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Abstract 
This paper examines the Human Computer 

Interaction issue of learnability of interactive 
coordinated-view visualizations. We take the case of 
DataMaps, a Census data visualization tool intended for 
a general audience with a huge percentage of novices. 
Usability tests conducted on DataMaps revealed three 
main  kinds of problems that novices faced: they could 
not make strategic selections of coordinated 
visualizations according to a given task, they lacked 
familiarity with the nature of the attributes, and there 
were several misunderstandings of visual syntax  and 
interaction widget usage. We outline design features 
which are desirable for novice-friendliness: Task based 
organization of coordinated views to enable strategic 
selection of views to suit the task, Data centric approach 
to familiarize novices with data, Self disclosure of visual 
syntax features and interaction mechanisms by the 
interface. The design should be such that they can 
smoothly transition from being a novice to expert. We 
examine how these principles may be applied to 
DataMaps to re-design it for “novice-friendliness”. 

 

1. Introduction 

The learnability of interactive, coordinated-view 
visualizations is an important issue in several scenarios. 
Consider a visualization interface in a museum or a 
website, available to a varied audience. Several users 
might be accessing the visualization tool only for a one-
time exploratory session. A visitor in a museum might 
want to interact with the display for a while. Novice-
friendliness is crucial in such cases and we are justified 
in researching learnability issues in visualizations.  

 
We define a novice user as someone who does not 

have experience with using interactive multiple-view 
visualizations. However, we do need to assume a “lowest 
common denominator profile” for novice users to design 
the interface with respect to that profile. We assume that 
a user, although novice, necessarily possesses: 
 

• General familiarity with the notion of using 
visual representations of information (as 

opposed to textual paragraphs). For example, 
they would be familiar with visual 
representations encountered in day-to-day life, 
such as pie charts and bar graphs and weather 
information on maps as seen in weather news 
broadcasts. 

• General familiarity with W-I-M-P interfaces 
(Windows Icons Menus Pointer interface) 
where the user must rely on icons, buttons, and 
dialog boxes for executing operations. 

 
We focused our studies on a particular visualization 

tool called DataMaps, supported by US Census Bureau. 
We expect that a typical user browsing the Census 
website would be familiar with WIMP interfaces. An 
informal survey revealed that bar-charts and pie-charts 
are the most commonly encountered and easily 
understood visualizations for those who have no prior 
exposure to interactive information visualizations. It also 
showed us that it is acceptable to assume basic 
familiarity with the notion of using visual representations 
in novices. 

 
In sections 2, 3 and 4 of this document, we provide a 

description of DataMaps, the usability test conducted on 
it and the qualitative results obtained, respectively. In 
sections 5 we theorize about learnability issues and in 
section 6, we outline design principles which enhance 
learnability. In section 7, we show how the design 
principles may be applied to re-design DataMaps for 
novice friendliness. 
 
 2. Background on DataMaps 
 

DataMaps [2] is a front-end tool for visualization 
and analysis of census data on the United States. Data 
has been collected for approximately 8000 attributes. 
“Attributes” are items such as “total population” 
“percentage white population” “percentage black 
population” and so on. These attributes are grouped 
together by categories such as “Age”, “Agriculture”, 
“Banking”,” Crime” etc. See figure 1. 
 



DataMaps has a map view, a histogram view, a 
table, and a scatter-plot view. The histogram shows a 
frequency distribution (the number of regions occurring 
in predetermined class intervals). Several histograms are 
simultaneously visible. The map view employs color 
gradation to show attribute values as a function of 
geographic areas. Darker regions imply lower numerical 
values. Only one map is viewable at a time. The scatter 
plots aids in assessing the relationship between two 
attributes. Only one scatter-plot is present. The table is 
activated on clicking on a region on the map; it loads 
data values for that state and presents the textual figures 
in tabulated format. The coordination mechanisms are 
described below: 
 

• The histograms are present together with a 
Dynamic Query (DQ) slider widget. Moving the 
sliders in the dynamic query widget filters out 
value ranges, and the corresponding states in the 
map are de-selected (darkened out), as shown in 
figure 1. (de-selection on DQ slider -> de-
selection on map, unidirectional) 

• Clicking on a region on the map loads the table 
with figures for that state. Refer figure 
1.Georgia and Florida are selected in map and 
tabulated in table view. (selection on the map -> 
loading in the table, unidirectional) 

 
• Clicking on the map also highlights the 

corresponding dot on the scatter plot, and 
clicking on the scatter plot highlights the region 

on the map. The two dots for Georgia and 
Florida are seen highlighted on the plot, in 
figure 1. (selection on map <-> selection on 
scatter plot, bidirectional) 

 
When the application is opened, five attributes are 

selected by default. Five corresponding histograms show 
the frequency distributions for these attributes. If the user 
needs to visualize attributes other than these five, he/she 
has to click the “more variables” button . A tree-view of 
the 8000 attributes (as seen in Figure 1) would appear on 
a separate window and allow the user to select new 
attributes to view. 

