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ABSTRACT

Visualizations are useful when learning from high-dimensional data.
However, visualizations can be misleading when they do not in-
corporate measures of uncertainty; e.g., uncertainty from the data
or the dimension reduction algorithm used to create the visual dis-
play. In our work, we extend a framework called Bayesian Visual
Analytics (BaVA) on a dimension reduction algorithm, Weighted
Multidimensional Scaling (WMDS), to incorporate uncertainty as
analysts explore data visually. BaVA-WMDS visualizations are in-
teractive, and possible interactions include manipulating variable
weights and/or the coordinates of the two-dimensional projection.
Uncertainty exists in these visualizations on the variable weights,
the user interactions, and the fit of WMDS. We quantify these un-
certainties using Bayesian models exploring randomness in both
coordinates and weights in a method we call Interactive Probabilistic
WMDS (IP-WMDS). Specifically, we use posterior estimates to
assess fit of WMDS, the range of motion of coordinates, as well as
variability in weights. Visually, we display such uncertainty in the
form of color and ellipses, and practically, these uncertainties reflect
trust in fitting a dimension reduction algorithm. Our results show
that these displays of uncertainty highlight different aspects of the
visualization, which can help inform analysts.

Index Terms: Human-centered computing—Visualization
techniques—Multidimensional Scaling—Uncertainty

1 INTRODUCTION

In addition to parallel coordinate plots and heatmaps, dimension
reduction methods are often used to visualize high-dimensional
data [22]. The main advantage of dimension reduction is that when
high-dimensional data are projected into low-dimensional spaces
(e.g., two- or three-dimensional spaces for visualization), analysts
may rely on personal spatial reasoning skills to identify data struc-
tures. For example, analysts may visually and quickly identify
clusters, outliers, and/or other data patterns in projections that are
not readily apparent when datasets are considered in their raw forms
[31]. However, unlike parallel coordinate plots and some heat maps,
low-dimensional data projections are, by definition, summaries or
approximations of high-dimensional data, and naturally include
model-lack-of-fit error or uncertainty. Thus, all findings from low-
dimensional projections of high-dimensional data should be tem-
pered by measures of the uncertainty; e.g., low measures could
reinforce findings, whereas high measures should reduce confidence
in findings. Yet, in practice, visual projections rarely communicate
any measurements of uncertainty. With focus on multidimensional
scaling (MDS) [15] - a common dimension reduction method - this
paper presents a statistically sound and easy-to-interpret approach
for quantifying and visualizing uncertainty in projections of high-
dimensional data.

In particular, we consider both global and local (within-
projection) measures of uncertainty in data projections. For ex-
ample, MDS works by minimizing a stress function to estimate
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low-dimensional coordinates of high-dimensional data. Though unit-
less and without clear points of reference (which we address in this
paper), the final stress of an MDS projection is effectively a global
measure of projection lack-of-fit. However, there can be cases in
which a majority of observations in a dataset is represented well in a
projection, while a subset is represented poorly. The well-positioned
observations reduces the global MDS stress enough for algorithm
convergence, but the poorly projected portion of the data remains.
Without local measures of uncertainty, analysts cannot determine
which observations to trust in MDS visualizations, and thus must
choose to either trust all observations equally well or avoid MDS
altogether [6]. Notably, this choice presents itself when considering
all dimension reduction methods, not just MDS [5, 19,24].

Visualizations that incorporate uncertainty are truer representa-
tions of the data than those without [3]. Some work has been per-
formed in the area of visualizing uncertainty and rely on techniques
such as background color [11, 25], Voronoi tessellations [1, 18],
glyphs [32], interactive probing [29], and error ellipsoids [33]. In
contrast to these techniques, we create a Bayesian method for both
computing and displaying global and local uncertainty in dimension-
reduced projections, particularly those created by Weighted Multidi-
mensional Scaling (WMDS) [15].

Specifically, we make the following contributions in this work:

* We develop both global and local normalized measures of prob-
abilistic uncertainty across WMDS visualizations to enable
direct comparisons between projections. Our global measure
is a variant of stress called cn-stress.

* We provide two methods for visualizing the uncertainty of
individual observation coordinates as measured by observation
contribution to cn-stress and/or posterior estimates of coordi-
nate variance (uncertainty region).

* We provide a method for quantifying the uncertainty in model
parameters as influenced by user interactions. This includes:

— Bayesian models for projecting and interacting with
WMDS.

— A Monte Carlo experiment to assess the distribution of
interactions.

The remainder of the paper is as follows. Section 2 discusses
the framework that underlies our method. Section 3 describes
the Bayesian models used in Interactive Probabilistic WMDS (IP-
WMDS), as well as our measures of global and local uncertainty.
Section 4 demonstrates our method on two example datasets. We
discuss future work and limitations of this method in Section 5, and
we also include two appendices to further expand on our statistical
models.

2 BACKGROUND

Our method to visualizing uncertainty is motivated by a frame-
work called Bayesian Visual Analytics (BaVA) [12] for developing
interactive visualizations. Though BaVA formally has technical
underpinnings, over time the term has come to refer generally to
the process of parameterizing feedback from analysts to include
within analytic methods for visualization e.g., [4,8,9,11,26,27,30].
The main advantage of BaVA is that it provides an approach for
transforming static analytic methods to dynamic methods that may



respond to analysts’ needs, discoveries, and judgments. Using ana-
lytic methods enhanced with BaVA, visual explorations of data may
parallel analysts’ sense making processes of data.

The challenge with BaVA, or any visual analytic method for multi-
dimensional data, is that visualizations of high-dimensional datasets
are inevitably inaccurate. The data represent a larger population
and visualizations are, by definition, summaries; visualizations in
three or fewer dimensions cannot display high-dimensional data
perfectly. Yet, analysts interact with data visualizations in BaVA, as
if they are accurate represents of the truth; measures of inaccuracy
or uncertainty in visualizations are not conveyed visually to analysts.

