Biblio

Export 20 results:
Sort by: [ Author (Asc)] Title Type Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
W
Wang J, Mi P, North C. Making Sense of Daily Life Data: From Commonalities To Anomalies. In: VAST Challenge 2014. VAST Challenge 2014. ; 2014. p. . VAST_2014_MC2_VT_Wang.pdf (717.14 KB)
Wang J, Lin X, North C. {GreenVis : Energy-Saving Color Schemes for Sequential Data Visualization on OLED Displays}. [Internet]. 2012:8. Available from: http://eprints.cs.vt.edu/archive/00001192/ WANG.pdf (1.62 MB)
Wang J, Agrawal A, Bazaza A, Angle S, Fox EA, North C. Enhancing the ENVISION interface for digital libraries. In: JCDL '02: Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries. JCDL '02: Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries. New York, NY, USA; 2002. p. 275–276.
Wang J, Zhao J, Guo S, North C, Ramakrishnan N. ReCloud: Semantics-based Word Cloud Visualization of User Reviews. In: Proceedings of the 2014 Graphics Interface Conference. Proceedings of the 2014 Graphics Interface Conference. Toronto, Ont., Canada, Canada; 2014. p. 151–158. Available from: http://dl.acm.org/citation.cfm?id=2619648.2619674 p151-wang.pdf (967.69 KB)
Wang J, Bradel L, North C. Event-Based Text Visual Analytics. In: VAST Challenge 2014. VAST Challenge 2014. Paris, France; 2014. p. . VAST_2014_MC1_VT_Wang.pdf (2.68 MB)
Wang J, Dent K, North C. Fisheye Word Cloud for Temporal Sentiment Exploration. In: CHI '13 Extended Abstracts on Human Factors in Computing Systems. CHI '13 Extended Abstracts on Human Factors in Computing Systems. New York, NY, USA; 2013. p. 1767–1772. Available from: http://doi.acm.org/10.1145/2468356.2468673 p1767-wang.pdf (1.36 MB)
Wenskovitch J, North C. An Examination of Grouping and Spatial Organization Tasks for High-Dimensional Data Exploration. IEEE Transactions on Visualization and Computer Graphics. 2020:11 pages. Cognitive_Study_VIS_Paper-2.pdf (4 MB)
Wenskovitch J, North C. Machine Learning from Interaction in Multi-Model Visual Analytics. In: Proceedings of the ACM CHI Conference Workshop on Human-Centered Machine Learning Perspectives at CHI’19. Proceedings of the ACM CHI Conference Workshop on Human-Centered Machine Learning Perspectives at CHI’19. ; 2019. p. . HCML_Submission.pdf (552.21 KB)
Wenskovitch J, North C. Pollux: Interactive Cluster-First Projections of High-Dimensional Data. In: 2019 Symposium on Visualization in Data Science (VDS’19). 2019 Symposium on Visualization in Data Science (VDS’19). ; 2019. p. . The_Pollux_Paper-2.pdf (1.8 MB)
Wenskovitch J, Dowling M, North C. The Cognitive and Computational Benefits and Limitations of Clustering for Sensemaking. In: CHI '18 Workshop on Sensemaking in a Senseless World. CHI '18 Workshop on Sensemaking in a Senseless World. Montreal, QC, Canada; 2018. p. . cognitive-computational-benefits.pdf (374.93 KB)
Wenskovitch J, North C. Interactive Artificial Intelligence: Designing for the "Two Black Boxes" Problem. IEEE Computer. 2020;53:29-39. Two_Black_Boxes-final.pdf (4.34 MB)
Wenskovitch J, Zhao J, Carter S, Cooper M, North C. Albireo: An Interactive Tool for Visually Summarizing Computational Notebook Structure. In: 2019 Symposium on Visualization in Data Science (VDS’19). 2019 Symposium on Visualization in Data Science (VDS’19). ; 2019. p. . Albireo__Visualizing_Computational_Notebooks.pdf (984.33 KB)
Wenskovitch J, Bradel L, Dowling M, House L, North C. The Effect of Semantic Interaction on Foraging in Text Analysis. In: 2018 IEEE Conference on Visual Analytics Science and Technology (VAST). 2018 IEEE Conference on Visual Analytics Science and Technology (VAST). ; 2018. p. . effect-semantic-interaction.pdf (1.43 MB)
Wenskovitch J, North C. Observation-Level Interaction with Clustering and Dimension Reduction Algorithms. In: Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. New York, NY, USA; 2017. p. 14:1–14:6. Available from: http://doi.acm.org/10.1145/3077257.3077259 HILDA17_final.pdf (691.5 KB)
Wenskovitch J, Dowling M, North C. With Respect to What? Simultaneous Interaction with Dimension Reduction and Clustering Projections. In: Proceedings of the 25th International Conference on Intelligent User Interfaces. Proceedings of the 25th International Conference on Intelligent User Interfaces. New York, NY, USA; 2020. p. 177–188. Available from: https://doi.org/10.1145/3377325.3377516 With_Respect_to_What_.pdf (672.1 KB)
Wenskovitch J, Dowling M, Grose L, North C, Chang R, Endert A, Rogers D. Machine Learning from User Interaction for Visualization and Analytics: A Workshop-Generated Research Agenda. In: Proceedings of the IEEE VIS Workshop MLUI 2019: Machine Learning from User Interactions for Visualization and Analytics. VIS’19. Proceedings of the IEEE VIS Workshop MLUI 2019: Machine Learning from User Interactions for Visualization and Analytics. VIS’19. ; 2019. p. . MLUI_Long_Paper.pdf (5.22 MB)
Wenskovitch J, Dowling M, North C. Simultaneous Interaction with Dimension Reduction and Clustering Projections. In: Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion. Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion. New York, NY, USA; 2019. p. 89–90. Available from: http://doi.acm.org/10.1145/3308557.3308718 p89-wenskovitch.pdf (478.5 KB)
Wenskovitch J, Crandell I, Ramakrishnan N, House L, Leman S, North C. Towards a Systematic Combination of Dimension Reduction and Clustering in Visual Analytics. IEEE Transactions on Visualization and Computer Graphics. 2018;24:131-141. systematic-combination-dimension.pdf (6 MB)
Whiting MA, North C, Endert A, Scholtz J, Haack J, Varley C, Thomas J. VAST contest dataset use in education. In: Visual Analytics Science and Technology, 2009. IEEE VAST 2009. Visual Analytics Science and Technology, 2009. IEEE VAST 2009. ; 2009. p. 115 -122. PDF (628.62 KB)
Wu H, Sun M, Mi P, Ta N, North C, Ramakrishnan N. Interactive Discovery of Coordinated Relationship Chains with Maximum Entropy Models. ACM Transactions on Knowledge Discovery from Data. 2018;12(1). paper.pdf (7.13 MB)