 
 
3. Usability tests on DataMaps 
 

The Census department conducted usability studies 
on DataMaps. Novice users were given 10 tasks and 
asked to think aloud while trying to complete each task. 
They were asked to “play around with the interface” as a 
pre-task session and describe their first impressions. The 
sessions were video-taped and screen-captured. All of 
users were quick to remark that they would click on a 
state to view information about it, within only a few 
seconds of playing with the Data-maps interface.  Table 
1 lists the actual tasks that the novice users were required 
to do. 

 
 

 
 

         
 

Figure 1 Tree View and Data Map windows 



S.N Question 
1 What was the population of California in 1997? 
2 Compare the 1994 income level of people in 2 

states not next to each other. Which had greater 
per capita income? 

3 Of the western states, which state had the lowest 
unemployment rate in 1996? 

4 Name the states where 20% to 22% of the 
population in 1990 had high school degrees. 

5 Which two counties in Nevada had the highest 
population percent change from 1990 to 1997? 

6 How many families in Minnesota lived below 
the poverty line in 1989? 

7 You are thinking of moving to a new state. You 
want to live in a state that has low poverty level, 
high income level, and low unemployment rate. 
Which state or states best fit these criteria? 

8 You are interested in graphing the relation 
between high school graduation and one’s 
personal income across the states. How would 
you do it? 

9 a Which county in the USA had the highest 
population in 1997? 

9 b You would like the map to show number of 
persons below poverty level for each county. 
How would you do that? 

10 You no longer want to play around with one data 
item. How will you remove it from your view? 

Table 1 Task set in DataMaps usability test 

 
 
4. Usability problems identified  
 
4.1 Inefficient strategies  
 

When faced with a question such as “which county 
in the USA had the highest population in 1997”, they 
tried to click each state on the map and read off 
corresponding values for each region from the table. In 
order to locate the maximum they tried to follow a 
laborious, algorithmic procedure.  It required excessive 
scrolling of the table and mental book-keeping; and they 
gave up. Simply selecting the given attribute to color the 
map would have helped locate the maximum valued 
region by color tone, but they did not follow this method. 
 
4.2 Understanding interaction widget 
mechanisms  

The users had not seen Dynamic Query sliders 
before. The sliders resemble buttons; they have been 
marked with arrows in figure 2. The users clicked on 
each one, but they couldn’t guess that they must be 
dragged in order to be used, not just clicked. Dragging 
selects a sub range and filters out (deselects) states not in 
that sub-range. This operates similar to Dynamic Queries 
in Home Finder visualization [6]. 

 
Figure 2  Dynamic Query widget 

 
4.3 Understanding visual syntax 
 

The users thought the histograms were bar graphs. 
They had trouble interpreting the visual syntax. In a 
histogram, the height of the bar stands for number of 
occurrences, but they wrongly interpreted that a bar 
stands for a particular state and that the height of the bar 
represents the attribute value for that state. The y-axis of 
the histogram was left unlabelled to save space and 
accommodate more histograms as seen in figure 2. If 
labeling were clear, this problem would have been 
eliminated. 
 
4.4 Locating starting points of action sequences 
 

 Two of the users had trouble finding out how to 
visualize information for new attributes, not already 
visible in the interface. Locating the “more variables” 
button which opens the tree view of attributes was a 
problem (see figure 1). This would have been eliminated 
if the tree view had been present persistently on a 
separate frame. 
 
4.5 Difficulty breaking-up the question into 
executable tasks  
 

Consider question 6 from the table: “How many 
families in Minnesota lived below the poverty line in 
1989?” One could break down the question in several 
ways. For example:  

• “How many families” + “lived in Minnesota” +  
        “below the poverty line” + “in 1989” 
• “How many families” + “lived below poverty 

line in 1989” + “in Minnesota” 
 

The attribute that actually bears the answer to the 
question, is: “Number of families below poverty line, 
1989”. The value for this attribute should be checked 
against the state “Minnesota”. Of the two types of break-
downs, if the latter were to be used, then the user has a 
better chance of finding the required attribute, and 
looking up Minnesota against it. 

 
We need to make sure that the user’s mental model 

matches the system model. One user tried to tackle the 
question by first figuring out the value of “the poverty 
line” in dollar amount and then counting the regions with 
values below that. There was no piece of information 
about “the poverty line” and his strategy failed. If the 
attribute list were persistently present, it would have 
been easy to see the required attribute: “Number of 



families living below poverty line in 1989”. He would 
have better understood how to break down the given 
task. 
 
5. Learnability issues  
 

We break down the learnability issues that we 
identified into the following broad categories: 
 

• Strategy - Breaking down higher level goals 
into an action plan with the best strategy.  