The degree of uncertainty depends heavily on the visual analytic
method and methods for interaction. For this paper, we focus on the
analytic method, Weighted Multidimensional Scaling (WMDS) [15].
In previous work, BaVA has been applied to WMDS (BaVA-WMDS)
via two primary forms of interactions [12,13,17,26]. In this section,
we highlight those forms of interaction and briefly explain WMDS.

2.1 Interactions

Interactions with projection visualization systems fall into two cat-
egories (described by Self et al. [26]): Parametric Interaction (PI)
and Observation-Level Interaction (OLI). Briefly, PI makes use of
standard user interface controls such as sliders, text boxes, and spin-
boxes to allow analysts to directly set the value of a parameter. For
example, analysts may adjust eigenvalues in covariance matrices
for principal component analyses [14], change K (the number of
clusters) in a K-means algorithm [20], or increase or decrease the
importance of variables in WMDS [26]. The advantage of PI is
that there is no ambiguity in what analysts want to change to create
new visualizations. Disadvantages of PI are that analysts must know
what the parameters mean to make specifications that make sense
and the dimensionality of the parameter space must be manageable
enough for analysts to assess easily.

In contrast, OLI permits analysts to stay in the data space (i.e., not
enter the parameter space) to commit interactions. Analysts make
adjustments to representations of observations in visualizations to
indirectly influence model parameters and create new visualizations.
For example, to change the number of clusters found in data, analysts
may drag clusters of observations together or spread observations
apart [30]; or, to change the direction of visual projections, analysts
may adjust the location of observations in visualizations. After
analysts interact with observations, underlying algorithms and/or
probabilistic models of OLI interpret the interactions in a parametric
form to then apply to the entire dataset. Crucially, analysts need not
learn the algorithms or models to use OLIL

Tools that enable analysts to explore data with PI and OLI offer
tremendous flexibility. Andromeda [26,27] is a recent example that
offers both when applying WMDS to visualize data. In the next
section, we explain WMDS in detail and how PI and OLI works for
exploring high-dimensional data.

2.2 Weighted Multidimensional Scaling (WMDS)

Broadly, WMDS offers an approach for projecting data linearly to a
reduced-dimensional space. In this paper, the reduced space has two
dimensions for visualization purposes. The direction in which data
are projected by WMDS depends on weights assigned to variables
in the data; variables with high weights have more influence on
the direction than those will low weights. Similarly, variables with
high weights have more influence on the interpretation of WMDS
projections. In WMDS projections, relative proximity among ob-
servations implies relative similarity of the same observations in
the high-dimensional space, particularly in the variables with high
weights.

Formally, consider a dataset X,x, = (x1,X2,...,%,) (contain-
ing n observations and p variables) with associated weights @ =
(wi1,wa,...,wp) such that ZZ:I wy = 1. The goal is to find reduced-

or low-dimensional coordinates R,,»» = (r1,72,...,r,) that preserve
the relationships in the high-dimensional space [15]. When relation-
ships are measured by distance, the preservation is accomplished by
minimizing a stress function

min stress = min
F1,F2,...50 ry,ra,.

Y (dh—d?), 6))

ol <i<i<n

where, for observations i and j, dirj and di"jf' represent a distance
metric in the low-dimensional space and a weighted distance metric
in the high-dimensional space, respectively. Typically, the low-
dimensional metric is Euclidean distance, and in this paper, the
high-dimensional metric is weighted Euclidean distance, di“J? =

Yooy wie(xie —x )2

Common techniques to minimizing the stress function are gra-
dient descent and Scaling by MAjorizing a COmplicated Function
(SMACQOF) [2,7]. Gradient descent aims to find a direction in which
the objective function is locally minimized, while SMACOF at-
tempts to majorize the objective function and subsequently optimize
the majorized function. Both techniques lead to a local optimum
and use a greedy approach in finding this optimum. In this work, we
use the WMDS solution found via the SMACOF approach.

In the context of BaVA, WMDS is extended to have both forward
and backward versions. When analysts perform PI (i.e., directly
increase or decrease a weight), those changes are reflected in @*.
The high-dimensional distances (dl-‘}?*) are updated, and new low-

dimensional coordinates (R*) are found by minimizing Equation 1.
This scheme is referred to as Forward WMDS; i.e., typical WMDS
is renamed as Forward WMDS.

Alternatively, when analysts perform OLI (i.e., manipulate obser-
vations), a two-step process occurs. First, using updated coordinates
R*, weights @* are determined by optimizing the stress function for
the weights (not coordinates):

Y @-d?). @

Because updating the location of some observations does not auto-
matically create a new layout for all data, the second step involves
updating all observation locations using the weights @* found from
Equation 2. Thus, to project new low-dimensional coordinates, we
solve Equation 1 using @* to finally get R**. This two step pro-
cedure for updating the observation locations is called Backward
WMDS.

Regardless of implementing Forward WMDS or Backward
WMDS, solutions for R* and @* will have inaccuracies. As men-
tioned earlier, inaccuracies may result from many sources, including
complexities in datasets and limitations of optimization algorithms.
The question is, “How inaccurate?”” How uncertain are represen-
tations of data, relative to the actual data? In the next section, we
detail our approach for quantifying uncertainty in visualizations and
conveying the uncertainty visually to analysts.

3 METHODS TO QUANTIFY UNCERTAINTY

For each type of interaction, PI and OLI, we use Bayesian versions
of both Forward WMDS and Backward WMDS [23] to quantify
local and global uncertainty in projections. A local measure of un-
certainty concerns a single interaction and reflects the estimated
variance of the projected coordinates and/or weights. A global mea-
sure of uncertainty theoretically considers all possible interactions
and reflects the trustworthiness of all projected coordinates (thus,
pairwise relationships) in a visualization relative to other projections.

