plot. Even if the kernel could
be evaluated with only a single floating point operation (in practice,
it would almost certainly require more evaluations), to compute a
visualization of size 1024 by 678 for a dataset of 3 billion points
at 60 frames per second would require over 283 petaflops of pro-
cessing power in kernel evaluations alone. Even at the cheap rate of
eight cents per gigaflop, this would require an investment of over 22
million dollars per simultaneous user. In practice, the cost would be
far greater, since kernel evaluations would almost certainly require
more than one floating point operation, and this estimate does not
include the processing power required for summing.

Truncating the kernel gives improved performance [14], but with
a sufficiently large dataset, it is still prohibitively expensive to per-
form this technique in real-time. Suppose we require a 10 by 10
kernel, as used in the paper. Then we require 100 kernel evalu-

113

114

ations per data point. If each one of these evaluations required a
single floating point operation, then rendering at 60 frames per sec-
ond would require 18 teraflops of processing power, which is be-
yond the processing power of a single commodity GPU. Moreover,
assuming that each data point is represented by two floating point
numbers and that all data points need to be traversed at each frame,
rendering 60 frames per second would require 11.52 terabits per
second of memory bandwidth, which is beyond the capabilities of
a single commodity GPU. By contrast, a pre-generated 2D BLOC
with mipmapping can used to generate a kernel density plot of any
desired within the range satisfiable by the BLOC. Generating the
kernel density plot in this case reduces to performing a Gaussian
blur on the appropriate section of the BLOC, a task well within
reach of a modern GPU.

The fast Gauss transform [11] provides a fast way to compute
kernel density estimates at arbitrary locations. However, using this
for interactive visualization would still requires a full traversal of
the dataset for each frame.

6 CONCLUSION

We have introduced bandlimited OLAP cubes, an approach to in-
teractive information visualization that uses techniques from digital
signal processing to create a condensed version of a large dataset.
This condensed version can be used to generate kernel density plots
that accurately represent patterns in the source dataset and suppress
aliasing artifacts. Moreover, these visualizations can incorporate
dynamic query techniques without introducing temporal aliasing
artifacts.

We have also introduced a specialized BLOC-based technique
that allows for continuous zooming of kernel density plots and con-
tinuous brushing. This technique scales readily to large datasets
while maintaining interactivity at 60 frames per second.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant I1S-1447416 and a
grant from L-3 Communications.

REFERENCES

[1] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J
Burt, and Joan M Ogden. Pyramid methods in image processing. RCA
engineer, 29(6):33-41, 1984. 2.2, 5

[2] Lior Berry and Tamara Munzner. Binx: Dynamic exploration of time
series datasets across aggregation levels. In Information Visualization,
2004. INFOVIS 2004. IEEE Symposium on, pages p2—p2. IEEE, 2004.
5

[3] PA Bromiley. Products and convolutions of gaussian probability den-
sity functions, 2013. 2.1

[4] C Sidney Burrus, Ramesh A Gopinath, and Haitao Guo. Introduction
to wavelets and wavelet transforms: a primer. 1997. 5

[5] Peter J Burt. Fast filter transform for image processing. Computer
graphics and image processing, 16(1):20-51, 1981. 5

[6] Franklin C Crow. Summed-area tables for texture mapping. In ACM
SIGGRAPH Computer Graphics, volume 18, pages 207-212. ACM,
1984. 5

[7] Laurent De Soras. The quest for the perfect resampler, 2003. 5

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107—
113, 2008. 2.3

[9] Andreas Franck and Vesa Vilimiki. Higher-order integrated

wavetable synthesis. In Proc. 15th Int. Conf. Digital Audio Effects

(DAFx-12), York, UK, pages 245-252,2012. 5

Giinter Geiger. Table lookup oscillators using generic integrated

wavetables. omega, 60:50, 2006. 5

Leslie Greengard and John Strain. The fast gauss transform. SIAM

Journal on Scientific and Statistical Computing, 12(1):79-94, 1991. 5

Mordechai Haklay and Patrick Weber. = Openstreetmap: User-

generated street maps. Pervasive Computing, IEEE, 7(4):12—18, 2008.

3

[10]
(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

(24]

Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek Singh,
and Anselmo Lastra. Fast summed-area table generation and its ap-
plications. In Computer Graphics Forum, volume 24, pages 547-555.
Wiley Online Library, 2005. 5

Ove Daae Lampe and Helwig Hauser. Interactive visualization of
streaming data with kernel density estimation. In Pacific Visualiza-
tion Symposium (PacificVis), 2011 IEEE, pages 171-178. IEEE, 2011.
5

Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes
for real-time exploration of spatiotemporal datasets. Visualization and
Computer Graphics, IEEE Transactions on, 19(12):2456-2465, 2013.
5

Zhicheng Liu, Biye Jiang, and Jeffrey Heer. immens: Real-time visual
querying of big data. In Computer Graphics Forum, volume 32, pages
421-430. Wiley Online Library, 2013. 1, 5

Juhan Nam, Vesa Valimaki, Jonathan S Abel, and Julius O Smith.
Efficient antialiasing oscillator algorithms using low-order fractional
delay filters. Audio, Speech, and Language Processing, IEEE Trans-
actions on, 18(4):773-785, 2010. 2.1, 4

Michael G Paulin. Digital filters for firing rate estimation. Biological
cybernetics, 66(6):525-531, 1992. 1

Jeff M Phillips, Bei Wang, and Yan Zheng. Geometric inference on
kernel density estimates. arXiv preprint arXiv:1307.7760, 2013. 4
Julius O. Smith. Physical Audio Signal Processing. http://-—
ccrma.stanford.edu/” jos/pasp/, accessed jdate;. online
book, 2010 edition. 1

Lucas J Van Vliet, lan T Young, and Piet W Verbeek. Recursive
gaussian derivative filters. In Pattern Recognition, 1998. Proceedings.
Fourteenth International Conference on, volume 1, pages 509-514.
IEEE, 1998. 2.2

Matt P Wand and M Chris Jones. Kernel smoothing, volume 60. Crc
Press, 1994. 4

Lance Williams. Pyramidal parametrics. In Acm siggraph computer
graphics, volume 17, pages 1-11. ACM, 1983. 5

Andrew P Witkin. Scale-space filtering: A new approach to multi-
scale description. In Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP’84., volume 9, pages 150-153.
IEEE, 1984. 5