• Data familiarity - Understanding the nature of 
data attributes, data values, and meta-data 
information. 

• Representation and Interaction - 
Understanding the visual syntax and interaction 
mechanisms. 

 
At first, we theorized that the novice users used the 

inefficient strategy of relying on tabulated numeric 
values for all problems, probably because they are more 
familiar with tables and uncomfortable upon seeing other 
visualizations. However, related literature led us to 
consider another theory. Fu et al examine novice users’ 
learning behaviors in “Probing the Paradox of the Active 
user: Asymmetrical Transfer May Produce Stable, 
Suboptimal Performance” [4] and “Resolving the 
paradox of the active user: stable suboptimal 
performance in interactive tasks” [5]. They explain why 
users persistently use inefficient methods for completing 
tasks when the users know more efficient methods.  
 

It may be that the users are simply resorting to the 
first strategy they learned, to solve all problems. In the 
test, the first question obviously leads the user to play 
with maps. The users automatically became familiarized 
with clicking regions on the map and viewing the 
corresponding details on the table. “Click California, 
read off value from table” was the strategy followed. 
 

Now the map has four different kinds of 
functionality in DataMaps: 

• To act as a pointer to a table row (clicking on a 
state loads the table with figures for that state) 

• To act as a visualization of a single attribute 
(color gradation shows attribute values as a 
function of geographic areas) 

• To act as an output to dynamic queries from 
histograms (as described earlier) 

• To act as a two-way selection with scatter-plot. 
(described earlier) 

 
Of these four roles that the map plays, the first task 

made the user recognize the map as a pointer to a table. 
So the first “strategy” that they learnt was: “Click on a 
region in the map, and view corresponding values on the 
table”. They “latched on” to the learnt strategy. So the 
users kept on trying to answer all questions using the 
same strategy. When they came to questions such as (9a) 

which asked them to identify the region with maximum 
value for a given attribute, they were frustrated, thinking 
that they had to click on 50 states, one by one, and read 
off values from the table to identify the state with the 
maximum value.  
 

Fu et al refer to the user’s inefficient but most often 
used method for completing a task as a user’s “preferred 
method” and the more efficient but less often used 
method for completing a task as the “recommended 
method.” They explain that users may find incremental 
actions to be less of a cognitive load. Interaction with 
modern user interfaces is usually done through 
incremental steps. From their explanation, it might 
appear that users are doing what brings them the least 
amount of stress and smallest cognitive load; repeating 
simple tasks many times. This offered an explanation as 
to why users tried to use the same strategy of “click on 
state, scroll through values on table” to solve all the 
questions. 
 

The users had difficulty breaking up the tasks and 
tackling them because they weren’t seeing the data first. 
They were not familiar with the nature of data attributes 
before needing to use them. They were seeing the 
questions first. The data attributes occur on yearly basis. 
For example, “total population, 1997” “total population, 
1998” etc. Such observations about the nature of the data 
can be understood only by being continually exposed to 
the tree view listing of data attributes.  
 

People are most familiar with the notion of data and 
bring with them their prior knowledge, as novices, to the 
visualization tool. Leveraging their existing knowledge 
to promote learnability is possible by making the 
interface data centric. Data attributes and their 
relationships with each other and meta-data information 
can be made prominent. 
 

Upon mouse-move over the slider buttons, the 
mouse pointer could have changed shape to indicate 
“drag-ability”. This would have self-disclosed the 
mechanism by which it was meant to be used, without 
the need of help files. The y-axis on the histogram could 
have been labeled prominently. Users may not be 
familiar with histograms, although they may be familiar 
with bar charts. Currently, the knowledge about how to 
use widgets is imparted via help mechanisms, rather than 
being embedded during task execution.  
 
 
6. Design principles for learnability in 
DataMaps 
 
6.1 Data Centricity  

 
 “What can I visualize with a map?” – is 

visualization centric (the old design of DataMaps). Data 
driven action sequences would “make sense” to the user. 



“What is the data they have collected, and how can I 
use them to get my queries answered?” is more natural, 
and is the new design. As described in section 4.5, 
prominently displaying the attribute list helps make the 
mental model closer to the system. The process of 
breaking-down a task into steps to perform the query is 
easier when the attribute names are clearly visible. Meta-
data information should also be available upon demand. 
 
6.2 Task based configurations of multiple views 
 

Novices need to learn how to persistently use 
efficient methods for performing tasks. According to T. 
Bosser [1] these must be taught to the user initially, if 
they are to be used persistently. Novices tend to stick to 
initially learnt strategies. So overloading the same 
visualization component with too many task capabilities 
(e.g. the four roles of the map described earlier) might 
result in the visualization being used only in one of the 
roles which was initially learned. According to task-
based principle, a map component shall show color 
gradation only when the task objective is to 
geographically visualize attributes using a color 
gradation. A map shall remain un-shaded while acting as 
the output of a dynamic query made from sliders; it will 
merely show de-selections. These two different roles are 
kept separate in different configurations. Only one 
configuration can be kept open at a time, so the 
components will be used appropriately for the task at 
hand. The system should explicitly describe the purpose 
of each task-based configuration. 