To work toward presenting local and global uncertainty visually in
Section 3.5, we start by explaining Bayesian Forward and Backward
WMDS (Sections 3.1 and 3.2). In these models, sources of variance
for parameters (e.g., low-dimensional coordinates and weights) are



Table 1: Summary of Notation used in Sections 2 and 3.

Notation | Description
n number of observations (i =1,2,...,n)
P number of variables or dimensions (k= 1,2,...,p)
X high-dimensional data of size n X p (X;xp)
Wi individual weight for dimension k.
(0] variable weight vector of size p such that ):f:l wp=1
di‘;’ high-dimensional pairwise distance
T two-dimensional coordinate for observation i, (ri1,r;)
R low-dimensional coordinates (here 2 dimensions, R;x2)
di’j low-dimensional pairwise distance
c-stress calibrated stress (see Eq. 5)
cn-stress calibrated normalized stress (see Eq. 6)
cn-stress; | raw contribution from observation (obs) i (see Eq. 7)
cn-stress; | percentage of contribution from obs i (see Eq. 8)
A Monte Carlo sample of variable weights @
SR Monte Carlo sample of coordinates R
0} matrix of MCMC iterations of weights ®
= matrix of MCMC iterations of Procrustes
R .
transformed coordinates R
MM range of top 10 values of wy € @ for all k
SD standard deviation of coordinate r; € R for all i

defined explicitly. Then, we derive a calibrated, goodness of fit
metric for individual projections in Section 3.3 and estimate the
distribution of this metric across sampled projections in Section 3.4.
Because the magnitude of the metric is data dependent, learning
the distribution of the metric is necessary for interpretation. We
summarize all the notations used in previous sections and throughout
Sections 3.1-3.5 in Table 1.

3.1 Forward Interactive Probabilistic WMDS (FIP-
WMDS): Local Uncertainty in Coordinates

As originally described by Oh and Raftery [23], Forward Interactive
Probabilistic WMDS (FIP-WMDS) models high-dimensional pair-
wise distances d} between observations (i, ) V i, j conditional on

low-dimensional distances d’] and variance 62. Because distances
are nonnegative, we consider each d to be governed by a truncated
Normal distribution, and assign prlor distributions as follows:

dz(;)‘dzrjvo NN(dzrjv ) 1(d$'>0)'

02 ~1G(a,b) 3

r,-~N({8} L A= {%1 )(L)ZD Jfori=1,2,...,n

Ay ~1G(cq,dy), forg=1,2.

Note that low-dimensional pairwise distances are not directly
modeled a priori, but derived from estimates of low-dimensional
coordinates r; (i € {1,..,n}) with the diagonal covariance A. Also,
priors for R = (r{,72,...,r,)" and 6 are approximately conjugate
and the hyperprior on A, is conjugate. Details for the remaining
hyperparameters, a,b,cq, and d; where g = 1,2 can be found in
Appendix A. Using Markov Chain Monte Carlo (MCMC), we es-
timate m = () = w pairwise distances d/;, R, A1, 4, and cla
posteriori [23].

Visualizations of data X result from posterior estimates of R.
However, because we model d“’ conditional on dl’j, not R, MCMC
samples of R have 1ncon51stent rotations, translations, reflections,
and scale. Thus, before we estimate R, we standardize the MCMC
samples of R using a Procrustes transformation [7,21]. Specifically,
we post process each MCMC draw for R using a Procrustes trans-
formation relative the SMACOF WMDS solution. In turn, estimate
low-dimensional coordinates R via the posterior mode of the joint

posterior f(R,A{,A2,62 | X, ®). For the remaining parameters, we
estimate 62,1, and A, using their posterior means.

To understand the movement of coordinates in 7 iterations of the
MCMC or the uncertainty of the Procrustes transformed coordinates
R, we can consider one of two measures. One is a variance for
each dimension of R, A; and ;. Estimates of these parameters,
e.g., Pfq = E[24|X, ] directly reflect variance of coordinates. Note

that A, and 4, will be the same for each coordinate i (i € {1,...,n}).
Second, we consider estimates for the standard dev1atlon (sd) of
coordinates r; = (m,hz) for i, that is the §;; = sd({rl17 Dol )

and §p = sd({r}y,r%,...,r5}). We denote SD,,»» = {(sll,slg)}l:

3.2 Backward Interactive Probabilistic WMDS (BIP-
WMDS): Local Uncertainty in Weights

Backward Interactive Probabilistic WMDS (BIP-WMDS) executes
in response to an observation-level interaction, and models low-
dimensional pairwise distances conditional on @ and 2. The goal
of BIP-WMDS is to estimate weights a posteriori, as well as to
understand the variability of these weights. To do so, we have
the following hierarchical model for m low-dimensional pairwise
distances:

2

dlr] | 0,0 NN(dU,G ) ]]'(d,'j>0)
o ~ Dirichlet(a = (ay,ay, . ..

02 ~IG(b,c)

) ap)) (4)

We chose the prior for 62 to capitalize on conjugacy, and we
chose the Dirichlet prior for @ to honor the constraint that the
weights should sum to 1 (¥; = 1”@y = 1). Details concerning the
posterior distribution for @ and 2, the Gibbs sampler, convergence
diagnostics, and initialization are provied in Appendix A.

The posterior estimation for this model presents similar chal-
lenges to those presented by FIP-WMDS in Section 3.1. For vari-
able weights, o, the posterior mean should approximate {1/p};_,
by construct and relying on the individual Maximum A Posterior
(MAP) estimators for each @y in @ will contradict the constraint
that Zle wy = 1. Thus, our posterior estimate for @ are taken from

the maximum draw of the joint posterior (@, | X,R).

To understand the variability of weights, we consider @ =
{w',@?,..., 0T}, which represents the MCMC draws of @. We
summarize the optimal values of the weights using the top 10
draws of the joint posterior to understand the range of w; for
k=1,2,...,p. A range is an interval of the minimum and max-
imum value, and we use MM to reflect this meaning Specifically,
we denote MM ,» = {range(v@,i, W,%, ,W;O) , for the range of
these top 10 values for each wy.

3.3 Global Uncertainty in Projections

Together, we refer to the above models as Interactive Probabilistic
WMDS (IP-WMDS). IP-WMDS describes and quantifies uncer-
tainty within one projection, i.e., provided one user interaction (e.g.,
specification of @* or R*) Now, we expand IP-WMDS to allow us
to consider the entire space of interactions by carefully defining
measures to compare different visualizations.

To motivate the expansion, consider two visualizations of data X
with dimension 20 x 5 in Figure 1. Using FIP-WMDS, the left vi-
sualization relies on weights @; = (0.26,0.43,0.21,0.03,0.07) and
the right visualization relies on @, = (0 19, 0. 47,0 07, 0. 01,0.26).
While relative locations appear similar between these two displays,
WMDS projections represent similarity with proximity, and as a
result the conclusions that an analyst may draw can differ. For exam-
ple, observations 19 and 3 are relatively closer (more similar) in the
left plot than they are in the right plot. In attempt to compare and
choose one visualization, we might assess stress. That is, when we
estimate R as defined in Section 3.1 and solve for the stress using
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Figure 1: Example of comparing two different visualizations created by
different interactions of the data. In these visualizations, the proximity
of two observations implies similarity between those observations.
Thus, conclusions about similarity (or dissimilarity) of observations
are different between the two visuals.

Equation 1, the left and right plots have stresses 77.5 and 140.1,
respectively. This would suggest that the left plot is considerably
better than the right plot, however we must consider scale of the
distance measures embedded in the stress calculations. The scale
of high-dimensional distances will change with changes in weights.
Thus comparisons of stress as defined in Equation 1 do not apply
across interactions.

One idea for calibrating the stress comes from Kruskal [15]. He
considered a “goodness of fit” measure that reflects the ease of
summarizing high-dimensional with low-dimensional versions. We
apply a similar idea and calculate c-stress, where c-stress calibrates
the original stress by the sum of squared high-dimensional distances:

stress B Yi<icj<n(d]; 7d$)2
Yi<icj<n(d})? Li<icj<n(dj)?

c-stress =

(&)

The c-stress values for the left and right visualizations
in Figure 1 are 0.10 and 0.18 respectively. However,
while Yi<icj<pd]' # Yi<icj<ndis it can be shown that

21§i<j§n(dic})l )2 = 21§i<j§n(di]a»}l)2 = I’l(l’l — 1) Thus, the calcu-
lations of c-stress for Figure 1 are still on different scales, and we
construct yet another measure.

Our construction, denoted cn-stress, penalizes differences in pro-
portional distances, rather than absolute distances. Specifically, we
use scalars a =Y 1< j<p di’j and b =Y 1<icj<n dl-‘; and normalize
c-stress such that

r [0} 2
Zl§i<j§n <dij/a - dij /b)

Yi<icj<n (df,?/b>2

cn-stress —

(6)

Now, we are calibrating stress by differing constants in that
Yi<icj<n(d]) /b1)? # Yi<icjn(dif’ /b2)? because by # by. This
means that cn-stress has been scaled to a common unit that can be
compared across projections with different weights. In Figure 1,
visualizations both have approximately cn-stress=0.016. This means
that the visualizations in Figure 1 have comparable global uncer-
tainty in the directions they were projected; i.e., given they specified
weight vector.

We delve deeper into the visualization by observing the fit of
WMDS on each coordinate of the display. We consider the concept
of “stress-per-point,” which essentially aims to identify outliers when
fitting MDS [7,21]. We consider an observation i’s contribution to
stress, denoted cn-stress;, to be

i 1jpldiy/a—diy /b)?

cn-stress; =
' i1 X (df/b)?

(@)

We note cn-stress; will appear rather arbitrary in the same sense as
raw stress. To compare cn-stress; across different visualizations, the
contribution we monitor per observation i is the following percent-
age:

enstresst — CISUessi Yi1jldl/a _dl_fj?/b)z ©
© 7 2.cn-stress ?:1):?:1(d{j/a—di“]?/b)2‘

Higher proportions indicate that those coordinates are more difficult
to find, and we note Y7 | cn-stress; = 1. We call cn-stress; as
the observation contribution to stress. This contribution can be a
proxy for trust of that observation location in the visualization and
subsequently pairwise relationships to the other coordinates.

3.4 Distributions of Uncertainty

To interpret measures of uncertainty, it is helpful to have points of
references or ranges in which measures are probabilistically reason-
able. We offer relative comparisons of uncertainty by estimating
distributions of uncertainty, for a given dataset.

We take a Monte Carlo approach to explore the space of IP-
WMDS solutions, and all related measures of uncertainty from each.
That is, Models 3 and 4 can be applied to the space of interactions
(parametric and observation-level) through a representative sample
of interactions. Based on the sample, we estimate distributions of
uncertainty.

We find our sample of interactions via Monte Carlo for j =
1,2,...,1000 in the following manner:

1. Sample @; ~ Dirichlet(fp).
2. Use w; to find the SMACOF WMDS solution of R;.

From this process, we have a representative sample of paramet-
ric and observation-level interactions to explore, denoted S% =
{wi,0,...,01000} and S* = {R;,R,,....Rio00}-

The first global measure we discuss comes from cn-stress (intro-
duced in Section 3.3), which measures the fit of WMDS. The uncer-
tainty will come from the distribution of cn-stress, 7(cn-stress), i.e.,
cn-stress across all visualizations. For a given interaction, we can
compare the cn-stress value from this visualization to the distribu-
tion. We can also further look to this measure by observation.

Another global measure is cn-stress; (introduced in Section 3.3),
which measures the difficulty in fitting WMDS for coordinate i.
When observing the distribution of cn-stress}, 7(cn-stress;), we
learn the difficulty level of fitting that observation across visual-
izations. The interpretation here is that if observation contribution
to stress is low, then analysts can trust the location and pairwise
relationships of that observation. In contrast, if the contribution to
stress is high, analysts should take caution in trusting the location of
that coordinate.