 
Task based organization may be criticized that it 

limits what the user can do or that it “over-trains” 
novices in certain task types and they may fail to use 
visualizations to creatively discover insights. To offset 

this drawback, the snap together [7] principle may be 
accommodated as well. This is explained in section 7. 
 
6.3 Self-disclosure  
 

Help menus are a common but ineffective solution. 
Users seldom read through them before starting to use an 
interface. John Reiman finds that many users feel that 
exploration or exploratory learning is an ideal way to 
learn how to do tasks [8]. Exploratory learning is a 
method of learning that allows users to figure out how to 
perform tasks as they are doing them. DiGiano and 
Eisenberg [3] describe self-disclosure as the process of 
embedding context sensitive help into learning 
opportunities. DiGiano and Eisenberg provide an 
excellent example in [3] by describing a feature in 
AutoCAD that bridges the gap between mouse driven 
commands and text programming commands. It worked 
like this: When a user performs a function with a mouse 
a window in the AutoCAD program displayed the text 
programming command equivalent of the mouse 
command. We shall define self disclosing interactive 
visualization as one which discloses elements of its 
visual syntax and interaction mechanisms of its widgets, 
during actual task execution, without requiring the user 
to consult external manuals to comprehend it.  
 
7.  Re-design of DataMaps for learnability 
using the above design principles 
 

The basic re-design is discussed, without too many 
implementation details.  The DataMaps interface can be 
divided into two major regions – data attribute explorer 
region and the visualization region. The attribute list 
shall be kept persistently visible on the tree view as 
shown in figure 3.  
 

                     
 
 

Figure 3 DataMaps redesigned for learnability 



A panel on top of the DataMaps application has a set 
of buttons with icons on them as shown. Each button 
represents a configuration or arrangement of coordinated 
views that can be used to answer specific kinds of 
queries. For example, we can have “maps only 
configuration” to view one or more color scale maps, 
“map and Dynamic query widget” configuration to view 
regions satisfying input query conditions, “map plus 
scatterplot” configuration and so on. On moving the 
mouse over the buttons, tool tips appear, describing the 
configuration.  

 
When DataMaps application is opened, a particular 

configuration of visualization tools is shown, by default 
as shown. A note explains what the configuration may be 
used for. For example, the note in the “maps only” 
configuration could say: “You can view colored maps for 
up to 9 maps at a time. This feature is useful especially 
for geographically comparing several different 
attributes”. This note may be a separate window or a 
frame in the overall DataMaps window. 

 
If the chosen configuration is “maps only”, then 

every time an attribute is selected to be visualized, a new 
map is loaded into the visualization area. Each map 
would act as a color-scale visualization of an attribute. If 
the configuration chosen is “maps + DQ histograms” 
then the map would only serve as an output of DQ 
results. For example, “show states with population 
ranging from x1 to x2 AND crime rate ranging from c1 
to c2” would be executed with “maps + histogram” 
configuration. The map would highlight states which 
satisfy the query input from the dynamic query widget. 
Only one configuration can be opened at a time. The 
button of the current configuration is highlighted. 

 
The last button on the panel is “custom 

configuration…” It would take the user through a wizard 
of steps. The user would be asked to choose the 
visualizations and the type of coordinations between 
them, similar to snap together visualization [7]. After 
going through steps to construct configurations, the user 
will know what he/she is doing, and why.  

 
The individual visualization components are clearly 

marked and labeled. Mouse-move-over events are 
carefully traced out so that all necessary prompting 
information is provided. For example, upon mouse-
move-over on the Dynamic Query slider widget, mouse 
pointer changes to indicates that it is drag-able. The 
interactive self-disclosure of visual syntax and 
interaction mechanisms will help minimize the need for 
help documents. 

 
The novice user is supported from the novice stage 

to the expert stage. The user is familiarized with the 
notion of “specific configurations for specific tasks”. A 
complete novice can simply explore all the available 
configurations and read the corresponding explanatory 

notes. As the novice becomes more comfortable, he/she 
can go through the custom configuration wizard. 
 
Conclusions and future work 
We have used the results of empirical studies to generate 
design guidelines for enhancing learnability of an 
interactive visualization. Our next step is to implement 
the new design and run studies to collect further 
empirical data. We also wish to examine the applicability 
of the three design principles (Data centricity, Task 
based organization, and Self disclosure) to enhance the 
learnability of other visualizations of relational data.  
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