Next, we discuss local measures of uncertainty in the context
of our modeling schemes for FIP-WMDS and BIP-WMDS using
our samples of interactions, S® and SX. This implementation is
summarized in Table 2. Local measures here indicate uncertainty
within a particular visualization, i.e., uncertainty from S;*’ or Sf . For
FIP-WMDS, we use the standard deviation of each coordinate i, SD,
to understand the uncertainty region. For BIP-WMDS, we use the
range of optimal weights for each weight k, MM, to understand the
variability of the weights.

3.5 Visualizing Uncertainty

In our BaVA-WMDS projections, we can visualize the effect of
cn-stress; from the distribution 7 (cn-stress;) as well as the standard
deviation of observation locations SD; for each observation i. To
better understand extremity in the movement of coordinates (uncer-
tainty region), we plot 3 times the standard deviation value as an
ellipse around each observation location.



Table 2: Summary of IP-WMDS Implementation.

FIP-WMDS BIP-WMDS
step1  Run with inputs Run with inputs

S;f’:a)jandX, szRjandX.
step 2 Store cn-stress, cn-stress} V i, and 62.
step3  Store ﬁj, SDj, 11, and 12 ‘ Store (I)j and MM;.

To display the effect of cn-stress;, we use colors and color ob-
servations. Based on simulations, we find the empirical distribution
of m(cn-stress; ) to be right-skewed (since it is strictly nonnegative).
We then apply a log transformation, and have m(log(cn-stress?))
which is approximately normally distributed. We consider the fol-
lowing quantiles: 0.0015, 0.25, 0.75, and 0.9985. If for observation
i, the log(cn-stress}) is low (below 0.25), we use cool colors to
depict this observation is not difficult to fit with WMDS. As the
log(cn-stress;) value increases, we use warm colors to depict the
difficulty of fit with pink representing extremely difficult (above
0.9985). We show an example of using color and ellipses in Figure 2
using a color blind palette’. In the legend of Figure 2 (c), the color
scheme is for low outliers (abbreviated as 1-out) is below 0.0015,
low is between 0.0015 and 0.25, medium (abbreviated as med) is
between 0.25 and 0.75, high is between 0.75 and 0.9985, while for
high outliers (abbreviated as h-out) is above 0.9985. Lastly, we
note the coordinates plotted are from FIP-WMDS since posterior
estimates of coordinates from FIP-WMDS will closely match that
of the SMACOF WMDS solution used in BIP-WMDS.
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Figure 2: Visualizing Uncertainty from Coordinate Range and Trust of
Observation Location. In (a), we show a projection of 20 observations
without uncertainty information. In (b), we encode difficulty of fit with
color. In (c), we provide a dual encoding of difficulty of fit using both
ellipses and color. In the legend, I-out means a low outlier and h-out
means a high outlier.

4 RESULTS

We apply our methods on two example datasets concerning animals
and characteristics describing these animals. Both example datasets
were created from a larger dataset containing 49 observations and
65 variables, slightly reduced from the original dataset [16] to re-
move highly-correlated and sparse dimensions. Each of the variables
represents a characteristic of the animals normalized on a scale of
0-100. For example, under the variable Furriness, bears will have a
high value in this variable while snakes would be low. For demon-
strative purposes, we randomly sampled 20 observations for our
visualizations and abbreviate them as shown in Table 3 below.

4.1 Example 1 withn=20and p=5

In this example, we randomly sample 5 attributes: Cave, Fish,
Quadrupedal, Lean, and Bush. We show results for uncertainty
measures from the scheme discussed in Section 3.4 by sampling
1000 interactions for both weights and observation locations. In
Figure 3, we plot an empirical distribution of 7(cn-stress). The
average cn-stress from FIP-WMDS is 0.02 with a range of [0, 0.04]

1http ://www . cookbook-r. com/Graphs/Colors_(ggplot2)/

Table 3: Animals and abbreviations for examples.

Animal Abb. Animal Abb.
Mouse Mu Rabbit Rb
Zebra Ze Bat Ba

Leopard Le Grizzly Bear Gr

Hamster Ha Rhinoceros Rh

Polar Bear Po German Shepherd Ge
Collie Co Spider Monkey Sp
Dalmatian Da Mole Ml

Beaver Be Dolphin Do

Raccoon Rc Siamese Cat Si
Moose Ms Walrus Wa

while from BIP-WMDS is 0.03 with a range of [0.01, 0.22]. At first
glance, they appear very different, however, most mass of the distri-
bution for 7(cn-stress) of BIP-WMDS is within the same range of
FIP-WMDS. This suggests fitting weights can be more difficult, and
we have a few outliers (difficult to fit interactions) for BIP-WMDS.

[ T T T 1 T 1T 1
0.00 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20
(a) (b)

Figure 3: Plots of m(cn-stress) across interactions (a) from FIP-WMDS
and (b) from BIP-WMDS. The distribution of difficulty of fitting WMDS
appears similar in both (a) and (b) with the bulk of values below 0.05.
The right-tail of (b) shows for a few interactions, weights are difficult
to find in BIP-WMDS.

0.00 0.10 0.20 0.30 -6 -5 -4 -3 -2

(a) (b)

Figure 4: Plots of (a) m(cn-stress;) and (b) m(log(cn-stress;)) for all
observations i from IP-WMDS. Note that the log transformation is
approximately normally distributed.

Figure 4 plots the empirical distribution 7 (cn-stress?) for all i in
both FIP-WMDS and BIP-WMDS, as well as its log transformation.
We see that the log transformation is approximately normally dis-
tributed. We also observe the empirical distribution for an individual
observation i (rather than all i). In Figure 5, we overlay the density
curve from the overall distribution (in Figure 4) for 3 individual
animals, Mouse, Zebra, and Leopard. We glean that the Mouse is
relatively easier to fit across visualizations than the Leopard.

In Figure 6, we show how adding layers of uncertainty informs
analysts about visualizations as described in Section 3.5. We choose
two visualizations to display in Figure 6 based on the best and worst
directions (out of our sample of 1000 interactions). “Best” would
be visualizations with the most blue coordinates (Figure 6 (a)-(c))
and “worst” would be visualizations with the least blue coordinates
(Figure 6 (d)-(f)). To help interpret these visualizations, a list of
animal abbreviations is in Table 3 followed by weight estimates with
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Figure 5: Plots of z(log(cn-stress;)) for only observation i. Note that
the Mouse is relatively easier to fit across visualizations than the
Leopard.

uncertainty for the variables in Table 4. From Table 4, we see that
variables Quadrupedal and Bush are weighted highly in Figures 6
(a)-(c), whereas Figures 6 (d)-(f), assign most weight to only Fish
and Bush.

Notice that the observation Bat appears as an outlier in Figure 6(a).
However is it really an outlier within the high-dimensional space?
Without measures of uncertainty, we would not know. In Figure 6(b),
this observation is colored pink. This means that the observation Bat
contributes unusually more than others to the global uncertainty of
the projection. That is, this observations is not represented well in
the visualization, relative to the rest. Also, we see from Figure 6(c)
that the coordinates within the visualization could vary dramatically.
That is, probabilistically, the coordinate for Bat could move slightly
toward the remaining observations - thus suggesting it is slightly
less of an outlier than appears in Figure (a). To summarize, the
observation Bat does seem different from the remaining observations,
but not as different as might be implied by an WMDS without
uncertainty.

Though Figures 6(a)-(c) have more blue observations than Figures
6(d)-(f), the global stress of Figures 6(d)-(f) (cn-stress=0.012) is less
than 6(a)-(c) (cn-stress=0.027). Thus, it becomes a choice for the
user to decide which projection to trust more for making insights.
If a user is looking to make insights across all observations, the
user might prefer graphs 6(d)-(f). Whereas, if a user is interested
in specific observations, e.g., German Shepard (Ge) and Raccoon
(Rc), the user might choose projections 6(a)-(c), as they are colored
in blue.

Table 4: True weights w; (True), posterior estimate of weights, @,
(Max Post), and range of top 10 weights, MM, from BIP-WMDS for
Figure 6. Quadrupedal is abbreviated to Quad.

Fig 6(a)-(c) Fig 6(d)-(f)
True Max Range True Max Range
Post Post
0.16 0.16 [0.12,0.18] | Cave | 0.04 0.03 [0.02, 0.06]
0.14 0.15 [0.09,0.17] | Fish | 048 0.39 [0.37,0.41]
032 033 [0.32,0.40] | Quad | 0.05 0.11 [0.11,0.16]
0.11  0.06 [0.03,0.08] | Lean | 0.08 0.11 [0.06, 0.12]
027 030 [0.26,0.34] | Bush | 0.35 0.35 [0.30, 0.35]

4.2 Example 2 with » =20 and p =30

To see how our method applies when the number of attributes in
a dataset (p) exceeds the number of observations (n) (p > n), we
randomly sample 30 attributes from the animals dataset and show
them in Table 5.

Again, we show results for uncertainty measures from the scheme
discussed in Section 3.4 by sampling 1000 interactions for both
weights and observation locations. In Figure 7, we plot an empirical
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Figure 6: Visualizing Uncertainty Regions and Trust of Coordinates
from the Best (Most Blue Observations) and Worst (Least Blue Ob-
servations) Directions of Example 1. Plots (a) and (d) have no visual
of uncertainty making comparisons of each display difficult, plots (b)
and (e) are uncertainty related to trust in observations locations and
relationships, and plots (c) and (f) are uncertainty in both. For ex-
ample, the interaction in (a) helps analysts understand the Racoon’s
(Rc) relationship to Polar Bear (Pb) more so than does the interaction
in (b). See Table 3 for all the animal abbreviations. In the legend,
I-out means a low outlier and h-out means a high outlier. For ease of
viewing, symbols associated with the colors are utilized.

distribution of 7(cn-stress). The average cn-stress from FIP-WMDS
is 0.07 with a range of [0.05, 0.09], and BIP-WMDS is 0.08 with
arange of [0.06, 0.14]. When increasing the number of attributes,
we find the distributions of 7(cn-stress) are very similar in FIP-
WMDS and BIP-WMDS. There are fewer extremes in the tail of the
distribution for BIP-WMDS as well.

Figure 8 shows plots of the empirical distribution 7(cn-stress;)
and 7(log(cn-stress;)) for all i followed by Figure 9 of the same
individual observations from Figure 5. In Figure 8, with the increase
in variables, we essentially have one group of observations that is
relatively easier to fit than the other group. This makes our log trans-
formation appear as a mixture of two normal distributions describing
those groups. In Figure 9, we draw a similar conclusion as in Exam-
ple 1 that the Mouse is relatively easier to fit with WMDS than the
Leopard and Zebra. Perhaps Mouse is in the relatively easy-to-fit
group while Zebra and Leopard are in the other group.

Lastly, we show the best and worst visualizations for the p = 30
case in Figure 10. We provide the entire table of weights for each
display in Appendix B. In Figure 10 (a), we see a direction with
the most blue observations also has less extremes in the uncertainty
region than does the display with the least blue. This is the oppo-
site scenario of Figure 6, and shows that the uncertainty region and



Table 5: 30 Randomly Sampled Attributes for Example 2.

Cave (Ca) Oldworld (Ow) Hooves (Hv)  Spots (Sp)
Fish (Fi) Hibernate (Hi) Smelly (Sm)  Size (Sz)
Quadrupedal (Qu)  Coastal (Co) Water (Wa) Plains (P1)
Lean (Ln) Bulbous (Bb) Hops (Hp) Tree (Tr)
Bush (Bh) Patches (Pa) Stalker (St) Horns (Hn)
Toughskin (Ts) Inactive (Ia) Grazer (Gr) Timid (Ti)
Chewteeth (Ct) Agility (Ag) Walks (Wk)  Tail (T1)
Buckteeth (Bt) Nocturnal (Nt)

006 0.07 0.08 0.09

(a) 0.05

(b)

Figure 7: Plots of m(cn-stress) across interactions from (a) FIP-WMDS
and (b) BIP-WMDS for p = 30. The distribution of difficulty of fitting
WMDS appears more similar than when p = 5. In (b), there are less
outliers for BIP-WMDS.

observations contributions to model fit of WMDS do not have a
monotonic relationship. Thus, incorporating both types of uncer-
tainty into the visualization is needed to understand the effects of
fitting WMDS and guides the explorations for the analyst.

5 DISCUSSION AND CONCLUSION

In this work, we developed IP-WMDS, a probabilistic adaptation
of WMDS to quantify and visualize measures of uncertainty in data
projections. Uncertainty in projections may result from nuances
in data, choices in interaction, and WMDS directly. To account
for differences in these sources, we extend IP-WMDS to forward
and backward versions, termed FIP-WMDS and BIP-WMDS, re-
spectively. FIP-WMDS applies when assessing WMDS uncertainty
in response to Parametric Interactions (PIs), whereas BIP-WMDS
applies in response to Observation-Level Interactions (OLIs). To
establish points of reference for measures of uncertainty, we estimate
distributions of uncertainty from PI and OLI using Monte Carlo.
By incorporating uncertainty into visualizations, we provide ana-
lysts a means to make discoveries from data effectively and respon-
sibly. That is, how analysts interact with data or make discoveries
from data may be influenced by the knowing ranges of possible
low-dimensional coordinates or intervals of optimal weights on vari-
ables, rather than just point estimates of each. The next step is to
conduct user studies to assess the influence uncertainty measures
have on analysts’ explorations of data. To conduct these studies,
we plan to incorporate uncertainty quantification into the BaVA
tool Andromeda [27]. However, our current implementation of IP-
WMDS, based on using 1000 interactions for both FIP-WMDS and

(a) o000 005 010 015 020

Figure 8: Plots of (a) m(cn-stress;) and (b) m(log(cn-stress;)) for
all observations i from IP-WMDS when p = 30. Note that the log
transformation is approximately a normal mixture of 2 components.
This suggests we have a group that is easier to fit than another.
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Figure 9: Plots of z(log(cn-stress;)) for only observation i. Even when
including more attributes (p = 30), the Mouse is relatively easier to fit
across visualizations than Leopard as in Figure 5.
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Figure 10: Plots of (a) Best and (b) Worst Directions for p = 30.
Note that uncertainty regions are relatively smaller in (a) than in (b)
which is opposite from Figure 6 (e) and (f) reflecting importance of
displaying both measures of uncertainty. See Table 3 for all the animal
abbreviations. In the legend, I-out means a low outlier and h-out
means a high outlier.

BIP-WMDS is computationally intensive, and, as the number of
observations in a dataset increases, so does computational time. To
improve computational time, one idea is to approximate [P--WMDS
to avoid the need for MCMC, or, at minimum, speed up the MCMC.
Another idea is to combine FIP-WMDS and BIP-WMDS into one
modeling effort, where both coordinates and weights unknown.

A DETAILS OF IP-WMDS

A.1  FIP-WMDS posterior distribution
We the

2
f(R_ﬂ],/lz,Gz ‘ X,(D) - (G —(m/2+a+1) H n/2+c,,+1

exp {

We note stress is defined as in Equations 1 and 2.

A.2 Gibbs sampler for FIP-WMDS

To draw samples from this posterior distribution, we slightly adjust
he Gibbs sampler approach in Oh and Raftery [23]. We use a trun-
cated normal proposal for 62 rather than a random walk. Parameters
are updated as follows in the Gibbs sampler using 7 iterations. See
Oh and Raftery [23] for more details.

A.3 FIP-WMDS Settings for Example 1 and 2

For both examples, we run our Gibbs sampler for 7' = 50,000 itera-
tions with a burn-in of 10,000. Hyperparameter settings for o2 are
a=>b=0.05and A are g = go = h; = hp = 0.01. These settings

write joint  posterior for this  model:

stress
202

Z logCD(dij)fi,lirfAflr.,i,
c o 24" '
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Algorithm 1 Gibbs sampler for FIP-WMDS.

Algorithm 2 Gibbs sampler for BIP-WMDS.

Input: X, w, and dl-“; (m high-dimensional pairwise distances).
Output: R il,iz, and 62.

1: Initialize R© l«) Ll(())

2: Forzin1: T {

3: Update R(®) ~ f( | X,,Xp,w,ll(tfl),lz(lfl),crz(”l))
using a Metropohs Hastings (MH) step and proposal
N(R(’*l),clsx’*l)/(n— 1)) for constant c;.

. 2(r) () =1 =1)y
4: Update 62() ~ f(c? | Xnxp, @,R, .5, A 7, A, ) usinga
MH step and truncated normal proposal.
5. Update A ~ mp | Xpsp0,RY), 620)
IG(cq—i-n/Z dy+ 3307 ) forg = 1,2
6: } END

form weakly-informative priors, and sensitivity analyses on hyper-
parameter values in (0,1] shows no sensitivity in the setting these
values.

We have tuning constants for our MCMC to assure reasonable
acceptance in our MH steps. They are for the random walk proposal
of coordinates R and the truncated normal proposal of 62. For R, the

step size is cR ( 1) and for Example 1, cg ~ 13.5 across different

variable weight vectors while in Example 2, cg ~ 15. For 62, the
tuning parameter is a constant c,, and for Example 1, c; = 28 while
for Example 2, ¢, = 30.

For initialization of the Gibbs sampler, Oh and Raftery [23] sug-
gest using estimates (in their case classical MDS) from SMACOF
WMDS to help reduce number of iterations 7'. This is especially
important when number of observations # is large. In our case with
n =20, we used a random initialization of our coordinates and values
of 4 and 5 for 62 and both A; and A,.

Convergence of our MCMC is determined by the Geweke diag-
nostic, our acceptance rates in our MH steps, and trace plots [10].
For R and 62, we aim for acceptance rates within [0.20, 0.40] with
R on average a rate of 0.30 and 6 on average a rate of 0.27.

A.4 BIP-WMDS posterior distribution

We write the joint posterior distribution for this model:

P
flo, o? | X,R) < (62)*(m/2+b+1) (H Wzk1>

k=1

t 2 ag
exp{mess;d Y logd <x)}
20 1<i<j<n o

A.5 Gibbs sampler for BIP-WMDS

Parameters are updated in the following Gibbs sampler using T iter-
ations. We use the same parameter setting in our Dirichlet proposal
for (") as Sewell and Chen [28]. Such a proposal allows for small
changes in the weight for a large constant v.

A.6 BIP-WMDS Settings for Example 1 and 2

For both examples, we run our Gibbs sampler for 7 = 100,000
iterations with a burn-in of 10,000. Hyperparameter settings for 62
are a = b = 0.05. This is still a weakly-informative prior and there
is no sensitivity in setting values in (0, 1].

We have tuning constants for our MCMC to assure reasonable
acceptance rates in our MH steps. They are for the random walk
proposal of weights @ and the truncated normal proposal of ¢2.
For w, the constant v = 100 and v = 2050 for Example 1 and 2
respectively. For 62, the tuning parameter is a constant ¢y, and

Input: X, R, and dirj (m low-dimensional pairwise distances).
Output: @ and 62.
1: Initialize »(*), 6%(0).

[SSIN o)

:Fortin1:T {
: Update o) ~ f(w0) | X,R, 62~ 1)) using a MH step and pro-
prosal of Dirchlet(v a)(’ -1).

5: Update 62) ~ f(62) | X,R, ")) using a MH step and trun-
cated normal proposal.
6: } END

A~

for Example 1, ¢; = 28 while for Example 2, ¢c; = 35. Lastly, we
initialize the variable weights using {1/p}/_, and a value of 4 for

o2.

Lastly, for convergence, we use the same diagnostics mentioned
in FIP-WMDS. Again, for ® and 62, we aim for acceptance rates
within [0.20, 0.40] with @ on average a rate of 0.21 and o2 on
average a rate of 0.26.

B VARIABILITY OF WEIGHTS IN EXAMPLE 2

Table 6: True weights , posterior estimate of weights, &, and range

of top 10, ro, from BIP-WMDS.
True Max Range True Max Range

Post Post

0.054  0.038 [0.027, 0.06] Ca 0.010  0.034 [0.03, 0.034]
0.020  0.028  [0.018,0.03] Fi | 0.098 0.037 [0.031,0.044]
0.078 0011 [0.011,0.069] | Qu | 0.029 0.028  [0.02,0.028]
0.146  0.076  [0.026,0.076] | Ln | 0.083  0.037  [0.021,0.047]
0.052  0.023 [0.018,0.052] | Bh | 0.011 0026 [0.022,0.029]
0.005  0.026  [0.025,0.034] | Bt | 0.005 0.018 [0.018,0.026]
0.000  0.015  [0.015,0.03] TI | 0018 0.021  [0.014,0.028]
0.006  0.027 [0.009,0.031] | Ti | 0.181 0.067 [0.059,0.085]
0.051  0.028 [0.026,0.053] | Pl | 0.021 0022 [0.022,0.045]
0.012 0016 [0.0150.035] | Pa | 0.039 0.017 [0.017,0.031]
0.097  0.044 [0.022,0.066] | Hv | 0.014 0.037 [0.023,0.038]
0.025  0.035 [0.018, 0.039] Hi 0.043  0.052 [0.013, 0.052]
0.025 0015 [0.0150.027] | Wa | 0.007 0.034 [0.03, 0.04]
0.065 0.038  [0.024,0.056] | Hp | 0.003 0.021 [0.021,0.033]
0.008  0.047  [0.029,0.049] | St | 0.003 0.035 [0.019,0.035]
0.004 0056 [0.017,0.056] | Ow | 0.028 0.028  [0.016,0.037]
0.003 0013  [0.013,0.044] | Sz | 0.023 0017 [0.017,0.039]
0.004  0.036  [0.023,0.041] | Bb | 0.035 0.048  [0.048,0.078]
0.082  0.049 [0.024,0.049] | Sm | 0.008 0.038  [0.038,0.065]
0.019 0042  [0.03,0.044] | Hn | 0.024 0029  [0.02,0.029]
0.009  0.043  [0.029,0.048] | Ag | 0.018 0054 [0.022,0.054]
0.008  0.023 [0.023,0.048] | Wk | 0.024 0.036  [0.021,0.036]
0.054  0.056  [0.01,0.057] Ct | 0002 0.040  [0.025,0.04]
0.028  0.022 [0.008,0.028] | Ts | 0.025 0019 [0.019,0.043]
0.052  0.037 [0.034,0.058] | Sp | 0.035 0.045 [0.037,0.051]
0.061 0.040  [0.031, 0.057] Tr 0.021 0.017 [0.01, 0.036]
0.019 0027 [0.017,0.035] | Ta | 0.076 0.029  [0.028,0.05]
0.005 0034 [0.022,0.057] | Gr | 0.033 0.041 [0.026,0.041]
0.006  0.022 [0.013,0.028] | Co | 0.044 0.036 [0.036,0.054]
0.002 0033 [0.016,0.044] | Nt | 0.038 0.038 [0.025,0.051]
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